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Abstract

Increasingly, remotely sensed data are used for taking decisions in geographical information
systems. Decision making can in principle be based on a classification of such remotely sensed
data into nominal information classes. Such a classification, however, typically includes an
unknown amount of uncertainty. Moreover, when processing spatial data for decision making,
not only the uncertainties inherent in these data but also the objectives and preferences of the
decision maker have to be taken into account. This paper proposes exploiting concepts from
the mathematical framework of decision analysis for integrating uncertainties and preferences.
It aims to solve complex decision problems on the basis of remotely sensed data. The feasibility
of the decision-analytic approach to the interpretation of spatial data is demonstrated by
means of a case study.
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1 Introduction

To monitor, analyze and interpret developments in our changing environment, up-to-date spatial
data are periodically collected and processed. Increasingly, remote sensing is considered as a
valuable source for this purpose. It yields data that can be subjected to further analysis in a
geographical information system (GIS) at advantageous average cost. By systematic application
of spatial operations and visualisation, a GIS is able to generate, on request, derivative data sets
contributing to making decisions involving characteristics of spatially-related phenomena of the
environment.

Classification of remotely sensed data into qualitative information classes is useful to extract
information from the spectral attributes of these data, yielding an insightful representation of the
real world. Such a representation can be exploited directly as a thematic map or as part of a
time series in a change detection application. Unfortunately, classification generally introduces
unknown uncertainty in the information classes assigned to the spectral objects. This uncertainty
propagates through the subsequent stages of the decision making process [Lunetta et al., 1991].
The uncertainty can be reduced by using evidence with regard to the real world, usually derived



from sources such as domain experts, maps, field work, aerial photographs, or thematic maps
from former classifications. Such evidence can be exploited before, during, and after classification
and hence contribute to the accuracy of the final results in various different ways [Strahler, 1980].
Despite all efforts to reduce the uncertainty introduced by classification, it always influences the
results. These imperfections may seriously affect the adequacy of using classification results for
taking environmental decisions. For example, the commonly used mazimum a posteriori probability
classification discards useful information that may serve to yield insight in the uncertainties.
In this approach to classification, the posterior probabilities that are computed for each spatial
object within an information class distinguished during sampling, are used only to select the most
likely class. The entire probability distribution for the object, however, reflects highly valuable
information about the extent and distribution of uncertainty which could be further utilised in a
GIS.

If decisions are to be made on the basis of remotely sensed data, uncertainty tells only part
of the story: the objectives to be pursued with interpretation of the data become crucial. In
the presence of uncertainty, the best decisions are those that, in view of the objectives, carefully
weigh the benefits of correct interpretation of the data on the one hand and the losses due to
incorrect interpretation on the other hand. This idea is illustrated by an example dealing with
fraud with subsidies assigned to agricultural crops by the European Union. In this example, the
main objective is to detect illegal declarations of subsidised crops by taking remotely sensed images
from crops on parcels, to avoid waste of public resources. From this objective alone, the number of
detected illegal declarations should be maximised. However, unjust implication of fraud is highly
unfavourable as it results in extra costs for verification and in loss of face. Therefore, the number
of unjust implications should be kept at a minimum. In pursuing both objectives simultaneously,
overlooking fraud is considered worse than over-estimating. It now depends on the probabilities
computed for the various possible crops for a parcel under consideration whether or not fraud
should be implied. Interpretation of remotely sensed data for decision making therefore involves
both the extent and distribution of uncertainty introduced by classification and the preferences
of the decision maker. These preferences concern the objectives that are being pursued with
the interpretation and therefore differ from knowledge about the subject of the interpretation as
referred to by [Strahler, 1980]. Both types of knowledge equally contribute to the interpretation,
yet at different levels.

Further elaborating on the idea that remotely sensed data can serve as a basis for decision
making, the question arises whether or not it is necessary to derive a complete classification before
considering viable decisions. In principle, decisions can be taken on the basis of a classification.
However, classification contains uncertainty of which the extent and distribution are unknown. By
making decisions directly on the data, full knowledge about the uncertainties involved can be in-
cluded, thereby allowing for making better decisions. As decision making does not so much involve
classification results as the extent and distribution of uncertainty introduced by classification, de-
riving a complete classification is no longer required and, in fact, has become obsolete (Figure 1).
However, an accurate classification nevertheless serves various purposes beyond decision-making.

