Interactive Geometric Constraint Satisfaction

Remco C. Veltkamp* Farhad Arbabt

* Utrecht University, Department of Computing Science
Padualaan 14, 3584 CH Utrecht, The Netherlands

Remco.Veltkamp@cs.ruu.nl

¥ OWI, Department of Interactive Systems
Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
Farhad.Arbab@cwi.nl

Abstract

This paper presents a new incremental approach to geometric constraint satisfaction
that is tailored to interactive applications. Our approach categorizes solutions into
geometric primitives representing a range of solutions with uniform geometric charac-
teristics. This scheme keeps intermediate solutions in the geometric domain, providing
geometrically meaningful feedback to the user and the ability to interlace the interpre-
tation of previous and new geometric constraints on the same high level of abstraction.
This approach preserves the declarative semantics of constraints and leads to a num-
ber of advantages, including graceful handling of underconstrained specifications, the
natural processing of expressions of both conjunctive and disjunctive constraints, the
ability to perform satisfaction locally and incrementally, and support for constraint
inference and geometric reasoning.

1991 Computing Reviews Classification:

1.2 [Artificial Intelligence] Problem solving.

.3 [Computer Graphics] Graphics utilities, Computational geometry and object modeling.
J.6 [Computer Aided Engineering] Computer aided design.

Key Words and Phrases: geometric constraints, incremental constraint satisfaction, com-
puter aided design.

Figure 1: Solution of on(front-wheel,chassis) and on(rear-wheel,chassis).

1. Introduction

Constraints specify dependency relations between objects which must be satisfied and
maintained by some constraint management system. Constraint systems are used in a wide
range of applications, including user interface design [1], animation [2], geometric modeling
[3], and artificial intelligence [4]. Geometric constraints can fix one or more degrees of
freedom for positioning, orientation and dimensioning of the constraint variables. For
example, when a circle of fixed radius is constrained to be tangent to a fixed line segment,
the position of the circle center is restricted to two line segments parallel to the given one,
at a distance equal to the radius.

A constraint satisfaction system relieves some of the burden of its users: it is easier to
state constraints than to satisfy them. Problems can be solved by specifying constraints,
and the user need not specify how to solve the constraints. But even if a system can-
not satisfy all constraints that can occur in a given domain, it can free its users from
the error-prone process of solving the many little, but time-consuming simpler problems.
Applications of geometric constraints are typically found in graphical editors, page layout
programs, and CAD tools.

Consider the following example of geometric constraints, specified in order to position
the wheels of a car:

anchor(chassis)

on(front-wheel, chassis)
on(rear-wheel, chassis)
distance(front-wheel, rear-wheel, 32)
distance(front-wheel, door-vertex, 5)

SL W=

where the chassis is a line segment, and the wheels are circles. The first constraint an-
chors the chassis. The second and third constraints allow the centers of the wheels to
be positioned anywhere on the green line in figure 1. The fourth constraint allows the
front wheel to be positioned anywhere on a circle concentric with the rear wheel, and vice
versa, as illustrated in figure 2 for a particular admissible position of the wheels. The
fifth constraint allows the front wheel to be placed anywhere on the green circle shown in
figure 3. Figure 4 shows the position of both wheels satisfying all constraints, where the
position of the front wheel is the intersection of the green line in figure 1 and the green

Figure 2: Solution of distance(front-wheel, rear-wheel, 32).

Figure 3: Solution of distance(front-wheel, door-vertex, 5).

circle in figure 3, and the position of the rear wheel is the intersection of the green line
in figure 1 and the right circle in figure 2, after this circle is repositioned to be concentric
with the front wheel (by delayed propagation, as will be explained later). However, before
sending this specification in terms of constraints to the manufacturing floor, it might be
useful to realize that the configuration in figure 5 also satisfies the constraints, with the
understanding that the rear wheel is now in front of the front wheel.

The point about this example is that interactive applications typically give rise to
underconstrained problems, and that it is non-trivial to see the effect of a set of constraints

N A
N N

Figure 4: Final solution.

LN
N

Figure 5: Alternative final solution.

beforehand. Therefore, systems that converge on one solution are not satisfactory. In this
paper we introduce a new approach to geometric constraint satisfaction in interactive
applications. Some features of this approach, illustrated above and explained in the rest
of this paper, are:

e in underconstrained situations all solutions are provided,
e the solutions are in a geometrical form,
e temporary inability to propagate these solutions is handled by delayed evaluation.

Essentially, we represent the solution set of a variable with respect to a constraint as
the union of geometric primitives, and combine this partial solution with the variable’s
previous solution. In section 2 we present some background on constraint satisfaction and
the motivation for our new approach. The approach itself is introduced in section 3. In
section 4 we elaborate the algorithmic aspects of our method; this is followed by some
discussion in section 5. In section 6 we discuss a prototype implementation of our method.
Our approach is compared with other methods and systems in section 7. Section 8 contains
some concluding remarks.

2. Constraint satisfaction

Formally, a constraint satisfaction problem (CSP) can be specified by a finite set of vari-
ables v1,...,v,, a domain D; of possible values for each v;, and a set of constraints
Cq,...,Cp. Solving a CSP is finding a valuation (di,...,d,) € Dy X ... X D,, of the
variables for which all constraints are satisfied. Possible variants of the CSP are: find
a single solution (valuation), find all solutions, find a best solution, find the number of
solutions, determine satisfiability (whether or not a solution exists).

The satisfiability variant is the simplest one (indeed, it follows from all the others),
and even this one is in NP: it is in the class of Nondeterministic Polynomial-bounded
problems, i.e. it can be solved by a nondeterministic algorithm in polynomial time, but
there is no deterministic algorithm known to solve the problem in polynomial time. It
is even NP-complete, i.e. if there were a polynomial-bounded algorithm to solve the
problem, then there would be a polynomial-bounded algorithm for each problem in NP.
This can be deduced from the fact that the CNF-satisfiability problem can be converted to
it in polynomial time, and the CNF-satisfiability problem is NP-complete [5]. The CNF-
satisfiability problem is to determine if there is a truth assignment (a way to assign the
values true and false) for the variables in a logical expression in conjunctive normal form
(CNF) such that the value of the expression is true. A logical expression in conjunctive
normal form is a sequence of clauses separated by conjunctions (A), where a clause is a
sequence of variables and negations of variables separated by disjunctions (V).

