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Abstract

In this paper, we study the Graph Isomorphism problem on graphs of bounded
treewidth, bounded degree or bounded bandwidth. Graph Isomorphism can be
solved in polynomial time for graphs of bounded treewidth, pathwidth, or band-
width, but the exponent depends on the treewidth, pathwidth, or bandwidth. Thus,
we look for special cases where `�xed parameter tractable' polynomial time algo-
rithms can be established. We introduce some new and natural graph parame-
ters: the (rooted) path distance width, which is a restriction of bandwidth, and the
(rooted) tree distance width, which is a restriction of treewidth. We give algorithms
that solve Graph Isomorphism in O(n2) time for graphs with bounded rooted path
distance width, and in O(n3) time for graphs with bounded rooted tree distance
width. Additionally, we show that computing the path distance width of a graph is
NP-hard, but both path and tree distance width can be computed in O(nk+1) time,
when they are bounded by a constant k; the rooted path or tree distance width can
be computed in O(ne) time. Finally, we study the relationships between the newly
introduced parameters and other existing graph parameters.

1 Introduction

In this paper, we consider the Graph Isomorphism problem, for graphs for which certain
parameters can be assumed to be small constants. We are especially interested in Graph
Isomorphism on graphs where either the treewidth, bandwidth, or degree of the graph
is bounded, as there are many interesting graph classes which have a bound on one of
these parameters (see e.g. [2]). For these parameters, it has been shown that when the
parameter is a constant, then Graph Isomorphism is polynomial time solvable (see [12]
for bounded degree, and [3] for bounded treewidth and bandwidth). However, in each
of these three cases, the exponent of the algorithm grows with the parameter. Thus,
a question is, whether algorithms exist for Graph Isomorphism with a running time
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O(f(k)nc), c a small constant, k the maximum degree / treewidth / bandwidth / . . . /
of the graph; in other words, whether Graph Isomorphism is �xed parameter tractable

(in the sense of the �xed parameter complexity theory of Downey and Fellows, see e.g.
[8, 9]), with the maximum degree / treewidth / bandwidth / . . . / as parameter.

Thus, we are looking for answers to the questions whether Graph Isomorphism is
�xed parameter tractable for the case that the parameter is the degree, treewidth or
bandwidth of the graph. These questions are apparently hard. In this paper, we are
able to solve some interesting special cases of these problems.

For this, several natural graph parameters are introduced: the (rooted) path distance

width, and the (rooted) tree distance width. The notion of path distance width can be
seen to have a close relation to bandwidth; the notion of tree distance width is a natural
tree-like generalisation of this notion, with a close relationship to treewidth.

This paper is organised as follows. In section 2 we prove that the rooted path (tree)
distance width of a graph can be computed in O(ne) time, that computing the path
distance width of a graph is NP-hard, but if the path or tree distance width is at most
some �xed constant k, then the minimum path (tree) distance width can be computed
in O(nk+1) time. The main results of the paper can be found in Section 3: it is shown
that Graph Isomorphism is solvable in O(n2) time for graphs with bounded rooted path
distance width, thus solving a signi�cant special case of Graph Isomorphism for graphs
of bounded bandwidth. Furthermore, it is shown that Graph Isomorphism is solvable in
O(n3) time for graphs with bounded rooted tree distance width, which solves a special
case for Graph Isomorphism for graphs of bounded treewidth. In Section 4, the relations
between the di�erent considered parameters are investigated.

2 De�nitions and Complexity Results for Distance Width

The graphs we consider are simple, undirected and connected, and contain no self loops.
For a graph G, we denote its set of vertices by V (G) and its set of edges by E(G). Also,
we denote as G[S] the subgraph of G induced by S � V (G). For two graphs G and H,
a function f : V (G)! V (H) is called an isomorphism (from G to H) if f is a bijection
and for each v; w 2 V (G), fv; wg 2 E(G) i� ff(v); f(w)g 2 E(H). Two graphs G and
H are isomorphic if there is an isomorphism from G to H. The Graph Isomorphism
problem is the problem of checking for two given graphs whether they are isomorphic.

A graph parameter is a function which maps each graph to a positive integer.
We �rst review a number of graph parameters.

� A tree decomposition of a graph G = (V;E) is a pair (fXi j i 2 Ig; T = (I; F )),
where fXi j i 2 Ig is a collection of subsets of V and T is a tree, such that

{
S

i2I
Xi = V (G),

{ for each edge fv; wg 2 E, there is an i 2 I such that v; w 2 Xi, and

{ for each v 2 V the set of nodes fi j v 2 Xig forms a subtree of T.

The width of a tree decomposition (fXi j i 2 Ig; T = (I; F )) equals max
i2I

(jXij � 1).

The treewidth of a graph G is the minimum width over all tree decompositions
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of G. The corresponding graph parameter (which is the function that maps each
graph to its treewidth) is denoted by T W.

A (linear) layout of a graph G is a one-to-one function f : V (G)! f1; : : : ; jV (G)jg.

� The bandwidth of a layout f of a graph G is de�ned as max
fu;vg2E(G)

jf(u) � f(v)j.

The bandwidth of a graph G is the minimum bandwidth over all layouts of G.
The corresponding graph parameter is denoted by BW.

For a given graph G and two vertices u; v 2 V (G), dG(u; v) denotes the distance
between u and v, which is the number of edges on a shortest path between u and v. For
a set S � V (G) and a vertex w 2 V (G), dG(S;w) denotes min

v2S
dG(v; w).

� A tree distance decomposition of a graph G = (V;E) is a triple (fXi j i 2 Ig; T =
(I; F ); r), where

{
S

i2I
Xi = V (G) and for all i 6= j, Xi \Xj = ;,

{ for each v 2 V , if v 2 Xi, then dG(Xr; v) = dT (r; i), and

{ for each edge fv; wg 2 E, there are i; j 2 I such that v 2 Xi, w 2 Xj and
either i = j or fi; jg 2 F .

Node r is called the root of the tree T , and Xr is called the root set of the tree
distance decomposition. The width of a tree distance decomposition (fXi j i 2
Ig; T; r) is equal to max

i2I
jXij. The tree distance width of a graph G is the minimum

width over all possible tree distance decompositions ofG. The corresponding graph
parameter is denoted by T DW.

� A rooted tree distance decomposition of a graph G = (V;E) is a tree distance
decomposition (fXi j i 2 Ig; T = (I; F ); r) of G in which jXrj = 1. The rooted tree

distance width of a graph G is the minimum width over all rooted tree distance
decompositions. The corresponding graph parameter is denoted by RT DW.