This paper addresses the interpretation of remotely sensed data in view of the objectives that
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Figure 1: Founding Decision Making on Data



are to be pursued when exploiting the data for decision making. To this end, various concepts from
decision analysis are introduced which allow integration of uncertainties and a decision-maker’s
preferences. Section 2 expresses the interpretation of remotely sensed data as a decision problem
and introduces the mathematics for solving this problem. Section 3 describes the assessment of
the various parameters involved in quantification of uncertainties and preferences. A case study
will be presented in Section 4, demonstrating the feasibility of the decision-analytic approach.

2 Interpretation of Data: a Decision Problem

Interpretation of remotely sensed data is in essence a decision problem: the problem is to decide
upon which decision to take for each spatial object on the basis of available data. The solution
to this problem is for each object the decision that is expected to best meet the objectives that
are being pursued with the interpretation. The field of Decision analysis provides the mathe-
matical framework for solving complex decision problems such as the data-interpretation problem
[Raiffa, 1968, von Winterfeldt & Edwards, 1986, Smith, 1988]. It offers means for structuring de-
cision problems and for computing solutions. In this section, we express the interpretation problem
and its solution in decision-analytic terms.
A decision problem involves two types of variable:

e a decision variable is a variable that represents viable decisions or actions that can be taken
in the context of the problem at hand;

e a chance variable is a variable that represents the true ‘state of the world’; the value of such
a variable cannot be selected by the decision maker.

In the data-interpretation problem, there is only one variable of each type: a chance variable C
that represents the true information class of a spatial object O and a decision variable D that
represents the possible decisions that can be taken with regard to this object.

A variable in a decision problem can take its value from among a pre-defined set of values. We

assume that C4,...,Cy,, n > 1, are possible information classes of O. These classes therefore are
values for the chance variable C. We further assume that the decision variable D takes its value
from among the decisions Dy, ..., Dy, m > 1.

In a decision problem, there typically is uncertainty regarding the true values of the chance
variables involved. In data interpretation, there is uncertainty concerning the true value of the
chance variable C' since the true information class of O is unknown at the time of interpretation.
This uncertainty is expressed as a probability distribution Pr(C) for the variable C, specifying
for every possible information class C; the probability Pr(C = C;) that C; is the true class of the
object. Note that this probability distribution will not be influenced by the various decisions that
can be taken.

In addition to uncertainties, a decision problem involves preferences. The desirability of a
decision and its consequences, with each other called a scenario, is quantified by means of its
utility. In our data-interpretation problem, each combination of a decision D = D; and a true
information class C' = C; has associated a utility u(D = D; A C = Cj). The utility expresses the
desirability of the scenario where the decision D; is taken with regard to O while it has C; as
its true information class. Actual utilities associated with the various scenarios depend upon the
objectives that are being pursued with the interpretation.

Structuring all aspects of a decision problem can be done with a decision tree. A decision
tree is a pictorial, tree-like representation of the problem. The various variables and values of
the problem are organised in a (rooted) tree. Each node in the tree models a variable; the edges
emerging from a node represent the values of its associated variable. The topological structure of
the tree is an explicit representation of all scenarios that can possibly arise from a decision. The
root node of the tree represents the initial situation before any decision is taken and each path
from the root node to the tip of a terminal edge corresponds with a scenario. Figure 2 shows
a tree organising the variables of our object-interpretation problem. To distinguish between the



decision and chance variable, the former is depicted as a square box and the latter is shown as a
circle. In the tree, the uncertainties concerning the chance variable’s values are depicted with the
appropriate edges; the utilities are depicted at the tips of the terminal edges of the tree.
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Figure 2: A Decision Tree for the Data-interpretation Problem.