Because the general CSP is a hard problem, satisfaction algorithms are often slow.
In order to obtain faster algorithms, one can confine the domain of the constraints and
the variables and exploit some of the specific knowledge of the domain. The time com-
plexity of such specialized constraint satisfaction depends on both the domain and the
kind of constraints. Symbolic solution of the algebraic expressions describing geometric
constraints is known to be NP-hard; tree structured constraint networks can be solved
in linear time; linear constraints over real numbers can be solved in polynomial time; a
single polynomial constraint equation of degree higher than four does not even have an
analytical solution; and the complexity of solving integer polynomials of degree greater
than two is still unknown.

In this paper we deal with constraints and variables in Euclidean geometry, and we
derive all solutions to the constraints. Although the general problem is NP-complete, we
will see that the time complexity of our algorithm is linear in the number of constraints
because the satisfaction is performed locally and possible loops are broken.

2.1. Satisfaction techniques

Constraint satisfaction techniques can be classified as structured or unstructured. Struc-
tured methods group dependent constraints into independent sets that can be solved sep-
arately; unstructured methods do not. Solving the overall set of equations comprising all
constraints is perhaps the simplest approach to constraint satisfaction. One way to solve
the overall set of equations is by relaxation. Numerical relaxation makes an initial guess
at the values of the variables in an equation, and estimates the error by some heuristic. In

view of this error, the guesses are adjusted accordingly and a new error is estimated. This
repeats until the error is minimized. A disadvantage of this method is that it converges to
only one of the roots of an equation. Moreover, which root is found depends on the initial
value of the variable. This makes the solution unpredictable in underconstrained situa-
tions. Numerical relaxation is also computationally expensive, and can be used only in
continuous numeric domains. Other unstructured methods include algebraic manipulation
[6] and augmented term rewriting [7].

Structured methods impose a structure on the set of constraints by grouping them
into sets of dependent constraints. A set of dependent constraints can be represented as a
network of constraints. These groups are satisfied independently. Numerical computation
of a group of constraints is often done by relaxation. Deductive systems infer information
about the admissible values of variables and use some method to assimilate the results of
the inference process throughout the network. We mention two such methods: propagation
of known states and propagation of degrees of freedom.

e Propagation of known states, or just local propagation, can be performed when there
are parts in the network whose states are completely known (have no degrees of
freedom). The satisfaction system looks for one-step deductions that will allow the
states of other parts to be known. This is repeated until all constraints are satisfied
or no more known states can be propagated. If not all constraints can be satisfied,
the remaining constraints must be resolved by, for example, numerical relaxation.
Many constraint satisfaction systems use some form of local propagation.

e Propagating degrees of freedom amounts to discarding all parts of the network that
can be satisfied easily and solving the rest by some other method. This method
identifies a part in the constraint network with enough degrees of freedom so that
it can be changed to satisfy all of its constraints. That part and all the constraints
that apply to it are then removed from the network. Deletion of these constraints
may give another part sufficient degrees of freedom to satisfy all of its constraints.
This continues until no more degrees of freedom can be propagated. The part of
the network that is left is then satisfied by some other method, if necessary, and
the result is propagated towards the discarded parts, which are successively satisfied
(propagation of known states).

The above techniques are two methods of propagation, independent of what is actu-
ally propagated. We distinguish the following types of information to be inferred and
propagated: a whole solution set, a single solution, algebraic expressions, and constraints.

e Solution set inference makes deductions on the set of possible solutions, which are
restricted by the constraints. Traditionally this is a finite domain [§8], but also
continuous intervals of numerical values have been studied [9]. In single solution
inference, constraint variables get assigned a single value, often numeric.

e The operational approach [10], [11] performs single geometric solution inference.
It satisfies constraints sequentially by performing operations (translation, rotation,

etc.) on the geometric objects involved. An already satisfied constraint either toler-
ates an operation on one of its operands, or must propose a transformation to satisfy
the constraint again. In this way operations can be propagated through a constraint
network until all operations are tolerated.

e In constraint inference, implied constraints are derived and explicitly added to the
network. Implied constraints can be recognized by a unification mechanism or by
the use of multiple redundant views [12]. Finding implied constraints can be used to
avoid extensive manipulations in cases where local propagation does not suffice. Tt
can also be used to restate the constraints in a different way with the same meaning,
which can help the system to solve constraints locally, instead of resorting to more
costly techniques such as relaxation.

2.2. Motivation

Incremental satisfaction of geometric constraints arises naturally in many interactive ap-
plications in graphics and geometric modeling. A good deal of work has already been done
on constraint satisfaction in general [7] [4], and constraint satisfaction in the geometric
domain in particular [13] [14] [15] [10] [11] [16] [17] [3].

Many systems detect overconstrained situations, but cannot satisfactory handle un-
derconstrained cases. For example, many numerical methods behave unpredictably when
changes are made to an underconstraint set of constraint equations. On the other hand, a
Logic Programming system like Prolog for solving numeric constraints can handle under-
determined equations and return a set of deduced equations that constitutes the solution.
However, in a geometric context we prefer a geometrical form for the solution. A possible
geometric approach is the planning of transformations of the variables so as to satisfy
constraints [10] [11] [17].

This may give rise to two problems:

e The proposed solution is as intended, but the user is not aware of the ambiguity
of the specification. The existence of alternative solutions may cause problems for
post-processing.

e The solution is not as intended. Now the user must interfere, but he may not know
the alternative solutions.

We distinguish several types of alternative solutions:

e A constraint can have several discrete solutions. For example a circle through two
points, with a fixed diameter greater than the distance between the points, can have
two positions.

e A constraint can have a continuous range of infinitely many solutions. For example,
the admissible locus of a point having a fixed distance to a fixed point forms a circle.