� The (rooted) path distance decomposition and the parameter of (rooted) path dis-

tance width of a graph G = (V;E) are de�ned similar to the (rooted) tree distance
decomposition and (rooted) tree distance width, but now the tree T is required to
be a path. For reasons of simplicity we will denote a (rooted) path distance decom-
position as (X1;X2; : : : ;Xt), where X1 is the root set of the decomposition. We
denote the corresponding graph parameters by PDW , and RPDW , respectively.

It is easy to check that for any graph G, T W(G) � 2T DW(G) � 1, T DW(G) �
RT DW(G), BW(G) � 2PDW(G) � 1 and PDW(G) � RPDW(G). Hence �xed pa-
rameter tractability of Graph Isomorphism for T W implies the same for T DW and
RT DW, and �xed parameter tractability of Graph Isomorphism for BW implies the
same for PDW andRPDW . Also, showing that for Graph Isomorphism is �xed param-
eter tractable for e.g. RPDW might give more insight in whether it is �xed parameter
tractable for BW. Therefore, we study the complexity of Graph Isomorphism on graphs
for which PDW, RPDW , T DW or RT DW is bounded.
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Procedure GET-TDD
input: a graph G = (V;E) and a root set S
output: the minimal tree distance decomposition (fXi j i 2 Ig; T = (I; F ); r), (Xr = S)
1: for any v 2 V set distance(v) = dG(S; v);
2: m := max

v2V
distance(v);

3: I := ;; F := ;, and h := 0;
4: for any i; 0 � i � m+ 1 set Vi = fv 2 V j distance(v) = ig;
5: for i := m down to 0 do
6: Compute the connected components of G[fv 2 V j i � distance(v) � i+ 1g];

/* We call the connected components S1; : : : ; St*/
7: for j := 1 to t do

8: Xh+j := Sj � Vi+1;
9: Add edges fv; ug; v; u 2 Xh+j to E(G) such that G[Xh+j ] becomes connected;
10: I := I [ fh+ jg;
11: F := F [ ffh+ j; kg j Xk � Sj ^ k � hg;
12: od

13: h := h+ t;
14: od

15: end.

Figure 1: Procedure GET-TDD(G;S).

For a given graph G and S � V (G), there is a unique path distance decomposition
of G with root set S, and this decomposition can be found in O(e) time (e = jE(G)j):
for each vertex v 2 V (G), compute dG(S; v) using breadth �rst search. Then for each
possible distance d, make a node Xd containing all vertices with distance d to S.

De�nition Let D = (fXi j i 2 Ig; T = (I; F ); r) be a tree distance decomposition of
G. Given a vertex v 2 I we denote as Tv the connected subtree of T induced by all the
nodes in I that are connected with r via paths containing v. Finally, given a node i 2 I
we set V (D; i) =

S

w2V (Ti)
Xw.

For a given graph G and set S � V (G), there may be more than one tree distance
decomposition with root set S. However we de�ne the minimal tree distance decompo-
sition of a graph G with root set S as follows.

De�nition Let D = (fXi j i 2 Ig; T = (I; F ); r) be a tree distance decomposition of
G. We call D minimal if, for each i 2 I, G[V (D; i)] is connected.

An immediate consequence of the de�nition above is that given a graph G and a
root set S the minimal tree distance decomposition is uniquely de�ned. Also, it can be
found with procedure GET-TDD presented in Figure 1, which can be made to run in
O(e) time.

Theorem 2.1 Given a graph G and a set S � V (G), we can compute in O(jE(G)j)
time the unique path distance decomposition with root set S, or the unique minimal tree

distance decomposition with root set S.
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Proof. Let D = (fXi j i 2 Ig; T = (I; F ); r) be some output of GET-TDD. It is easy
to see that D is a tree distance decomposition of G.

We will prove that for any i 2 I, G[V (D; i)] is connected. Let m = maxi2I dT (r; i).
We will use induction onm�dT (r; i). If dT (r; i) = m, then it is clear from the algorithm
that G[V (D; i)] is connected.

Assume that for any i 2 I such that dT (r; i) > n (0 < n � m), G[V (D; i)] is
connected. Let i 2 I such that dT (r; i) = n. Let also fi1; : : : ; itg � I be such that for
all i�, 1 � � � t, dT (r; i�) = n + 1 and ffi; i1g; : : : ; fi; itgg � F . We will prove that
G[V (D; i)] is connected, that is, we will show that for any pair of vertices v; u 2 V (D; i),
there exists a path connecting u and v in G[V (D; i)]. From the induction hypothesis
and the fact that all vertices in Ln+1 = Xi1 [ : : : [Xit are adjacent to a vertex in Xi,
we have that there exist two vertices v0, u0 in Xi connected by some paths in G[V (D; i)]
with v and u respectively. The connectivity of G[V (D; i)] follows now easily in the case
where G[Xi [ Ln+1] is connected. Suppose that G[Xi [ Ln+1] is not connected. In this
case we notice that Xi [Ln+1 must induce one of the connected components computed
during the (m � n+ 1)th execution of step 5 (m is de�ned at step 2). Clearly, each of
these connected components became connected because of the addition of some number
of edges connecting vertices in Xi� ; 1 � � � t during the (m � n)th execution of loop
7{12. We call these edges new edges and denote the current graph after the (n � 1)th
loop by Gn. As there exists in Gn[Xi [ Ln+1] a path connecting v0 and u0, such a path
must contain a number of new edges (see Figure 2). From the induction hypothesis we
have that any new edge corresponds to a path in G[V (D; i�)] connecting its endpoints
for some �; 1 � � � t. Thus, we can construct a path in G[V (D; i)] connecting u0 and
v0. Therefore, there exists a walk (hence path) connecting u and v and the connectivity
of G[V (D; i)] follows.

v’

vu

L n

u’ u’

+1

vu

The graph after the 2nd execution of the loop
defined by steps 6-13 in GET-TDD

new edge new edgev’

The original graph

iX

1iX 2 XiX 3iX 4i

Figure 2: An example for the procedure GET-TDD.

Step 1 uses breadth �rst search to assign for each vertex in the graph its distance
from the root set. This costs O(jE(G)j) time. Also loop 5{14 needs in total O(jE(G)j)
time as the executions of step 6 use in total O(jE(G)j) time and each call of line 9 can
be executed in O(jV (Xh+j)j) time. 2
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From Theorem 2.1 and the fact that, if a graph has (rooted) tree or path distance
width at most k, then e = O(kn), we get the following result.

Corollary 2.2 There is an algorithm that computes a rooted path (tree) distance de-

composition of minimum width of a graph G in O(kn2) time, where k is the rooted path

(tree) distance width of the graph.

There is an algorithm that computes a path (tree) distance decomposition of minimum

width of a graph in O(knk+1) time, where k denotes the path (tree) distance width of the
graph.

