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Abstract

In this paper we present a number of necessary conditions for the
existence of loops, i.e. reductions of the form t !

+
R c[t�]. We in-

vestigate which of the known termination preserving transformation
methods also preserve the non-existence of loops. We characterize the
existence of loops by overlap closures. We illustrate these methods
at new examples of a one-rule term rewriting system and a two-rule

string rewriting system which admit a non-terminating reduction but
no loop.

1 Introduction

Term rewriting systems (TRS, for short) are a convenient means for reasoning
about equations and algorithms. A TRS whose rewriting relation admits no
in�nite reductions is called a terminating TRS. Terminating TRSs enjoy a
number of favourable properties without being too restrictive.

In�nite reductions are often composed of cycles. A cycle is a reduction
where a term is rewritten to the same term. More generally, a loop is a
reduction where the starting term re-occurs, with its variables substituted,
in a context. It is obvious that a loop can be composed in�nitely, giving an
in�nite reduction. In fact, the usual way to deduce non-termination is to
construct a loop.

However non-terminating, non-looping reductions do exist. Apparently,
Dershowitz [7] was the �rst to distinguish looping from non-termination.
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Although the notion of loop is fairly common, we have heard of no su�-
cient conditions to deduce that a TRS is non-terminating, non-looping. This
is strange since we can fancy a number of applications.

For instance in the Knuth/Bendix completion procedure, it is favourable
to exclude non-terminating TRSs from consideration. It is common practice
to do it by restricting to provably terminating TRSs. But then, the procedure
may overlook terminating candidates as soon as the termination ordering is
too weak. Purdom [23] prefers to exclude looping rewrite systems. Then
no terminating candidate is lost, and so the procedure is less likely to fail
or diverge. This is paid, however, with an enormous increase in complexity,
caused by branching and the absence of normalization. In this respect, means
to exclude as many non-terminating systems as possible are invaluable.

Another application is the question how expressive one-rule string rewrit-
ing systems (SRS) are. It is unknown whether one-rule SRSs can simu-
late Turing machines, and whether their termination is undecidable. Mc-
Naughton [18] conjectures that no non-terminating, non-looping one-rule
SRS exists. If the conjecture were true, it would be a clear indication against
Turing power of one-rule SRSs.

A termination preserving transformation is a binary relation ,! on TRSs
such that R ,! R0 and R terminating implies R0 terminating. It is natural
to ask whether \terminating" may be replaced by \non-looping". We answer
this question for the following transformations.

1. transformation ordering [2, 1, 3], and speci�cally, dummy introduction
[26],

2. dummy elimination [10],

3. semantic labelling [25],

Moreover we characterize the existence of loops by the existence of looping
overlap closures.

We illustrate some of the methods at new examples. Speci�cally, we give
witnesses for the facts that two-rule SRSs and one-rule TRSs exist that are
non-terminating but admit no loop. We conclude the paper with an overview
of decidability results connected with looping.
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2 Basic Notions

We assume that the reader is familiar with termination of term rewriting [7].
We will use notation as in Dershowitz/Jouannaud [9].

A position in a term is the path, given in Dewey decimal notation, from
the top of the term downwards. The subterm of t at position p is denoted tjp.
If tjp is de�ned then p is called a position of t. The term t, with its subterm
at p replaced by term t0 is denoted t[t0]p.

A cycle is a reduction of the form t !+
R t; a loop is a reduction of the

form t !+
R c[t�]p where c is a term, p a position in c, and � a substitution.

A loop can be composed with itself to form a larger loop: t !+
R c[t�]p !

+
R

c[c[t�]p�]p = c0[t�0]p0 where c0 = c[c�]p, �
0 = ��, and p0 = p:p. Composition

can be iterated �nitely or in�nitely.
We say that a term t cycles if there is a reduction t!�

R t0 !+
R t0 ending in

a cycle. Likewise, t loops if a reduction ending in a loop, t!�

R t0 !+
R c[t0�]p,

exists. A TRS R is said to admit a loop if a looping t exists.
We will treat SRSs as TRSs where we identify letters with function sym-

bols of arity one. SRSs are also called semi-Thue systems. A loop in an SRS
is then of the form t !+

R utv where t; u; v are strings. Here tu denotes the
concatenation of strings t and u. The string t is also called a pre�x, u a su�x
of tu. Any string utv is said to contain t as a factor.