Simultaneous evaluation of mutually constrained objects (multi-dependency) is gener-
ally a difficult problem. Consider the distance constraint between the two wheels in the

Figure 6: Locus units resulting from distance(p, [, 15): two line segments and two half
circles.

example in the introduction, where neither of the two has a fixed position. Many systems
cannot cope with such a situation, and require that only one of the constraint operands is
variable (single-dependency). It is often possible, though, to determine the structure of a
solution. In our example, the circle center of either of the two wheels must lie on a circle
concentric with the other wheel, wherever its position. Thus we can delay propagation
until the position of one of the wheels is actually known (as happens in the example).

3. A new geometric approach

Our approach to geometric constraint satisfaction is based on solution set inference, and
performs propagation of known states. Our geometric satisfaction method provides ranges
of solutions and discrete alternative solutions in underconstrained situations by means of
geometrical locus units. In combination with delayed satisfaction, this gives a more pow-
erful problem solving capability than usually provided by geometric constraint systems.

The units of the solution domain are geometric primitives that represent the locus units.
They describe the parts of the solution set with uniform geometrical characteristics. This
notion of locus unit captures the cases of a single solution, an interval, a region, etc.

Essentially, we represent the solution set of a variable with respect to a constraint as
the union of geometric primitives, and combine this partial solution with the variable’s
previous solution. For example, the complete locus of a point p having a fixed distance
to a line segment [consists of the union of four locus units (geometric primitives): two
line segments and two half circles (see figure 6). These units represent sets of alternative
solutions. When p is further constrained to lie on another line segment, say m, this gives
another locus unit, coincident with m. The final solution is the intersection of m with all
the alternative solutions so far. In calculating these intersections we take advantage of the
partitioning of solutions into geometric primitives, which can be simply intersected.

Conceptually, the constraints and the variables form a network, where the variables
are nodes and each constraint is a hyper-edge between its operands. The network can be
disconnected, in which case the variables in one connected component and the variables in
other connected components are not related by constraints. The solution of each variable
is a locus unit expression, i.e. the union or intersection of locus units or other locus unit
expressions.

Our model of constraint satisfaction consists of a set of constraints C', a set of constraint
variables V', a set of locus units @, a locus unit generating function G, and a function
Tolerate() that satisfies a constraint and performs propagation. The constraint variables
and the locus units are geometric primitives.

A constraint is a relation between a number of variables from V. A constraint can be
k-ary, i.e. it can involve any number of variables, depending on its type (see the constraints
used in the introduction). Constraints may be multi-directional, i.e. each of the involved
variables constrains the others, again depending on the constraint type. Multi-directional
constraints provide a natural way to impose certain relations [1]. For example the con-
straint distance(point, circle, 0) is multi-directional and means the same as distance(circle,
point, 0), but the constraint on(point, circle) is one-directional and means that the point
must lie on the circle, whereas on(circle, point) in our implementation means that the
circle center must lie on the point. In contrast to many other systems, more than one
variable may be undetermined (like in the constraint distance(front-wheel, rear-wheel, 32)
in the example). Constraints are specified incrementally, so that every variable in V' is
involved in an ordered set of constraints. Each constraint can be either conjunctive or dis-
Junctive. A conjunctive constraint further restricts the degrees of freedom of the involved
variables. A disjunctive constraint provides alternatives to the solution of previously spec-
ified constraints on that variable. Considering a single variable and only constraints on
that variable, the constraints thus form an expression of the form

(...(c1 AND/OR c3) AND/OR ...) AND/OR cy,.

This means that a constraint expression like (¢;OR ¢2)AND (c30R ¢y), for example, is not
possible in this scheme.

The locus unit generating function G : (¢,v;) — (q1,...,q,) generates the set of locus
units for v; that are consistent with the constraint ¢(vy,...,v;) and all the variables v;,
j=1,...,k, ¢ # j, with their current locus units, regardless of the current units of v;.

Note that not all combinations of types of constraints and variables need be geometrically
meaningful; G may be defined only for a limited number of combinations. The generation
of the locus units can involve geometric reasoning [18], taking into account the nature of
the constraint and the current locus units of the variables. For instance, consider again
the example in the introduction. At first the constraint distance(front-wheel, rear-wheel,
32) has the effect that the locus unit generating function assigns to the rear wheel a circle
that has no fixed position because the front wheel is not fixed. But after the constraint
distance(front-wheel, door-vertex, 5), the front wheel has two locus units (two different
points on the chassis, say p; and ps). In the propagation of this new solution, the locus
unit generating function assigns to the rear wheel two circles centered at p; and py (which
are subsequently intersected with the chassis).

When a new constraint is added to the network, the locus unit generating function
is applied to each of its operands. For a single variable, the union of the resulting units,
U(q1,---,qn), is the solution to that one constraint. If the constraint is conjunctive,
q1,- - -, qn must be intersected with the variable’s current solution, say locus unit expression
ge: N(ge,U(q,...,q,). If it is a disjunctive constraint, we take the union of the new and
the current solution: U(ge,U(q1,...,¢,). In this way we get an expression of locus units,

which is the solution set of the constraints so far for that single variable. In general, this

expression is of the form B(gey,...,qen), where B is one of the Boolean set operators
union or intersection, and each g¢e; is a locus unit expression.