The following result concerns the complexity of (rooted) path (tree) distance width.

Theorem 2.3 The following problem is NP-complete even if the input graphs are trees.
Given a graph G and an integer k, does G have path distance width at most k?

Proof. The proof is based on a reduction from the following strongly NP-complete
problem:

3Partition

Instance: A set A = fa1; : : : ; a3mg of positive integers and an integer value
B such that B=4 < ai < B=2; 1 � i � 3m;m > 1, and

P

1�i�3m
ai = mB.

Question: Is there a partition of A into m disjoint sets A1; A2; � � � ; Am such
that

P

a2Ai

a = B; 1 � i �m?

We describe a transformation that, given an instance of the 3Partition problem, out-
puts a tree T such that T has path distance width at most d i� the answer for the
3Partition problem is yes.

Let c = 57m + 1 and d = c � B + 9m. T is constructed as follows: First we set
Ui = fui;1; : : : ; ui;mg, Vi = fvi;1; : : : ; vi;caig; 1 � i � 3m, and W = fw1; : : : ; w2d�12mg.
Then, we de�ne Ti = (fxg [ Ui [ Vi; ffx; ui;1gg [ ffui;j; ui;j+1g j 1 � j � m � 1g [

ffvi;j; ui;mg j 1 � j � c � aig); 1 � i � 3m. Now, set T = (W [
S

1�i�3m
V (Ti); ffx;wig j

1 � i � 2d� 12mg [ (
S

1�i�3m
E(Ti))) (see also Figure 3).

We will prove now that the 3Partition instance has a solution i� T has a path
distance decomposition (X1;X2; : : : ;Xt) with width at most d.

Let fA1; A2; � � � ; Amg be a solution of the 3partition problem. We construct a path
distance decomposition as follows. We �rst de�ne f : f1; 2; : : : ; 3mg 7! fxg [

S

1�i�3m
Ui

such that f(i) = x i� ai 2 A1 and f(i) = ui;j�1 i� ai 2 Aj ; 2 � j � m. We set
S = fw1; w2; � � � ; wd�3mg [ ff(1); : : : ; f(3m)g. Let (X1 = S;X2; : : : ;Xr) be the path
distance decomposition of G with root set S.

Now we prove that for all i, 1 � i � r, jXij � d. By the construction, we have that the
cardinality of the root set S = X1 is no more than d. We also observe that X2 contains
d�9m vertices fromW , and at most 3m+2 �3m vertices from UT = fxg[

S

1�i�3m
Ui. So

jX2j � d. It is now easy to see that for any i > 2;Xi must contain at most 3 �3m vertices
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Figure 3: The reduction of Theorem 2.3.

from UT and cai1 + cai2 + cai3 vertices from Vi1 [ Vi2 [ Vi3 where Aj = fai1 ; ai2 ; ailg is
some set Aj of the solution of the 3Partition problem. Thus cai1+cai2+cai3 = cB and
for any i > 2;Xi must contain at most d = cB + 9m vertices. Therefore, (X1; : : : ;Xr)
has distance width at most d.

Suppose now that (X1; : : : ;Xt) is a path distance decomposition of T that has width
at most d. We prove that there exists a partition of A = fa1; : : : ; a3mg into m disjoint
sets A1; : : : ; Am such that

P
a2Ai

a = B; 1 � i � m. We distinguish two cases:
Case 1: x 2 X1. In this case we easily observe that W � X1 [ X2 and thus we have
jX1 \W j + jX2 \W j = jW j = 2d � 12m. Using this and the fact that jX1j; jX2j � d,
we have that 2d � jX1j + jX2j = jX1 � W j + jX1 \ W j + jX2 � W j + jX2 \ W j =
jX1 �W j+ jX2 �W j+ 2d� 12m � jXi �W j+ 2d� 12m) jXi �W j � 12m; i = 1; 2.

Let fRj j j � 1g be a collection of subsets of f1; 2; : : : ; 3mg such that i 2 Rj i�
jXj \ Vij � cai � 12m.

We �rst claim that for all i, 1 � i � 3m, there exists at most one j � 1 such that
i 2 Rj Suppose that for some i, there are j and j0 such that j 6= j0; i 2 Rj and i 2 Rj0 . In
such a case we have that jXj\Vij � cai�12m and jXj0\Vij � cai�12m. AsXj\Xj0 = ;,
we conclude that jVij � 2cai � 24m) cai � 2cai� 24m) 24m � cai � c = 57m+1, a
contradiction.

We now claim that for all i, 1 � i � 3m, there exists a j � 1, such that i 2 Rj .
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Choose j0 such that ui;m 2 Xj0 . Notice that for all v 2 Vi, either v 2 X1 or v 2 Xj0+1.
As X1\Vi � X1�W , we have that jX1\Vij � 12m and thus jXj0+1\Vij � cai�12m)
i 2 Rj0+1.

We claim that if j = 1; 2 then Rj = ;. Indeed, suppose, on the contrary, that for
some j = 1; 2 there exists an i; 1 � i � 3m such that i 2 Rj. In this case we have that
jXj \ Vij � cai � 12m. But, as jXj �W j � 12m; j = 1; 2 and Xj \ Vi � Xj �W; j =
1; 2; 1 � i � 3m, we conclude that 12m � jXj�W j � jXj\Vij � cai�12m � c�12m =
57m+ 1� 12m = 45m+ 1, a contradiction. Notice also that, as x 2 X1, we have that
V (T ) � X1 [ � � � [Xm+2 and thus for all j � m+ 3, Rj = ;.

We now set Aj = fai j i 2 Rj+2g; 1 � j � m. Clearly, A1; : : : ; Am is a partition of
A.

We claim that for all j, 1 � j � m, jAj j � 3. Suppose, on the contrary that
for some j; 1 � j � m, jAj j � 4. Then

P
ai2Aj

jXj+2 \ Vij �
P

ai2Aj
(cai � 12m) �

P
ai2Aj

(cB+1
4 � 12m) � 4( cB4 + c

4 � 12m) � cB + c � 48m � cB + 9m + 1 > d, a
contradiction.

From the claims above, we conclude that the sets A1; : : : ; Am form a partition of A
into sets consisting of at most 3 elements.

What now remains to be proven is that for all j, 1 � j � m,
P

a2Aj
a = B. Clearly,

as
P

1�i�3m
ai = mB, it is su�cient to prove that for all j, 1 � j � m,

P
a2Aj

a � B. For

this, we �rst notice that c
P

ai2Aj
ai �

P
ai2Aj

(jXj+2 \ Vij + 12m) � jXj+2j + 36m �

d + 36m = cB + 9m + 36m � cB + 45m. Finally, we have that
P

ai2Aj
ai � B + 45m

c

which implies
P

ai2Aj
ai � B + b45mc c = B (b45mc c = 0 because c = 57m+ 1 > 45m).