Once a decision problem has been structured in a decision tree, the best decision for the problem
is easily computed. For this purpose, the tree is evaluated by foldback analysis. Foldback analysis
starts at the tips of the terminal edges, works its way through all intermediate nodes and edges,
and ends at the root of the tree. In foldback analysis, for each viable decision the desirability
of taking this decision is computed. The desirability of a decision depends on the values of the
chance variables modeling its consequences. However, these values are not known before the
decision is taken. The desirability of a decision therefore is computed by weighting the utilities of
the various possible scenarios that can arise from taking this decision with the probabilities that
these scenarios actually do occur. For each chance variable, the expected wutility over its values
is computed, which expresses the expected utility of taking the decision corresponding with the
incoming edge of the node modeling the chance variable. For each decision variable, the mazimum
expected utility over its values is computed. In a foldback analysis of the decision tree for the data-
interpretation problem, the expected utility 4(D = D;) for each decision D = D; is computed
as

n
W(D=D;)=Y u(D=D; AC=Cj)-Pr(C =C})

Jj=1

The best decision is the decision Dy with the highest expected utility. Computing the best
decision with regard to a spatial object O as outlined before will be coined decision-analytic data
interpretation.

The statistical description of decision analysis provides a general and flexible framework for
data interpretation. In fact, the framework also provides for conventional classification by taking
for the decision the various possible information classes; the utilities then express the severity of
different types of misclassification. As an example, we express the common mazimum a poste-
riori probability classification. The only objective pursued in maximum a posteriori probability



classification is to maximise the probability of correct classification: every misclassification is
considered equally undesirable. This objective can be expressed in terms of utilities by tak-
ing uD = D;ANC =C;) =1, forall i =1,...,n, and w(D = D; AC = Cj) = 0, for all
i,j =1,...,n,i # j, where D; is the decision to assign class C; to the object O.

3 Assessing Parameters

For decision-analytic data interpretation, a decision tree to model the interpretation problem is
evaluated. This decision tree includes the various uncertainties and preferences involved. The
accuracy of the assessment of these quantities directly determines the quality of the decision
computed for the problem. This section briefly addresses the assessment of the quantities required
for the decision-analytic approach.

3.1 Probability Assessment

The uncertainties involved in data-interpretation are expressed as probability distributions over
the various information classes distinguished for the spatial object O under consideration. The
probabilities in these distributions are computed from remotely sensed data as posterior probabil-
ities given the spectral attributes of these data. Given a vector x of spectral attributes, for each
information class C;, i = 1,...,n, the posterior probability Pr(C = C; | x) is computed using
Bayes’ formula:

Pr(x | C =C;)-Pr(C =C))

Pr(C=C;|x) = Pr(x)

where Pr(x | C = C;) is the probability that the vector of spectral attributes x occurs in the
data given that the true class of the object is C;. Pr(C = C;) is the prior probability that the
object has class C; for its true class and Pr(x) denotes the probability of the vector x occurring
in the data. Pr(x) is the same for every information class and does not have to be computed
independently: Pr(x) is obtained by normalising the nominators of the right-hand side of the
formula over all information classes. The probabilities Pr(x | C' = C;) and Pr(C = C;), however,
have to be assessed explicitly for each class C;.

To assess Pr(x | C = C;) for C;, i = 1,...,n, either a parametric or a non-parametric method
may be used. The parametric method builds on the assumption that each information class C;
yields a parametric, such as a Gaussian, distribution over the space of spectral attributes. To
calculate the required probabilities, for each class the distribution is selected that best fits a set of
training data; this distribution is obtained by estimating its parameters from these data, that is,
for a Gaussian distribution, its mean and variance-covariance matrix. Alternatively, the k-nearest
neighbour method is a mon-parametric method for assessing the probabilities Pr(x | C = C;).
It computes for the vector of spectral attributes x from the training data a set of neighbouring
vectors. These vectors are selected by searching the space of spectral attributes at increasing
distance from x until &k vectors are included. From the set of neighbouring vectors thus selected,
the number k; of vectors corresponding with information class C; is determined. Now, if n; is
the total number of training data corresponding with class C;, the probability that the vector x
corresponds with class C; is estimated as

ki

Pr(x|C=C,)=m

where V},(x) is related to the distance at which x’s k nearest neighbours are found [Fukunaga &
Hummels, 1987]. In practice, the non-parametric method proves to be superior to the parametric
method in the sense that it yields probabilities of higher accuracy. Especially in the context of
our decision-analytic approach, the non-parametric method therefore is preferred.