After the addition of a new constraint to the network, let ¢q,..., ¢, be the new locus
units generated for one of the variables involved in that constraint. If B(geq,...,qen,) is
the locus unit expression representing the solution set of this variable prior to the new
constraint, the new solution set of the variable becomes B'(B(qe1, ..., qem), U(q1,---,qn))-

If the new constraint is conjunctive, then B’ is N, and if it is disjunctive, B’ is U. The
resulting expression is transformed into a union of locus unit expressions, and as much of
its intersections as possible are evaluated. The aim of this transformation is to represent
the solution as the union of simple units. The transformation rules are as follows:

L UU(g1s-- - qn)) =U(ar, - -, qn)

2. NU(g1, - an)) = U(q1,- -)

3. UU(ger, -y qem),U(q1y -y qn)) =U(ge1, -« s qCm, q1y- -+ qn)

4. U(N(gers - - - qem), V(a1 - - qn)) = U(N(ger, - -, gem), 1, - - -, 4n)
5. N(U(ger, - -, qem), U(q1, - - -, an)) = Ulgi N ge;)

n

6. ﬂ(ﬂ<qela v 7qem)7 U(qlv v 7qn)) = 'Ul ﬁ(qelv -y qEm, Ql)

i=

Note that there is no rule for the intersection of two intersections, because the new
units qi,...,q, always form a union. Each locus unit expression ge; is either a single
unit or an intersection of other locus unit expressions. Any intersection ¢; N ge; on the
right-hand sides of equations 5 and 6 that can be computed, is evaluated into a union of
units: ¢; Nge; = U(q), .., q)-

It may be difficult to compute some intersections, for example if one of the locus
units involved is a circle that can float around, as in figure 2. In such cases we leave the
intersection unevaluated, as in figure 7. This is why a ge; can be an intersection of units or
of other locus unit expressions: ge; = N(ge],...,qge,). The right-hand side of equation 6
is split into intersections that are computed and intersections that remain unevaluated.
In this way we implement delayed satisfaction. A subsequent intersection may resolve the
problem. Consider a locus unit that is a circle whose center is allowed to move over a
line segment, say circle ¢. If some future constraints on the same variable give two line
segments /; and [y as locus units, and the intersection of /1 with the swept circle ¢ is left
unevaluated, the subsequent intersection (¢ Nly) Ny is transformed into (cNlz) N (I3 Ni2),
by transformation rule 6. If [y Ny = ¢, then so is the final solution. If /1 Ny is a point,
it is easier to test if it is included in (¢ Nly) than to compute (¢ Nly) itself. In this way,
delayed satisfaction of constraints is handled uniformly, thereby enhancing the satisfaction
capabilities of the system.

10

Distance 32.0

Figure 7: Network with unevaluated intersections.

4. Algorithmic aspects

The algorithm we use is essentially a standard local propagation algorithm, but is given
here to show the several aspects that were introduced in the previous section. We also
describe how these aspects affect issues such as termination and time complexity.

Let S; be the set of locus units generated for an operand v; with respect to a constraint
c: S; = G(c,v;). The procedure Evaluate(v;, S;) computes intersections and transforms the
locus unit expression as described in the previous section. The returned value of Evaluate()
is EMPTY if the resulting solution set of v; is empty, CHANGED if it has been changed,
and UNCHANGED if it is unchanged. We can invoke G(c,v;) and apply Evaluate(v;, S;)
for each variable v; of ¢. If one of the variables is assigned an empty solution set, the
constraint expression is inconsistent — the specification is overconstrained.

4.1. Propagation

If the solution set of a variable v; has been changed and v; is involved in another constraint
c, the solutions of other variables of ¢ must also be updated. These variables must
therefore be recorded. The following procedure Revise(c) updates all variables of ¢, and
returns the set of variables whose solutions are changed:

11

Revise (c)
{
Changed = ¢
for each v; of ¢
SZ' = G(C, vi)
for each v; of ¢
case Evaluate (v;, S;)
{
EMPTY: Report (OVER-CONSTRAINED)
CHANGED: add v; to Changed // propagate
UNCHANGED: // do nothing
}

return Changed

}

When a new constraint is specified, it must be added to the network and the resulting
changes must be propagated to related constraints. This may cause new changes which in
turn must be propagated, and so on. This is performed by the following algorithm:

Tolerate(c)
{
Fifo = [] // first-in-first-out queue
while Fifo # ¢
{
¢ = FirstElementOf (Fifo)
remove ¢’ from Fifo
Changed = Revise (¢)
for each v € Changed
for each ¢’ # ¢’ having v as parameter
add ¢’ to Fifo

Revise(c) makes the solution set of every variable of ¢ consistent with ¢ and its other
variables using their current locus units. That is, the solution is made locally consistent.
When Tolerate(c) terminates (see next section), and an overconstrained case has not been
detected, the solution sets of all variables are locally consistent (this is equivalent to arc
consistency in [8]). When only conjunctive constraints are added to a network, Tolerate(c)
amounts to the filtering algorithm of [19] for the labeling of edges in an image, the paradigm
example of an arc consistency algorithm. Because constraints that have variables with
changed locus units are placed in a first-in-first-out queue (as opposed to an unordered
list), they are guaranteed to be revised again, whether the propagation is finite or infinite.
This is called a fair propagation in [20].

12

This algorithm performs incremental satisfaction of a new constraint c¢. In order to
satisfy a set of new constraints {cg,...,c,}, the FIFO queue can be initialized with Fifo

= [Cg,... 7Cn].

4.2. Termination

This section discusses termination of the propagation in Tolerate(c). We treat the cases
where ¢ is a conjunctive or a disjunctive constraint separately.

4.2.1. Conjunctive constraint

When a conjunctive constraint c¢(vy,...,v;) is added to the network, the solution sets of
variables do not get larger. More formally, Evaluate(v;, G(c,v;)) is then monotonic in the
following sense. Let {[Sy,..., Si]|Evaluate(v;, G(c,v;))} denote the solution set of v; after
applying Evaluate(v;, G(c,v;)), and S; the current solution set of v;, j =1,..., k. Observe
that:

1. {[S1,...,Sk]Evaluate(v;, G(c,v;))} C S;

2. ifS; CSj,j=1,...,k, then
{[S1,...,S}]Evaluate(v;, G(c,v;))} C {[S1,..., Sk|Evaluate(v;, G(c, v;))}.

Because of the monotonicity of Evaluate(v;, G(¢,v;)), and the fairness of propagation
in Tolerate(c), the following holds (see [20]): if there exists some terminating propagation
resulting in a locally consistent solution, then Tolerate(c) will find it. Moreover, the
solution is unique (though its representation in terms of locus units is not necessarily
unique).

Still, the propagation in Tolerate(c) need not terminate. A simple example is where
two line segments are related by a constraint that requires their lengths to be equal, and
a constraint that sets one length to half the other (a pure numeric analogue is the case
of two constraints x = y and x = 2y). This can lead to an infinite loop halving each line
segment in turn.