Case 2: x 62 X1. In this case we can easily see that X1 [W 6= ; because otherwise, if
x 2 Xi for some i, then W � Xi+1, but jW j > d. So, x 2 X2, and W � X1 [ X3 )
jX1\W j+ jX3\W j = 2d�12m. Using the fact that jX1j; jX3j � d and, using a similar
argument as in Case 1, we have that jXi �W j � 12m, i = 1; 3.

We de�ne fRj j j � 1g as in Case 1 and following a similar argumentation, we
deduce that any i 2 f1; : : : ; 3mg belongs to exactly one Aj . Also very similarly to
Case 1 we have that if i = 1 or 3, then Rj = ;. Moreover, we claim that Rm+2 = ;.
Suppose, on the contrary, that i 2 Rm+2. This means that jXm+2 \ Vij � cai � 12m
and thus there exists some vertex w 2 Xm+2 that belongs in Vi. Notice now that, as
dT (X1; w) = m+1 � 3 we have that for all h, 1 � h � m, ui;h 2 Xh+1 and thus x 2 X1,
contradiction. (if x 2 Xi; i > 2 then W � Xi+1 a contradiction) Finally, as x 2 X2,
and for all w 2 V (T ), dT (x;w) � m + 1, we easily conclude that for all j � m + 4,
Xj = ; ) Rj = ;.

We set A1 = fai j i 2 R2g, Aj = faj j i 2 Rj+2g; 2 � j � m � 1 and
Am = fai j i 2 Rm+3g. Following now the same steps as in Case 1, one can prove that
A1; : : : ; Am is a partition of A into sets consisting of at most 3 elements such that for
all j, 1 � j � m,

P
a2Aj

a = B. 2
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3 Graph Isomorphism for Graphs of Bounded Distance

Width

In this section, it is shown that the Graph Isomorphism problem is �xed parameter
tractable for graphs of bounded rooted path distance width or bounded rooted tree
distance width.

We present an algorithm with running time O(n2) that tests isomorphism for two
graphs with rooted path distance width at most some constant k, and an algorithm with
running time O(n3) that tests isomorphism for graphs with rooted tree distance width
at most some constant k.

Algorithm RPDW-ISO(G;H)
input: graphs G and H of rooted path distance width at most k.
output: \Yes", if G is isomorphic to H,

\No", otherwise.
1: Let DG = (XG

1 ; : : : ; X
G
tG
) be a rooted path distance decomposition

of G with root set XG
1 = fvGg and rooted path distance width at most k.

2: for each vH 2 V (H) do
3: let DH = (XH

1 ; : : : ; X
H
tH
) be a rooted

path distance decomposition of G with root set XH
1 = fvHg;

4: if SUB-RPDW(DG; DH) =true
5: then return \Yes";
6: od

7: return \No";
8 end

Procedure SUB-RPDW(DG; DH)
input: decompositions DG = (XG

1 ; : : : ; X
G
tG
),

DH = (XH
1 ; : : : ; X

H
tH
),

output: \true", if DG is isomorphic to DH , \false", otherwise.
1: if tG 6= tH then return false
2: else let t tG;
3: for i := 1 to t do

4: if jXG
i j = jX

H
i j then return false;

5: let Rt be the set of bijections from G[XG
t ] to H[XH

t ];
6: if Rt = ; then return false;
7: for i := t� 1 downto 1 do
8: let Ri ! ;;
9: for each bijection f from G[XG

i ] to H[XH
i ]

10: if there exists a bijection g 2 Ri+1 such that f [ g is an isomorphism
from G[XG

i [X
G
i+1] to G[X

H
i [X

H
i+1]

11: then Ri  Ri [ ffg;
12: od

13: if R1 6= ;
14: then return true
15: else return false;
16: end.

De�nition Let DG = (XG
1 ; : : : ;X

G
tG) and DH = (XH

1 ; : : : ;X
H
tH ) be two path distance

decompositions of graphs G and H respectively. We call DG and DH isomorphic if there
exists an isomorphism f : V (G) ! V (H) from G to H such that for all i, 1 � i � t,
8v 2 XG

i f(v) 2 XH
i .

9



Theorem 3.1 The algorithm RPDW-ISO(G;H) above, checks whether two input graphs
G and H of rooted path distance width at most k are isomorphic. The algorithm runs

in O(k!2k2n2) time, where n = jV (G)j.

Proof. For input graphs G and H, the algorithm works as follows. There are two
phases. In the �rst phase (step 1 of RPDW-ISO(G;H)), a rooted path distance decom-
position of minimum width is computed for G. By Corollary 2.2 this phase costs O(kn2)
time (as jE(G)j = O(kjV (G)j)).

In the second phase of the algorithm, we compute for each vH 2 V (H) the unique
rooted path distance decomposition DH = (XH

1 ; : : : ;X
H
tH
) of H where XH

1 = fvHg
(step 3 of RPDW-ISO(G;H)). The main part of the algorithm is step 4 where procedure
SUB-RPDW(DG;DH) computes whether decompositions DG and DH are isomorphic.
If DG and DH are isomorphic, then we may conclude that G and H are isomorphic.
On the other hand, if there is no rooted path distance decomposition of H which is
isomorphic to DG, then G and H cannot be isomorphic: if f is an isomorphism from G
to H, then the rooted path decomposition of H with XH

1 = ff(vG)g must be isomorphic
to the rooted path decomposition ofG withXG

1 = fvGg. So the given algorithm correctly
computes whether G and H are isomorphic.

What now remains is to show that, given two path distance decompositions DG

and DH , SUB-RPDW(DG;DH) indeed checks whether they are isomorphic. During
steps 1-4 SUB-RPDW(DG;DH) checks if tG = tH and whether for i = 1; : : : ; tG jXG

i j =
jXH

i j. If not, then clearly DG and DH cannot be isomorphic. In the sequel (steps 5{
12), for each i; 1 � i � t = tG, SUB-RPDW(DG;DH) computes the set Ri, which
contains all isomorphisms from G[XG

i ] to H[XH
i ] that are extendible, i.e. Ri contains

all isomorphisms f from G[XG
i ] to H[XH

i ] for which there is an isomorphism g from
G[XG

i [ : : : [ XG
t ] to H[XH

i [ : : : ;[XH
t ], such that for all x 2 XG

i , f(x) = g(x) and
for all j, i � j � t, for all x 2 XG

j , g(x) 2 XH
j . Now, it is clear that R1 is not empty

i� DG and DH are isomorphic. The set R1 is computed in a bottom-up way, by �rst
computing Rt, and then, for each i; 1 � i � t� 1, computing Ri from Ri+1. The set Rt

is easily computed by checking for each bijection f : XG
t ! XH

t , if it is an isomorphism.
If so, SUB-RPDW(DG;DH) puts f in Rt (step 5). This takes constant time, since there
are at most k! such bijections.