The prior probabilities Pr(C = C;) for the various information classes C; generally are more
difficult to obtain than the probabilities Pr(x | C = C;) as they are independent of the data to



be interpreted and therefore require knowledge about the subject of the interpretation for their
assessment. Depending on the available knowledge, they may be estimated by different methods
with varying degrees of sophistication. The least sophisticated method builds on the assumption
that any spatial object is fully characterised by its spectral attributes: this method assigns to each
class C, i = 1,...,n, the prior probability % A more involved method assigns a prior probability
to each class distinguished in the image based on knowledge about its percentage of coverage.
Assessment of the prior probabilities based on local information is the most precise method. To
this end, the image is sudivided into segments, for example derived from additional GIS-data.
The prior probabilities subsequently are estimated per segment, either on the basis of available
knowledge about processes that influence the occurence of classes in the area under consideration,
or extracted from the image data, assuming accurate and representative sampling, by an iterative
algorithm [Gorte, 1995].

3.2 Utility Assessment

The utilities of a decision problem are derived from the objective which is pursued and express
the desirability of the various scenarios that can arise from a viable decision. In most deci-
sion problems several different objectives are pursued simultaneously. Therefore, a utility can
be a complex combination of quite different commodities, such as monetary gain, status, and
time. Decision analysis offers various, more or less formal, methods for performing this task
[von Winterfeldt & Edwards, 1986).

The simplest, and least formal, method for utility assessment is to visualise all possible sce-
narios of a decision problem on a linear scale. The least desirable and the most desirable scenarios
are identified and assigned to the ends of the scale. Every other scenario is now positioned on
the scale, where the distance between two scenarios is indicative of the difference in desirability
between these scenarios. Once all scenarios have been positioned, for each scenario a utility is
yielded by projecting its position onto a matching numerical scale. Figure 3 illustrates the basic
idea for two scenarios s; and s;.

ordinal scale

3 4 5 6 7 9 10

;
u(s;) = 2.5 u(s;) = 7.4 numerical scale

Figure 3: The Visualisation Method for Utility Assessment.

Instead of first visualising the differences in desirability among scenarios, these differences can
be quantified directly, by using a standard reference gamble. A standard reference gamble serves
for comparing three scenarios with regard to their desirability. Let s;, s;, and sj be scenarios such
that s; is less desirable than s;, and s; in turn is less desirable than s;. In assessing utilities for
these three scenarios, a probability p is found such that scenario s; is as desirable as a gamble
that yields scenario s; with probability p and scenario s; with probability 1 — p. Through this
probability p, the utilities u(s;), u(s;), and u(sg) have now been assessed to satisfy

u(sj) =p-usk) + (1 —p) -u(si)

By using the standard reference gamble for appropriate three-tuples of scenarios, a system of
equations is obtained from which a set of utilities is computed. The use of a standard reference
gamble tends to yield better calibrated utilities than the visual method; the method, however, is
more time-consuming.



If the utilities of a decision problem are composed of various commodities that are hard to com-
pare, utility assessment can be especially cumbersome. The assessment then often is simplified by
decomposing the utilities into their separate commodities. In terms of these separate commodi-
ties, marginal utilities are assessed, for example using one of the techniques outlined above. These
marginal utilities subsequently are combined to yield overall utilities [von Winterfeldt & Edwards,
1986].

4 A Case Study

The decision-analytic approach to data interpretation has been applied to a case study. Although
the situation described in the study in itself is hypothetical, it emerges from a real-life issue. The
study concerns fraud with subsidies provided by the European Union to support the cultivation
of certain agricultural crops. These subsidies are paid on the basis of declarations submitted by
farmers. A fraud detection mechanism can make use of remotely sensed data. For each parcel,
the viable decisions to consider on the basis of the data concern approval of the declaration on
one hand, and an implication of fraud followed by further investigation on the other hand.

The study area is located around the village of Biddinghuizen in the province of Flevoland,
the Netherlands. A Landsat Thematic Mapper image of the area is available (we used spectral
bands 3, 4 and 5) from June 1987, as well as crop maps from 1986 and 1987. Seven different
land-cover classes are distinguished: grass, wheat, potatoes, sugar beets, peas, beans, and onions.
The crop maps, originating from an initial survey that included interviews with farmers, likely
contain errors and uncertainties. In our study, we have used the 1986 map to calculate local prior
probabilities. In the calculation, crop rotation cycles have been taken into consideration; so, the
land-cover classes in successive years are not independent. Part of the 1987 crop map has been
used for training sample selection, in combination with a colour composite of the image. From
the 1987 map we have subsequently extracted the fields with peas or beans, and considered them
as farmers’ declarations for subsidy on those two crops.