A loop occurs when a constraint is revised more than once, in one invocation of Tol-
erate(). When this happens, it is not clear whether this is the prefix of an infinite loop
or not, but we must break the loop after a finite number of times. One possibility is to
terminate propagation by force when a constraint is addressed a fixed number of times. A
more sophisticated approach is to break a loop when there are no more substantial changes
made to the solution set. Specifically, we can break a loop when none of the locus units
of a variable change type (for example change from a line segment into a point), and no
locus unit changes more than a certain ‘geometric margin’. After a loop has been cut-off,
the current locus units of the variables in the loop form a super-set of the real solution.
There are several things we can do with such a super-set:

1. give the super-set to the user as an approximate solution,

2. compute the solution set numerically, using the super-set to obtain initial values and
bounds, if necessary,

13

3. compute a single solution from the solution set,

4. test whether a solution exists instead of computing a solution (set).

In our implementation we have chosen the first option, which is still better than many
graphics systems can provide, see e.g. [21].

4.2.2. Disjunctive constraint

If a disjunctive constraint is added to the network, the solution sets of variables may get
larger. This can more easily lead to an infinite loop than when the solution is restricted.
When a variable involved in a circular chain of constraints gets assigned alternative locus
units, these constraints may produce alternative units for their variables ad infinitum.
Again, a loop need not be the prefix of an infinite loop, but propagation must be stopped.
A loop can be stopped after a constraint is addressed a fixed number of times, or when
the increase of the solution set exceeds a certain ‘geometric margin’.

A (possibly infinite) increase of the solution may not have been the intention of the
user, and the system can ask whether the alternative must be withdrawn. In any case,
after a loop has been cut-off, the current locus units of the variables in the loop form a
sub-set of the real solution. We can use this result to:

1. give the sub-set to the user as an approximate solution, which is still better than
many graphics systems can provide,

2. try to generate a super-set of the solution, and proceed with propagation in order
to restrict the solution.

A super-set can be generated by generalizing locus units, e.g. a point to a line segment.
In our implementation we have chosen the first option.

4.3, Time complexity

In this section we analyze the time complexity of our algorithm, assuming that a loop
in the iteration is broken if it addresses a constraint more than a fixed number of times.
Let ¢ be the maximum number of loops in the iteration, a the maximum arity of the con-
straint types, ¢ the maximum number of locus units returned by the locus unit generating
function, e the number of constraints in the network, v the number of variables in the
network, d; the number of constraints on the ith variable, and d the maximum d; over all
variables. After each call Revise(c), the number of elements put into the queue by each
variable v; constrained by ¢ is d; — 1. Summing over all variables ¢ times, the total number
of revisions is

Ki(di —1)=0l(ae —v)).
i=1

If the constraint network is not connected, each of the connected components may be
treated independently, so we assume that the network is connected and thus (a—1)e > v—1.
The total number of revisions is then O(ale).

14

A call to Revise(c) results in the generation of locus units for each of the variables of
c. The generation of locus units may involve geometric reasoning, but in any particular
implementation this involves a fixed number of constraint types, geometric primitive types,
and geometric configurations that are recognized, e.g. organized in a lookup table, thus
taking a constant time. The at most ¢ locus units generated for each variable v; must be
combined with its previous solution. In the worst case the locus units must be intersected
with a locus unit expression which is itself an intersection of locus unit expressions, etc.
The depth of this expression of unevaluated locus unit intersections is at most d;, i.e. the
number of constraints on variable v;. So, in the worst case the number of intersections will
be ¢% for that variable, and at most O(aq?) for one call to Revise(c). Summing over the
total number of revisions gives a total time complexity of O(a’leq?). In this expression, a,
(, and q are constants. In the theoretically worst case, the maximum number of constraints
on each variable is equal to the total number of constraints, e. However, for large systems
of constraints and variables it is unrealistic to assume that a variable is subject to all
constraints. In practice there will be a constant upper bound on the number of constrains
applied to each variable, i.e. d is constant. This makes the time complexity of our Tolerate
algorithm linear in the number of constraints. Moreover, the algorithm is local in the sense
that propagation to other constraints stops when the solution of these constraints are not
affected. No constraints are unnecessarily revised, and so the actual time complexity is
typically sub-linear in the total number of constraints.

4.4, Completeness

A constraint satisfaction system is called complete if it always finds a solution to the
constraints, if one exists. Completeness of any implementation of our approach depends
on the set of geometric primitives, the allowable constraints, and the power of the locus unit
generating function. In general, a solution set may not be representable with a fixed set of
geometric primitives. In that sense the set of constraints and geometric primitives should
agree with each other, so that the locus unit generating function is able to generate locus
units for all admissible combinations of constraints and operands. Another aspect is the
system’s competence to intersect locus units. Consider a locus unit that is a circle whose
center is allowed to move over a line segment, thus sweeping out a whole area of solutions.
Although the area has a simple shape (a rectangle plus two half discs), its definition in
terms of a swept circle makes intersection with subsequent locus units non-trivial. In this
example the intersection is clearly computable, but a particular implementation may not
be able to perform this intersection.

The locus unit generating function may use geometric reasoning [18]. Geometric rea-
soning can also facilitate constraint inferencing, the derivation of implied constraints.
For example, given the constraints parallel(linel, line2) and parallel(line2, line3), the im-
plied constraint parallel(linel, line3) can be derived. Constraints can also be restated,
which can sometimes help the locus unit generating function. For example the constraint
on(point,line) can be restated as distance(point, line, 0). The declarative representation of
information in terms of constraints not only supports the integrity of supplied informa-
tion, but also facilitates geometric reasoning, which prevents accumulation of errors and

15

inconsistency of construction.

A more modest requirement than completeness of the whole system is completeness
of propagation. A propagation scheme is called complete if the solution it assigns to a
variable represents accurately the set of values it can attain given the constraints, i.e.
after propagation the network is arc consistent in the sense of [8]. In a constraint system
whose propagation scheme is complete, we can consistently assign to any variable any
value within its solution, and pick values for all the other variables so that all constraints
are satisfied. Provided that the locus unit generating function generates the right units for
all implemented combinations of constraint types and operand types, and provided that
no loops need to be broken, our propagation algorithm is complete.