For each i, 1 � i < t, SUB-RPDW(DG;DH) computes Ri as follows: for each
bijection f : XG

i ! XH
i , checks if there is a g 2 Ri+1, such that f [ g : XG

i [XG
i+1 !

XG
i [XH

i+1 is an isomorphism from G[XG
i [XG

i+1] to H[XH
i [XH

i+1]. If so, then put f
in Ri (step 11). This can again be done in constant time. As there are no edges in XG

i

(XH
i ) adjacent with vertices in XG

i+� (XH
i+�) for � = 2; : : : ; t � i, it is now easy to see

that Ri is the set of all the extendible isomorphisms from XG
i to XH

i .
The running time of RPWD-ISO(G;H) is O(k!2k2n2): computing the rooted path

distance decomposition of H for each possible root set take O(kn) time. Furthermore,
checking if two decompositions are isomorphic can be done inO(k!2k2n) time: computing
Ri for some i takes a constant time of O(k!2k2), and there are at most O(n) nodes. 2

Notice that it is not necessary that the input path decompositions of SUB-RPDW
are rooted. Using this fact we can modify algorithm RPDW-ISO(G;H) in order to check
isomorphism of graphs with small path distance width.

10



Algorithm RTDW-ISO(G;H)
input: graphs G and H of rooted tree distance width at most k.
output: \Yes", if G is isomorphic to H,

\No", otherwise.
1: Use GET-TDD to compute a minimum width rooted tree distance decomposition DG

of G with width at most k and root set consisting of an arbitrary vertex vG 2 V (G);
2: for each vH 2 H do

3: Use GET-TDD to compute a rooted
tree distance decomposition DH of H with root set fvHg;

4: if the width of DH is at most k

5: if ISO-CHECK(DG; DH)
6: then return \Yes";
7: od

8: return \No";
9: end.

Figure 4: Algorithm RTDW-ISO.

Corollary 3.2 There exist an algorithm that checks whether two graphs G and H of

path distance width at most k are isomorphic in O(k!2k2nk+1) time (n = jV (G)j).

Proof. We �rst compute an optimal path distance decomposition DG (this requires
O(nk) time), and then we check, using SUB-RPDW(DG;DH), if there exists some root
set XH

1 � V (H) (jXH
1 j � k) for which the corresponding path distance decomposition

DH is isomorphic to DG (this requires O(k!2k2nk+1) time). 2

We now present an algorithm that computes whether two input graphs which have
rooted tree distance width at most k for some �xed k are isomorphic. The running time
of the algorithm is O(n3). The algorithm can be found in Figures 4, 5 and 6.

De�nition Let DG = (fXG
i j i 2 IGg; TG = (IG; FG); rG) and DH = (fXH

i j i 2
IHg; TH = (IH ; FH); rH) be two rooted tree distance decompositions of the graphs G
and H respectively. We call DG and DH isomorphic if there exists an isomorphism
f : V (G)! V (H) from G to H and an isomorphism g : IG ! IH from TG to TH such
that g(rG) = rH and for each i; i 2 IG, and each x 2 IGi , f(x) 2 IHg(i).

Theorem 3.3 Algorithm RTDW-ISO(G;H) checks whether two input graphs G and H
of rooted tree distance width at most k are isomorphic. The algorithm runs in O(k!2k2n3)
time, where n = jV (G)j.

Proof. The basic structure of the algorithm is the same as for graphs of bounded rooted
path distance width: there are again two phases. In the �rst phase (step 1 of RTDW-
ISO(G;H)), a rooted tree distance decomposition of minimum width is computed for
G. This is done in the following way. For each vertex v 2 V , GET-TDD is used to
compute the unique minimal rooted tree distance decomposition of G with root set fvg.
Then, the decomposition DG of smallest width, say k is selected. Let DG = (fXG

i j i 2
IGg; TG = (IG; FG); rG) denote this decomposition. By Corollary 2.2, this phase needs
O(kn2) time.

11



Procedure ISO-CHECK(DG; DH)
input: decompositions DG = (fXG

i j i 2 I
Gg; TG = (IG; FG); rG),

DH = (fXH
i j i 2 I

Hg; TH = (IH ; FH); rH).
output: \true", if DG is isomorphic to DH , \false", otherwise.
1: if TG and TH are not isomorphic
2: then return false;
3: let m be the depth of TG

4: for l := m down to 0 do
5: for each pair (p; q), p 2 V (TG) and q 2 V (TH)
6: such that dTG(p; rG) = dTH (q; rH) = l do

7: Compute Rp;q

l using GET -IB(p; q; l);
8: if R

rG;rH
0 = ;

9: then return false
10: else return true;
11: end.

Figure 5: Procedure ISO-CHECK.

In the second phase of the algorithm (steps 2{11), RTDW-ISO(G;H) computes,
for each w 2 V (H), the unique minimal rooted tree distance decomposition DH of H
with root set fwg. Let DH = (fXH

i j i 2 IHg; TH = (IH ; FH); rH) denote such a
decomposition. If the width of DH equals k, then procedure ISO-CHECK(DG;DH)
is used to test whether decompositions DG and DH are isomorphic. In the same way
as for the rooted path distance decompositions, we may conclude that G and H are
isomorphic if DG and DH are isomorphic. On the other hand, if there is no minimal
rooted tree distance decomposition of H which is isomorphic to DG, then G and H
cannot be isomorphic. So the given algorithm correctly computes whether G and H are
isomorphic, assumed that procedure ISO-CHECK is correct.

What now remains is to see that procedure ISO-CHECK(DG;DH) indeed tests
whether two rooted tree distance decompositions are isomorphic.