To investigate viable decisions, various utilities have been assessed. The decision to imply
fraud and suggest further investigation is very advantageous if the farmer’s declaration specifies
peas or beans and there is a different agricultural crop in reality: this scenario uncovers an
illegal declaration. The scenario is assigned a utility of 10. The decision to not inspect such
a field is extremely bad. This scenario is assigned a utility of 0. If a declaration turns out to
be legal after further investigation, we have put ourselves (or the farmer) through unnecessary
trouble. However, an investigation that turns out superfluous is not so bad as overlooking a false
declaration. This scenario therefore is assigned a utility of 3. Avoiding superfluous investigations
is more advantageous anyway: we assign a utility of 8. These utilities are summarised in Table 1.

Based on these utilities, we have applied our decision-analytic method to the decision for each

inspection
crop yes no
grass 10 0
wheat 10 0
potato 10 0
sugar beet | 10 0
pea 3 8
bean 3 8
onion 10 0

Table 1: Utilities for the Detection of Illegal Farmer Declarations.

pizel. The result is a binary raster map, indicating the decision per pixel. Subsequently, a majority
criterion has been applied to identify the fields that have been indicated for further investigation.



These results are shown in Figure 4. Of 81 fields with a declaration of peas or beans, 22 will be
inspected.

Now consider a slightly different (perhaps less realistic) situation in which the subsidies paid
are rather small and the fraud detection agency is under-staffed. In this situation, farmers gen-
erally will be given the benefit of the doubt and only very suspicious looking declarations will be
inspected. The utility assigned to the scenarios for this situation are shown in Table 2. After
applying our decision-analytic method to the same data with these new utilities, the number of
fields to be investigated has decreased from 22 to 16 as expected.

5 Conclusions

Remotely sensed data are exploited to an increasing extent for decision making. For processing
spatial data for this purpose, the objectives and preferences of the decision maker have to be taken
into account. In principle, decisions may be taken on the basis of a complete classification of the
data at hand. However, as taking the best decision involves the full extent and distribution of
the uncertainty in the data, decision making is better founded directly on the data themselves.
Decision-analytic interpretation, proposed in this paper, provides such an approach by integrating
preferences and uncertainties in a mathematically well-founded way. The aim of the method is to
assist a decision maker in taking the best decision and not so much to reconstruct reality, thereby
contrasting conventional classification.

The decision-analytic approach to the interpretation of spatial data has been illustrated by
means of a simple case study. Because of the simplicity of the presented study, it does not serve
to fully demonstrate the potential power of the approach. However, it illustrates the issue of
customisation: from a single set of spatial data, various results can be obtained tailored to a
decision maker’s objectives, by interpreting the data with different sets of utility assessments. An
interesting issue that remains to addressed is the performance of the decision-analytic approach
to data interpretation at a level beyond pixels. The approach is suitable for decision making for
spatial objects instead of for individual pixels, as the concepts involved remain the same; however,
an image segmentation pre-processing step is required. Applying the approach to spatial objects
is expected to benefit from (probabilities of) geometrical and topological properties of objects for
decision making.

To conclude, we would like to emphasise that our approach is based on a well-known and long-
established mathematical framework from decision analysis for solving complex decision problems.
The rich field of decision analysis provides a wealth of methods, for example for assessing proba-
bilities and utilities, that can be applied to the problem of interpreting spatial data. Thanks to
its flexibility and mathematical well-foundedness, the framework has the potential to become an
integral part of geographical information systems.

inspection
crop yes no
grass 10 6
wheat 10 6
potato 10 6
sugar beet | 10 6
pea 0 20
bean 0 20
onion 10 6

Table 2: Modified Utilities for the Detection of Obvious Illegal Declarations
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Figure 4: Experimental results. Upper Left: Landsat TM Image (band 4). Upper Right: Fields
under consideration. Centre Left: Fields with declaration for ‘peas’ or ‘beans’. Centre Right:
Pixels with positive ‘inspection’ decision. Lower Left: Fields to be inspected. Lower Right: Fields
to be inspected after modification of utilities.
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