3 A Basic Example

In this section we present a three-rule SRS to illustrate the typical aspects
of non-terminating, non-looping rewriting. In Section 8 a one-rule TRS and
a two-rule SRS with the same property will be given.

Example 1. The three-rule SRS R given by

bc! dc (1)

bd! db (2)

ad! abb (3)

admits an in�nite reduction, but no loop.

The same system already appears in Dershowitz's survey [7], p. 111, how-
ever without a proof that it admits no loop. A slightly more complicated ex-
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ample of a three-rule SRS with the same property was given by Kurth [15].
For every i > 0 there is a reduction

abic!R abi�1dc!i�1
R adbi�1c!R abi+1c

yielding the in�nite non-looping reduction

abc!+
R ab2c!+

R ab3c!+
R � � � :

Now we prove that R is non-looping. Assume that v !+
R uvw was a loop.

During this reduction, every rewrite rule had to be applied at least once; any
two-rule subset of the TRS terminates, and therefore cannot form a loop.
Particularly, we may conclude that v contains both letters a and c.

Then u and w contain no letters a or c since the number of a and c letters
remain unchanged by rewrite steps. The length of the factor left from the
�rst a remains unchanged by rewriting. So u is empty. The length of the
factor right from the last c can at most cause each d replaced by two b-s.
So w is empty. But this means that v !+

R v, a contradiction to the fact
that application of rule (3) increases the length of the string. Hence R is
non-looping.

In the next few sections we investigate which transformations preserve
non-looping TRSs.

4 Transformation Ordering

The idea of transformation order arose from the observation that monotonic
interpretations of terms as (other) terms may be conveniently modelled as
unique normal forms w.r.t. a con
uent, terminating TRS T . To ensure that
the de�ned order is closed under substitution and contexts, a commutation
property is required which can be localized to a property called local cooper-
ation.

Theorem 1 (Transformation order, [2, 1, 3]). Let !S and !T be re-
lations on a given set. If

1. !S [!T terminates,

2. !T is con
uent,
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3. !T locally cooperates with !S, i.e.  T!S � (!S =!T )
+ �

T ,

then > =def (!S =$T )
+ [ !+

T terminates.

For TRSs S and T , such that !S and !T are their respective rewrite
relations, Condition (2) follows by local con
uence of critical pairs, and Con-
dition (3) follows from

3i. T is non-erasing and left-linear, and

3ii. CP (T; S) � (!S =!T )
+ �

T ,

which are e�ectively checkable. Moreover, termination of !R for a TRS R
follows from R � >. We have developed another version which disposes of
con
uence and termination of T .

Theorem 2 ([26]). Let !S, !T , and !R be binary relations on a given
set. If

1. !S terminates,

2. !R � !
+
S  

�

T ,

3.  T!R � !
+
R 

�

T ,

then !R terminates.

If R, S, and T are TRSs, such that!R,!S and!T are their respective
rewrite relations, for Condition (2) it is su�cient that R � !+

S  
�

T , and for
Condition (3) that

3i. R is left-linear,

3ii. T left-linear and non-erasing,

3iii. CP (T;R) � !+
R 

�

T .

Thm. 2, akin to a commutation result of Bachmair and Dershowitz [1], is
particularly suited to SRSs which are always left-linear, right-linear, and
non-erasing.

Both kinds of transformation order fail to to preserve non-looping reduc-
tions as the following counterexample demonstrates.
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Example 2. Let R, S, and T be the TRSs

bc! dc

bd! db

ad! pab

bc! dc

bd! db

ad! abb

pa! ab

respectively. R has a loop

adc! abc! adc

but S has no loop (see Ex. 1). Condition (2) of Thm. 2 holds by ad !S

abb  T pab. Condition (3iii) holds because the only overlap abd  T

pad !R ppab satis�es abd !R adb !R pabb  T ppab. Hence Thm. 2 is
not correctly applicable to infer non-loopingness.