Suppose DG = (fXG
i j i 2 IGg; TG = (IG; FG); rG) and DH = (fXH

i j i 2
IHg; TH = (IH ; FH); rH) are minimal rooted tree distance decompositions of graphs
G and H, respectively. Note that DG and DH cannot be isomorphic if TG and TH

are not isomorphic. Therefore, ISO-CHECK(DG;DH) �rst test whether TG and TH

are isomorphic (step 1). This test uses the rooted tree isomorphism checking algorithm
from [6] and requires O(n) time. Now suppose TG and TH are isomorphic. The depth of
a node in a rooted tree is the length of a path from this node to the root (so the root has
depth zero). Let m denote the maximum depth of a node in TG (and hence in TH). The
nodes of depth l are called nodes on level l. Now, for each level l, 0 � l � m, and each
pair of nodes p; q, with p 2 IG and q 2 IH , both on level l, we compute the set Rp;q

l of
isomorphisms f : XG

p ! XH
q from G[XG

p ] to H[XH
q ] which are extendible. The de�nition

of an extendible isomorphism for tree distance decompositions is a generalisation of the
one used in the proof of Theorem 3.1 and is the following:

De�nition Let Gp = G[V (DG; p)] and Hq = H[V (DH ; q)]. We say an isomorphism f
from G[XG

p ] to H[XH
q ] is extendible if there exists an isomorphism g0 : V (TG

p )! V (TH
q )

from TG
p to TH

q and an isomorphism f 0 : V (Gp)! V (Hq) from Gp to Hq such that for

12



Sub-procedure GET-IB(p; q; l)
input: Nodes p in TG and q in TH such that dTG (rG; p) = dTH (rH ; q) = l.
output: R

p;q

l
.

1: R
p;q

l := ;;
2: if jXG

p j 6= jX
H
q j then return;

3: Count the number of children of p in TG;
4: Count the number of children of q in TH ;
5: if the numbers of children of p and q are di�erent then return;
6: for each bijection f : XG

p 7! XH
q that is an isomorphism do

7: Set childrenP := fp̂ : p̂ is a child of pg;
8: Set childrenQ := fq̂ : q̂ is a child of qg;
9: for each p̂ 2 childrenP do

10: for each q̂ 2 childrenQ do

11: for each g 2 Rp̂;q̂

l+1
do

12: if G[XG
p [X

G
p̂ ] and H[XH

q [X
H
q̂ ] are isomorphic under the function f [ g

13: then childrenP := childrenP � fp̂g;
14: childrenQ := childrenQ� fq̂g;
15: goto step 20;
16: od

17: od

18: goto step 22;
19: od

20: R
p;q

l := R
p;q

l [ f ;
21: od

22: end.

Figure 6: Sub-procedure GET-IB.

each a 2 V (TG
p ) and each v 2 XG

a , f
0(v) 2 XH

g0(a), and furthermore, for each v 2 XG
p ,

f(v) = f 0(v) (see Figure 7).

From the de�nition above it is clear that RrG;rH

0 is not empty i� DG and DH are

isomorphic. The set RrG;rH

0 is computed in a bottom-up way, by �rst computing Rp;q
m

for all nodes p 2 IG and q 2 IH on level m, and then, for each l, 0 � l < m, computing
Rp;q
l for all nodes p 2 IG and q 2 IH on level l, by using the values of Rp̂;q̂

l+1 for all
children p̂ of p and q̂ of q.

The sets Rp;q
m (p and q are nodes of level m in TG and TH respectively) are computed

during the �rst execution of loop 4{7 of ISO-CHECK(DG;DH): if jXG
p j 6= jXH

q j, then

Rp;q
m = ; (step 2 of GET-IB(p; q; l)). Otherwise, for each bijection f : XG

p ! XH
q , GET-

IB(p; q; l) checks if it is an isomorphism (step 6), and if so, puts f in Rp;q
m (step 21). This

takes constant time for each p and q.
For each l, 0 � l < m, and each p 2 IG and q 2 IH on level l of TG and TH

respectively, GET-IB(p; q; l) proceeds computing Rp;q
l as follows. First, it checks if

jXG
p j = jXH

q j and the number of children of p equals the number of children of q. If

not, then Rp;q
l = ;. Otherwise, for each bijection f : XG

p ! XH
q from G[XG

p ] to H[XH
q ]

that is an isomorphism, GET-IB(p; q; l) tries to make a matching between the children
of p and the children of q, i.e., it tries to match each child p̂ of p to a child q̂ of q, in
such a way that there exists a g 2 Rp̂;q̂

l+1 for which f [ g : XG
p [XG

p̂ ! XH
q [XH

q̂ is an
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Figure 7: An example of extendibility of isomorphism from G[XG
i ] to H[XH

j ].

isomorphism from G[XG
p [XG

p̂ ] to H[XH
q [XH

q̂ ] (steps 9{20). As there are no vertices

in XG
p (XH

q ) adjacent with vertices belonging to some XG
� (XH

�0 ) where � (�0) is an

ancestor of p (q) in TG (TH) that is not a child of p (q), it is easy to see that there
exists such a matching i� f is extendible (see Figure 8).

2
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p X qX
1

X
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X
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^
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,p ^ q̂p̂^ ^p q

^

HG
qX

qX
3
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^
HHHG

^ ^
GG

+1l+1l +1 l

Figure 8: An example of a matching between children of XG
i and XH

j .

Towards computing a matching as described above, GET-IB(p; q; l) tries to match
the children of p one by one to a child of q as follows: Take a child p̂ of p which has
not yet been matched (step 9). For each unmatched child q̂ of q, try to match p̂ to q̂
(steps 10{18). As soon as a q̂ is found that can be matched to p̂, then match p̂ to q̂, and
go on with the next child of p. If there is no q̂ which can be matched to p̂, then there
cannot be a matching between the children of p and of q, and hence f is not extendible.
On the other side, it is clear that if f is extendible, such a matching exists. Now, if it
is possible to match each child of p to a child of q, then GET-IB(p; q; l) adds f to Rp;q

l

(step 21). (We can actually use this `greedy matching algorithm', and need not use the
standard `maximum 
ow' matching algorithm, because of transitivity of isomorphism.)

We can easily observe that during the lth execution of the loop de�ned by steps 4{7
of ISO-CHECK(DG;DH), the number of the execution times of the loop de�ned by
steps 11{17 of GET-IB(p; q; l) is quadratic in the number of edges in TG (or TH) that
have one endpoint in level l and one in level l + 1. As the number of edges in TG is
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O(n) we can easily conclude that the overall complexity of ISO-CHECK(DG;DH) is
O(k!2k2n2).

The running time of the second phase of algorithm RTWD-ISO(G;H) is O(k!2k2n3):
computing the minimal rooted tree distance decomposition of H for a root set fwg takes
O(n2) time. Moreover, as ISO-CHECK(DG;DH) needsO(k!2k2n2) time and the number
of di�erent root sets for H is n, the running time of O(k!2k2n3) now follows. 2

Notice that it is not necessary that the inputs of ISO-CHECK(DG;DH) are rooted.
Using this fact we can modify algorithm RTDW-ISO(G;H) in order to check isomor-
phism of graphs with small tree distance width.