5. Discussion

As mentioned before, a solution set may not be representable as the union of a number of
geometric primitives (locus units) from a given set. In that case, the solution is represented
implicitly as the intersection of several locus unit expressions. Conversely, a solution set
need not be uniquely representable as a locus unit expression. This is no problem, however,
since the different representations form the same solution.

Constraint satisfaction as performed in this paper yields a locally consistent solution
for all variables, or equivalently, has the property of arc consistency: we can consistently
assign to any variable any value within its solution, and pick values for all the other
variables so that all constraints are satisfied. However, all these whole solution sets do
not necessarily satisfy all constraints simultaneously. All constraints together constitute a
global constraint which does specify solution sets for each variable that wholy satisfy all
constraints simultaneously. Derivation of these solution sets is done, for example, by [22].

Operations on a variable, such as translate, scale, mirror, and project, can be handled
by performing proper corresponding operations on its locus units. The resulting new so-
lution must then be propagated through the network. This is precisely what constraint
maintenance is about: maintaining satisfied constraints when the variables change. For
interactive CAD purposes, a constraint must also be removable. After deletion of a con-
straint, the solution of its variables must be resynthesized, and then propagated through
the network, see also section 6.

So far we have seen zero and one-dimensional locus units. A two-dimensional unit (re-
gion) results from a constraint like inside(point, circle), yielding a disc. The same approach
to geometric constraint satisfaction works in three-dimensional space [23]. However, it
becomes more likely that a solution cannot be represented as the union of geometric prim-
itives and must be represented as an unevaluated intersection of locus units, in which case
the locus unit expressions are akin to CSG-trees.

6. Implementation

We have implemented our constraint satisfaction method and incorporated it into a draw-
ing editor using GoPATH [24] [25]. All figures in this paper were made by this prototype

16

=| gdraw e :

File Edit BStructure BSelection Constraint Attributes Named Attributes View Miscellaneous Help

Al
.
Distance 5.0
Q Distance 32.0
= ,
[=i i -

Figure 8: Snapshot of the drawing program showing constraint network without locus units.

system. Apart from the constraints anchor, on, and distance which were used in section 1,
we implemented constraints tangent and angle. For example, angle(pointl, point2, ampl,
start) yields a locus unit that is a circle segment with amplitude ampl starting at an-
gle start, and whose radius may result from a distance constraint. Constraints and their
operands can be interactively generated and removed. Our straightforward prototype
implementation is efficient enough for interactive use of the editor.

The constraint network is represented as a directed multi-partite graph. A constraint,
conceptually a hyper-edge between its operands, is represented by a rectangular box and
arrows towards its variables (see figure 8). Constraint nodes have only outgoing edges,
while the constraint operands have only incoming edges. In our implementation, the
anchor constraint is an exception: it is not displayed as a node in the graph but is visualized
by drawing its operand in bold style, see for example the chassis in figure 8. Operands
that are not anchored are drawn in normal style, as the wheels, and so are the elements
that are not subject to constraints.

The locus units are drawn green. If a locus unit is fixed, it is drawn in bold style,
otherwise in normal style. When locus units are generated, they are placed between the
variable it belongs to and the constraint it results from. In order to represent unions and
intersections of locus units, Boolean set operation nodes @ and @ are used. Between a
constraint and an associated variable is a sequence of (zero or more) locus units interleaved
with Boolean set operation nodes. Figure 9 depicts the network corresponding to figure 6,
showing the union of the four locus units. Such a network can be read starting from
the variables back to the constraints. The intersection node between the line segment

17

Distance 15.0

RN

Figure 9: Network associated with distance(p, [, 15)

and the constraint node results from the fact that the constraint has been specified as a
conjunctive one. When we cannot compute an intersection of two locus units, we leave
the intersection unevaluated, and represent it with a @ -node in the network. Figure 7
shows a network with some intersection nodes. This network corresponds to the example
in the introduction, just after the fourth constraint. At that point, the solution for each
wheel consists of the intersection of the green line segment and the proper green circle.
The intersections are not yet computed but explicitly represented in the network, because
the green circles have no fixed position (and are therefore not drawn in bold style).

Because displaying the whole constraint network clutters the screen for more than only
a few constraints, and because the network is hard to read, this is not the normal display
mode. Users can select a number of display modes. One option is displaying the whole
network. Another choice is to display a simplified network showing only variables and
constraints but no locus units (see figure 8). Using constraint icons like in [26] would be
still better. A user can also choose to display all variables and only the locus units of
selected variables, as done in figures 1-6.

The usual way to use constraints in a drawing program is to put constraints on the
objects in the drawing in order to specify their position and orientation. Our locus unit
approach provides an alternative way to make drawings: not the constraint operands
but the primitives representing the locus units constitute the drawing. An example is
given in figure 10, showing Roman letters constructed after [27], using all constraint types
implemented in our prototype system.

For interactive CAD purposes, a constraint must also be removable. In our system,
deletion of a constraint from the network involves removal of the constraint node and the
sequence of locus units and Boolean set operation nodes towards its involved variables.
Sequences from other constraints to the same variables must be ‘repaired’ by intersecting
the proper locus units. In general, this re-evaluation is necessary because dropping locus
units from a sequence of intersections may yield completely different results. The resulting
new locus units must be propagated through the new network.

A useful interaction mode (not implemented in our prototype system) would be to drag
geometric primitives along their locus units (a constrained translation) towards a specific

18

<7§

\\
—~
N/

(/ o=

JAYAN
3/
Figure 10: Roman letters, constructed after [27].

position, and to anchor the primitive there.