By a simple form of completion, an in�nite system R =def fab
nd !

pabn+1 j n > 0g can be constructed such that  T!R � !R T holds
although T is terminating and con
uent. At present, we do not know whether
a �nite counterexample with these properties exists.

4.1 Dummy Introduction

Dummy introduction is a special case of our form of transformation order.
A dummy is a symbol � that occurs only at right hand sides, whence it acts
as a barrier for rewrite redexes. To introduce a dummy means to restrict
rewriting. A dummy introduction rule is of the form

vdw! v�w

with the intended meaning that within the context v and w the (potentially
empty) substring d is dead; none of its positions will ever be touched in a
reduction. So it may just as well be replaced by the dummy. If unrestricted
reductions can be transformed to restricted ones, then termination of the
original system follows from termination of the restricted system. Dead sub-
strings are indeed never rewritten.

De�nition 3 (Left Overlap). A string l is said to left overlap a string r
is there are strings l0, r0 and x where l = l0x, r = xr0, and x is nonempty.
Likewise, r is called to right overlap l in this case.
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De�nition 4 (Dummy Introduction). Let A be a alphabet where � =2
A and let R be a SRS over A. Let d be a string and let C, D be nonempty
sets of strings over A such that d is nonempty if the empty string is in C and
in D. Let T be the SRS

T =def fudv! u�v j u 2 C ^ v 2 Dg :

Then T is called a dummy introduction for R if

1. every overlap of a left hand side l of a rewrite rule l ! r in R with a
left hand side udv of a rule in T already is an overlap of l with u�v,
i.e. is either a left overlap with u or a factor of u or a right overlap with
v or a factor of v; and

2. for each left overlap of l = l0x, u = xu0 of l with u, a su�x of ru0 is in
C,

3. for each u = u0lu00, a su�x of u0ru00 is in C, and symmetrically,

4. for each right overlap of l = yl00, v = v00y of l with v, a pre�x of v00r is
in D,

5. for each v = v0lv00, a pre�x of v0rv00 is in D.

Particularly it follows that the left hand sides of R are in T -normal form,
and that T terminates.1 Let T (R) be the T -normal SRS

T (R) =def fl ! r0 j (l! r) 2 R ^ r !!
T r0g

Recall that T need not be con
uent; so one has to consider all possible T -
normal forms r0 of r. It is routine to prove the following technical lemma.

Lemma 5. If T is a dummy introduction for R, a rule (l! r) 2 R, a su�x
of u is in C, a pre�x of v is in D, then

udv ���!
l!r

u0dv0

?
?
?
yT

?
?
?
yT

u�v ���!
l!r

u0�v0

holds where a su�x of u0 is in C and a pre�x of v0 is in D.

1If d is empty then use dummy elimination (Thm. 11) for T to prove its termination.
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Moreover, one observes that each position within the box in u d v is not

touched; it has its unique residual in u0 d v0. Another observation is that l is
a factor of u or of v. We will need these, and the following result below.

Lemma 6. Let T be a dummy introduction for the SRS R. Then T is a
dummy introduction for the SRS

fs! t j (s!+
R t) 2 OC(R)g :

Proof. Let T be a dummy introduction for R. We check against the condi-
tions for dummy introduction of T for the overlap closure s!n

R t.

Condition (1): Let s overlap with udv. No position in the box in u d v
(including the borders) is touched during s!n

R t, a fact that can be proven
easily by induction on n. On the other hand, every inner position of s is
touched, by Lemma 19. Hence every overlap of t with udv is either a left
overlap with u, or a factor of u, or a right overlap with v, or a factor of v.

Condition (2), (3), (4) and (5): By induction on n from Lemma 5.

Dummy introduction is a special case of transformation order. This is implicit
in [26].

Proposition 7. Let R be an SRS, let T be a dummy introduction for R,
and let S = T (R). Then R, S, T satisfy the conditions of transformation
order.