Corollary 3.4 There exist an algorithm that checks whether two graphs G and H of

path distance width at most k are isomorphic in O(k!2k2nk+2) time (n = jV (G)j).

Proof. We �rst compute an optimal path distance decomposition DG (this requires
O(nk) time), and then we check, using ISO-CHECK(DG;DH), if there exists some root
set XH

rH
� V (H) (jXH

rH
j � k) for which the corresponding tree distance decomposition

DH is isomorphic to DG. This requires O(nk) calls of ISO-CHECK(DG;DH) and thus
O(k!2k2nk+2) time. 2

4 Relationships Among Classes of Bounded Width

In this section, �rst we give the de�nitions of some known graph parameters in order to
investigate their relations with (rooted) path distance width and (rooted) tree distance
width.

� A strong tree decomposition of a graph G = (V;E) is a pair (fXi j i 2 Ig; T =
(I; F )), where fXi j i 2 Ig is a collection of subsets of V and T is a tree, such that

{
S

i2I
Xi = V and for all i 6= j, Xi \Xj = ;,

{ for each edge fv; wg 2 E, there are i; j 2 I with v 2 Xi and w 2 Xj , such
that either i = j or fi; jg 2 F .

The width of a strong tree decomposition (fXi j i 2 Ig; T = (I; F )) equals
max
i2I

(jXij). The strong treewidth of a graph G is the minimum width over all

possible strong tree decompositions of G. The corresponding graph parameter is
denoted by ST W.

� A connected strong tree decomposition of a graph G = (V;E) is a strong tree
decomposition (fXi j i 2 Ig; T = (I; F )) of G such that for each i 2 I, G[Xi] is
connected. The connected strong treewidth of G is the minimum width over all
connected strong tree decompositions of G. The corresponding graph parameter
is denoted by CST W.

� A path decomposition of a graph G is a tree decomposition (fXi j i 2 Ig; T =
(I; F )) in which T is a path (i.e. two nodes in T have degree one, and all others
have degree two). The pathwidth of a graph G is the minimum width over all path
decompositions of G. The corresponding graph parameter is denoted by PW.
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In the same way, we can de�ne the notions of strong pathwidth, and connected strong

pathwidth. We denote the corresponding graph parameters by SPW and CSPW , re-
spectively.

� The cutwidth of a layout f of a graph G is de�ned as

max
1�i<jV (G)j

jffu; vg 2 E(G) : f(u) � i < f(v)gj:

The cutwidth of a graph G is the minimum cutwidth over all layouts of G. The
corresponding graph parameter is denoted by CW.

� For a given graph G, a subdivision is the operation which adds a new vertex u to
G and replaces an edge e = fv; wg 2 E(G) by two edges fv; ug and fu;wg (i.e.
it splits an edge of G into two edges). A re�nement of a graph G is a graph G0

which is obtained from G by a number of subsequent subdivisions.

� The topological bandwidth of a graph G is the minimum bandwidth over all re�ne-
ments of G. The corresponding graph parameter is denoted by T BW.

� By D we denote the graph parameter which maps each graph to the maximum
degree of any vertex in the graph.

Let f and f 0 be two graph parameters. We say that f 0 covers f , denoted by f � f 0, if
there is a function g : N! N, such that for each graphG and each integer k, if f(G) � k
then f 0(G) � g(k) (we also say that f is covered by f 0). For instance, if we take f = BW
and f 0 = CW, then f � f 0: for each graph G, CW(G) � BW(G)(BW(G)� 1)=2. Hence
if we take g(k) = k(k � 1)=2, then for each graph G and each integer k, if BW(G) � k
then CW(G) � g(k).

If a graph parameter f is not covered by a parameter f 0, we denote this by f 6� f 0.
If f � f 0 but f 0 6� f , then we say that f 0 strictly covers f , denoted by f � f 0. If f � f 0

and f 0 � f , then we say f � f 0. If f 6� f 0 and f 0 6� f , then we say that f and f 0 are
not related, and we denote this by f 6� f 0 (note that saying that f 6� f 0 is not equivalent
to saying that f � f 0 does not hold). It is easy to see that �, � and � are transitive
relations.

The notion of covering is interesting in the following sense. Suppose we have a graph
problem P (for example the isomorphism problem), and we have two graph parameters
f and f 0, such that f � f 0. If problem P is �xed parameter tractable for parameter f 0,
then we can conclude immediately that P is �xed parameter tractable for f . On the
other hand, if we can show that problem P is �xed parameter tractable for parameter
f , then this might help to get more insight in whether P is �xed parameter tractable
for parameter f 0.

We now give a number of relations for the graph parameters that are de�ned in
Section 2 and this section.

Theorem 4.1 The following relations hold (see also Figure 9).

(1) T W 6� D (2) CW � T W (3) CW � D
(4) CW � T BW (5) BW � CW (6) SPW � BW
(7) RT DW 6� BW (8) RPDW � PDW (9) PDW � BW
(10) CSPW � RPDW (11) CST W 6� T DW (12) RT DW 6� CST W
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Figure 9: Relations between graph parameters.

Proof. (1) In order to see that T W 6� D it is su�cient to observe that trees have
treewidth 1 and arbitrary large maximum degree. For D 6� T W, we may notice that
grids have maximum degree � 4 and arbitrary large treewidth (see [13]).

(2) CW � TW follows immediately from the fact that for any graph G, T W(G) �
CW(G) (see [1]). Also, it is known that for any complete binary tree Bk with depth
k � 2 CW(Bk) = d(k � 1)=2e+ 1 (see [4]). Hence T W 6� CW.

(3) It is easy to see that the CW(G) � D(G)=2 for any graph G. Thus, CW � D.
Moreover, as we mention in the proof of (2), the complete binary trees Bk with depth
k > 3, have cutwidth equal to d(k � 1)=2e+ 1. As �(Bk) = 3 we have that D 6� CW.

(4) It is known that T BW(G) � CW(G) for any graph G (see [4]), and that there exists
a function f such that for any graph G, CW(G) � f(T BW(G)) (see [5]). Hence, we
have CW � T BW and T BW � CW.

(5) In [1], it is shown that for any graphG, BW(G)(BW(G)+1)=2 � CW(G). Therefore,
BW � CW.

Consider the class L of graphs shown in Figure 10. It is clear that these graphs
have bounded cutwidth but arbitrary large bandwidth (use the well known formula
jV (G)j�1
diam(G) � BW(G), where diam(G) is the diameter of G, see [5]). Thus CW 6� BW.