7. Comparison

Real general purpose languages for constraint logic programming (CLP) can be used in
a wide range of applications, but are usually limited in their satisfaction power in each
specific domain. Most constraint languages are biased to a more specific domain ID:
CLP(ID) [28]. For numeric constraints this yields CLP(IR) over the domain of real numbers
[29]. CLP is often described as logic programming with unification (pattern matching)
replaced by constraint solving over a computation domain (e.g. Booleans or reals). When
a CSP is embedded into logic programming, a constraint can be defined in the program as
a set of facts and rules. To solve CSP in traditional logic programming, backtrack search
is used and the constraints are used passively as posteriori tests. However, propagation
techniques can have a dramatic effect in cutting down the size of the search space [30]. A
general purpose language for constraint imperative programming is Kaleidoscope [31].

In the rest of this section we specifically consider geometric constraint systems. Ob-
vious drawbacks of unstructured techniques are their computational complexity and their
potential inefficiency for interactive applications: each single change leads to re-solving
the whole set of constraints. An example is variational geometry [32] which translates
dimensional constraints into an overall system of equations, which is solved numerically
by the Newton-Raphson method. The dimensional constraints are defined by equations
on coordinates of characteristic points. Each time a dimensional value is changed, the
whole system of equations must be solved. Another system that turns all constraints into
numerical equations is Juno [15]. Juno is a simple system based on one geometric primi-
tive: the point. It uses a Newton-Raphson iteration technique to solve constraints. The

19

user must supply an initial value to start the iteration. All these systems yield a single
numerical solution.

Sketchpad [13] was the first constraint-based drawing system. It satisfies constraints us-
ing propagation of degrees of freedom. When this fails, it resorts to relaxation. ThingLab
[14] enlarges the possibilities of Sketchpad with extensibility and object-oriented tech-
niques, so that new classes of objects and constraints can be defined. It uses both prop-
agation of degrees of freedom and propagation of known states. Both systems provide a
single solution to constraints. The work on ThingLab evolved into the SkyBlue constraint
solver [1], which makes an analysis of the constraint network and identifies loops, before
performing local propagation. In the constraint-based geometric modeler Converge [26]
the constraint network is partitioned, and the parts are solved numerically. In Converge, a
locus can be specified to define a constraint, whereas our loci (geometric primitives) result
from constraints.

[10] presents an operational interpretation of constraints in CSG modeling. Constraints
are specified by users in terms of relations between boundary features, and are transformed
by the system into rigid motions of parts of the CSG tree. An underconstrained situation
can simply not occur. Users must specify the order of evaluation, and are responsible
for solving conflicts. OTP (Operational Transformation Planning) [11] also provides an
operational interpretation of constraints. It infers a single solution to the constraints. The
satisfaction process is planned through symbolic reasoning on the geometric level, that is,
by geometric reasoning [18]. [17] performs a degrees of freedom analysis on markers (local
coordinate frames) on a geometric object, determining its translational and rotational
degrees of freedom. If needed, a locus analysis is done akin to, but simpler than, our locus
unit approach. Transformations are then generated so as to satisfy constraints. Coupled
degrees of freedom, however, cannot be neatly divided into translational and rotational
degrees of freedom. A branch variable must choose from multiple discrete solutions. The
value of each branch variable must be set by users, affecting the rest of the solution
derivation.

In [16] constraints relate coordinate systems. Constraints between degrees of free-
dom (for example between the x- and y-coordinate because of a distance constraint) are
evaluated after lower-order constraints (for example one that uniquely determines the x-
coordinate). This is a form of delayed satisfaction. Selection among alternative solutions
to constraints (single solution inference) is based on ‘minimal resulting disturbance’. [33]
presents a system with single numeric solution inference, in which the numerical solutions
are derived by algebraic methods. The propagation mechanism employed is propagation
of degrees of freedom.

Our approach differs from all systems above in that solutions are represented, carried
forward, and shown to the user in geometrical form. In many underconstrained cases, all
solutions are derived (see section 4.2.2). The geometrical representation of the solution
also avoids time complexity problems, since a single locus unit can represent a range of
infinitely many solutions.

20

Figure 11: Construction drawing, after the construction drawing of the spire of the porter’s
lodge of Park Giiell, Barcelona, Spain, by Antoni Gaudi [34].

8. Conclusions

In this paper we have presented a new incremental approach to geometric constraint sat-
isfaction, representing solutions in terms of locus units, which are geometric primitives.
Expressions of unions and intersections of locus units represent the whole solution to the
constraints, so that underconstrained situations, which are so typical in interactive ap-
plications, are easily handled. The representation in terms of locus units also provides
geometrically meaningful feedback to the user and supports the ability to combine the
interpretation of previous and new geometric constraints on the same high level of ab-
straction, thus allowing geometric reasoning and constraint inference. Another advantage
of our approach is the natural processing of expressions of both conjunctive and disjunc-
tive constraints. Because the whole solution to the constraints is represented, the final
solution does not depend on the order in which the constraints are solved, so that the
declarative semantics of constraints is preserved.

The set of geometric primitives used as constraint operands in our prototype system
consists of point, circle, and line segment; the set of constraints consists of anchor, on,
distance, and tangent and angle. On the one hand this allows only a limited number
of constraints in the realm of geometry; on the other hand several other constraint sys-
tems offer only a single primitive, e.g. the point. Moreover, this limited set of constraints
already covers a large amount of constraints typical in more specific fields such as mechan-
ical engineering. Our approach, even with this limited set of primitives and constraints,
can relieve much of the burden of repeatedly satisfying mundane constraints that are dy-
namically changing, a situation so typical in interactive applications. Figure 11 gives a
final example of a picture made with the prototype system, using all the constraint types
available.

21

In order to extend the capabilities of our prototype system, not only larger sets of
geometric primitives and constraints may be needed, but also it may be necessary to
define constraints on sub-objects (e.g. the vertices of a polyline), or on compound objects
(e.g. polylines). Some useful enhancements to the interface of our system include the
ability to infer constraints, like in [35] and [36], the ability to copy parts of the current
constraint network, and to define macros of constraint expressions, such as middle(M, A, B)
= on(M, linesegment(A,B)) AND distance(M, A, ||AB||/2).

Acknowledgements

This work was supported by NWO (Dutch Organization for Scientific Research) under
Grant NF-51/62-514.

References

[1] M. Sannella. Constraint satisfaction and debugging for Interactive User Interfaces.
(Ph.D. dissertation), Technical Report 94-09-10, Dept. Computer Science and Engi-
neering, University of Washington, Washington, 1993.

[2] J.-F. Balaguer and E. Gobetti. Supporting Interactive Animation Using Multi-way
Constraints. In [37], 49 — 66.

[3] M. Dohmen. A survey of constraint satisfaction techniques for geometric modeling.
Computers € Graphics, 19(6), 1995, 831-845.

[4] E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

[5] S. Baase. Computer Algorithms: Introduction to Design and Analysis. Addison-Wesley,
1978.

[6] J. H. Davenport, Y. Siret, and E. Tournier. Computer Algebra — systems and algo-
rithms for algebraic computation. Academic Press, 1988.

[7] W. Leler. Constraint Programming Languages, Their Specification and Generation.
Addison-Wesley, 1988.

[8] A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8, 1977,
99 — 118.

[9] E. Davis. Constraint propagation with interval labels. Artificial Intelligence, 32, 1987,
281 — 331.

[10] J. R. Rossignac. Constraints in constructive solid geometry. In F. Crow and S. M.
Pizer (editors), Proceedings of the 1986 ACM Workshop on Interactive 3D Graphics,
ACM Press, 1986, 93 — 110.

[11] F. Arbab and B. Wang. A geometric constraint management system in Oar. In
P. J. W. ten Hagen and P. Veerkamp (editors), Intelligent CAD Systems III — Practical
Ezxperience and Evaluation, Springer-Verlag, 1991, 231 — 252.

[12] G. L. Steele Jr. and G. J. Sussman. CONSTRAINTS — A Language for Expressing
Almost-Hierarchical Descriptions. Artificial Intelligence, 1980, 1 —39.

[13] 1. E. Sutherland. Sketchpad: A man-machine graphical communication system. In
Proceedings of the Spring Joint Computer Conference, AFIPS Press, 1963, 329 — 345.

22

[14] A. Borning. The programming language aspects of ThingLab, a constraint-oriented
simulation laboratory. ACM Transactions on Programming Languages and Systems,
3(4), 1981, 353 — 387.

[15] G. Nelson. Juno, a constraint-based graphics system. Computer Graphics, 19(3),
1985, 235 — 243.

[16] M. J. G. M. v. Emmerik. A system for interactive graphical modeling with 3D
constraints. In T. Chua and T. Kunii (editors), CG International ’90, Springer-Verlag,
1990, 361 — 376.

[17] G. A. Kramer. Solving Geometric Constraint Systems. MIT Press, 1992.

[18] F. Arbab and J. M. Wing. Geometric reasoning: A new paradigm for processing
geometric information. In H. Yoshikawa and E. A. Warman (editors), Design Theory
for CAD, Elsevier Science Publishers, 1985, 145 — 165.

[19] D. L. Waltz. Generating Semantic Descriptions from Drawings of Scenes with Shad-
ows. PhD thesis, MIT, 1972.

[20] H.-W. Giisgen and J. Hertzberg. Some fundamental properties of local constraint
propagation. Artificial Intelligence, 36, 1988, 237 — 247.

[21] B. N. Freeman-Benson, J. Maloney, and A. Borning. An incremental constraint solver.
Communications of the ACM, 33(1), 1990, 54 — 63.

[22] E. C. Freuder. Synthesizing constraint expressions. Communications of the ACM,
21(11), 1978, 958 — 966.

[23] R. C. Veltkamp. Geometric constraint management with quanta. In D. C. Brown,
M. B. Waldron, and H. Yoshikawa (editors), Intelligent Computer Aided Design, North-
Holland, 1992, 409 — 423.

[24] GoPATH 1.2.0 — A Path To Object Oriented Graphics, a public domain environ-
ment for graphical and interactive application development. Bull — Imaging and Office
Solutions, 1993.

[25] J. Davy. Go, a graphical and interactive C++ toolkit for application data presentation
and editing. In Proceedings 5th Annual Technical Conference on the X Window System,
1991.

[26] S. Sistare. Graphical interaction techniques in constraint-based geometric modeling.
In Proceedings of Graphics Interface’91, 1991, 85 — 92.

[27] D. L. Goines. A Constructed Roman alphabet: a geometric analysis of the Greek and
Roman capitals and of the Arabic numerals. David R. Gordine, Boston, 1982.

[28] J. Cohen. Constraint logic programming languages. Communications of the ACM,
33(7), 1990, 52 - 68.

[29] N. C. Heintze, S. Michaylov, and P. J. Stuckey. CLP(IR) and some problems in
electrical engineering. In J.-L. Lassez (editor), Proceedings of the jth International
Conference on Logic Programming, MIT Press, 1987.

[30] T. L. Provost and M. Wallace. Generalized constraint propagation over the CLP
scheme. The Journal of Logic Programming, 16, 1993, 319 — 359.

[31] B. N. Freeman-Benson. Kaleidoscope: Mixing objects, constraints, and imperative
programming. SIGPLAN Notices, 25(10), 1990, 77 — 88.

[32] V. C. Lin, D. C. Gossard, and R. A. Light. Variational geometry in computer-aided
design. Computer Graphics, 15(3), 1981, 171 — 177.

23

[33] J. C. Owen. Algebraic solution for geometry from dimensional constraints. In Pro-
ceedings of the ACM Conference on Solid Modeling, ACM Press, 1991, 397 — 407.

[34] R. Zerbst. Antoni Gaudi. Taschen, 1987.

[35] M. Gleicher and A. Witkin. Creating and manipulating constrained models. Technical
Report CMU-CS-91-125, Carnegie Mellon University, School of Computer Science, 1991.

[36] S. R. Alpert. Graceful interaction with graphical constraints. IEEE Computer Graph-
ics € Applications, 13(2), 1993, 82 — 91.

[37] R. C. Veltkamp and E. H. Blake (editors). Programming Paradigms in Graphics,
Springer-Verlag, ISBN 3-211-82788-9, 1995.

24