. . .
L :

Figure 10: A counterexample for CW 6� BW.
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(6) Let G be a graph which has a strong path decomposition (X1;X2; � � � ;Xt) with
width at most k. We will prove that the bandwidth of G is bounded by g(k) = 2k � 1.
Consider a linear layout l such that if u 2 Xi, v 2 Xj , and i < j then f(u) < f(v). Let
fu; vg be an edge in G, and let i and j be the subscripts such that u 2 Xi and v 2 Xj .
Since jXhj � k for each h; 1 � h � t and ji� jj � 1, jl(u)� l(v)j � 2k� 1. Hence G has
bandwidth � 2k � 1. Thus, we have that SPW � BW.

Let G be a graph with bandwidth � k. We will prove that SPW(G) � k. There
exists a linear layout f such that for all fu; vg 2 E(G), jf(u) � f(v)j � k. For each i,
1 � i � dn=ke, let Xi = fu j u 2 V (G); (i� 1)k+1 � f(u) � ikg (n = jV (G)j). Clearly,
(X1;X2; � � � ;Xdn=ke) is a strong path decomposition with strong pathwidth k. Thus we
have that BW � SPW .

(7) It is easy to see thatRT DW 6� BW by considering the class of complete binary trees.
(It is well known that the bandwidth of a k-depth complete binary tree is d(2k � 1)=ke,
see [15].)

(8) We straightforwardly obtain RPDW � PDW from the de�nitions.
Consider the class L of graphs described in Figure 11. It is clear that any graph in L

has bounded path distance width and arbitrary large rooted path distance width. Thus
PDW 6� RPDW .

L :
. . .

Figure 11: A counterexample for PDW 6� RPDW .

(9) As any path distance decomposition is also a strong path decomposition of the same
width, we have that PDW � SPW (and hence PDW � BW).

We prove that SPW 6� PDW . We call the graph in Figure 12(a) a double ribbon

with size k (in Figure 12(a) k = 3). We call the rightmost vertex and the leftmost vertex
in a double ribbon endpoints. The middle vertex in a double ribbon is called the center.
The strong pathwidth of Hk is at most 3 for each k (see Figure 12(b,c)). We show that
for each k, the path distance width of Hk is at least k + 1. Suppose, on the contrary,
that there exists a path distance decomposition of Hk with root set S and width at most
k. Since the size of S is at most k, there exists at least one double ribbon R which does
not have vertices in S. Let a and b be the endpoints of R, and let c be the center of
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R. We set da = dHk
(S; a); db = dHk

(S; b); dc = dHk
(S; c). Without loss of generality, we

assume that da � db. Then we have dc = da + 2k + 2k = da + 2k+1 and this means that
there exist at least k + 2 vertices with distance da + 2k+1 which is a contradiction (see
Figure 12(a)). Hence, we have SPW 6� PDW (and thus BW 6� PDW).

+1k

k .  .  .
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Figure 12: A counterexample for SPW 6� PDW .

(10) Let G be a graph with CSPW(G) � k. We show that RPDW(G) � k2. Let
(X1;X2; : : : ;Xm) be a connected strong path decomposition of G of width at most k.
We will construct a rooted path distance decomposition of G of width at most k2.

Let r be an arbitrary vertex from X1, let frg be the root set. Furthermore, let
Li = max

v2Xi

dG(r; v),

Si = min
v2Xi

dG(r; v),

rt(i) = maxfj j Xj contains a vertex v with dG(r; v) = ig and

lt(i) = minfj j Xj contains a vertex v with dG(r; v) = ig: For example, in Figure 13

L2 = 3, S2 = 1, rt(3) = 4, and lt(3) = 2.
Notice that (i) asG[Xi] is connected, we have that for all i, 1 � i � m, Li�Si � k�1,

(ii) for all i, 1 � i � m � 1, Si+1 � Si � 1 and (iii) for all i, 1 � i � m � 1, for all j,
1 � j � m� i, Si + j � Si+j.

We will now show that 8d, 1 � d � max
v2V (G)

dG(r; v), rt(d) � lt(d) < k, or in other

words, the number of sets Xi which have a vertex with distance d from the root is at
most k. Suppose, on the contrary, that lt(d) + k � rt(d) for some d. Since there exists
a vertex with distance d in Xlt(d) and because of (i), we have that

d � Llt(d) � Slt(d) + k � 1: (1)
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Figure 13: An example of labelled decomposition.

Also, using (ii), (iii), the assumption above and the fact that there exists a vertex in
Xrt(d) with distance d from the root, we have that

Slt(d) + k � Slt(d)+k � Srt(d) � d: (2)

From (1) and (2) we have that d � Slt(d)+k�1 < Slt(d)+k � d, which is a contradiction.
Hence, for any integer d the number of the vertices of the strong path decomposition
that have a vertex with distance d from the root is at most k. Therefore, the number
of vertices having distance d from the root is at most k2 and thus, we can construct a
rooted path distance decomposition of G with width at most k2.

It is easy to see (using the class of cycles as a counterexample) that RPDW 6�
CSPW .

(11) Consider the class of graphs G0
k k � 1 in Figure 14. Clearly, these graphs have

connected strong treewidth equal to 2. Now, towards proving CST W 6� T DW, we will
show that for any k, the tree distance width of Gk is greater than or equal to k + 1.
Suppose, on the contrary that there exists a tree distance decomposition of Gk with root
set S and width at most k. Since the size of S is at most k, there exists at least one
copy, say H, of Gk in G

0
k such that H does not have vertices in S. Let bi be the base (see

Figure 14) of H, and dbi be the distance between S and bi in G0
k. It is not hard to see

that H has exactly k + 1 vertices which are of distance dbi + 1 from S, a contradiction.
Finally, using again the class of cycles as a counter example, we have T DW 6� CST W .

(12) It is easy to see that RT DW 6� CST W (the class of cycles is again a coun-
terexample). Using again the class of graphs in Figure 14 as a counter example, we have
CST W 6� RT DW. 2

An immediate consequence of the above relations and Theorem 3.1 is that graph
isomorphism is �xed parameter tractable (can be solved in O(n2) time) when the input
graphs have bounded connected strong pathwidth.

5 Open problems

An interesting open problem is to �nd in the hierarchy depicted in Figure 9, the boundary
between the parameters that give �xed parameter tractability for Graph Isomorphism,
and the parameters that (probably) do not, i.e. for which Graph Isomorphism is W [t]-
hard for some t (as de�ned by [8, 9]): until now, we only know that Graph Isomorphism
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Figure 14: A counterexample for CST W 6� T DW.

is �xed parameter tractable for parameters RT DW, RPDW and CSPW , but for all
other parameters in the �gure, the problem is still open.

Finally, we conjecture that, in analogy with Theorem 2.3, the problem of computing,
given a graph G and an integer k, whether G has tree distance width at most k, is NP-
complete.
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