Proof. We have to establish Conditions (2) and (3) of Thm. 2. From the
de�nition of T (R) it follows immediately that R � !+

T (R) 
�

T holds. The
commutation  T!R � !R T is stated in Lemma 5.

Surprisingly, dummy introduction preserves non-looping SRSs.

Theorem 8. Let R be an SRS and let T be a dummy introduction for it.
Then !T (R) admits a loop if !R admits a loop.

Proof. By straightforward induction, one can prove that

 m
T !

n
R � !

n
R 

m
T (4)

for all m and n. By induction on n, one can then establish that

!n
R � !

+
S  

�

T (5)
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holds for all n. For n = 1 this follows from the premise R � !+
S  

�

T by the
de�nition of !R. For n > 1, we have the reasoning

!n
R �

premise
!+

S  
�

T!
n�1
R �

(4)
!+

S !
n�1
R  �

T �
IH;n�1

!+
S !

+
S  

�

T  
�

T (6)

Assume now that R admits a loop t !+
R ptq where t; p; q 2 A�. According

to Thm. 22, we may assume that this is an overlap closure. By (5) there
is u such that t!+

S u k
T ptq for some k. We prove by induction on k that

every string in the reduction ptq !k
T u contains t as a factor.

To prove the claim, we show that if t0 !T t00 and t is a factor of t0, then
t is a factor of t00 as well. By Lemma 6 and Lemma 5, we have a commuting
diagram

t0 ���!
t!ptq

: : :
?
?
?
yT

?
?
?
yT

t00 ���!
t!ptq

: : :

Since t00 admits a rewrite step for rule t! ptq in the TRS formed by overlap
closures, it follows that t00 contains t as a factor.

So every term in the reduction ptq !k
T contains t as a factor. We conclude

that u has t as a factor, and so t!S u is a loop for S.

Example 3. The SRS

bc! dc (1)

bd! bd (2)

ad! abbbabb (3)

contains the dead part abbb in rule (3). To prove that it does not loop, choose
T the one-rule system abbba ! �a. It is easily veri�ed that T is a dummy
introduction.

5 Dummy Elimination

Dummy elimination is somewhat the counterpart to dummy introduction.
The two steps together form a method to split right hand sides of rules, the
intention being that the pieces are easier to handle. In the introduction step
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one puts a mark for the dead part in a right hand side of a rule; in the
elimination step the right hand side is broken up at the marked position.
Ferreira and Zantema [10] introduce a version for term rewriting; we restrict
ourselves here to a technically simpler version for string rewriting, as in our
RTA-95 paper [26].

De�nition 9. For each string of the form s = r1�r2 � � ��rn where ri 2
(A n f�g)� for all i 2 f1; : : : ; ng, let E(s) =def fr1; : : : ; rng.

De�nition 10 ([26]). Let R be an SRS on the alphabet A where the sym-
bol � 2 A does not occur on left hand sides of R. Let

E(R) =def fl! u j (l! r) 2 R ^ u 2 E(r)g :

Dummy elimination preserves non-terminating SRSs.

Theorem 11 ([26]). Let R be a SRS. If !E(R) terminates then !R termi-
nates.

It preserves looping as well, as we show next. We conjecture that the
result extends to proper TRSs R.

Theorem 12. Let R be a SRS. If!R admits loops then!E(R) admits loops.

In the proof we utilize the following characterization of the existence of
loops.

De�nition 13. For an SRS R, a relation >R on strings is de�ned by v >R w
if there exist q, q0 such that v !+

R qwq0.

Proposition 14. >R is transitive. R admits no looping reductions if and
only if >R is irre
exive.

of Thm. 12. Let R be an SRS, and let S = E(R).
We claim that s !R t implies E(s) >mult

S E(t). Suppose s !R t using
rule l ! r in R, which means that s is of the form s = s1ls2. Let us �rst
assume that s1, s2 do not contain �, whence E(s) = fs1ls2g. If r does not
contain �, then E(t) = fs1rs2g, and the claim follows by s1ls2 !S s1rs2, as
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rule l ! r is also in S. Else, suppose that r = r1�r2� � � ��rn with n > 1.
Then E(t) = fs1r1; r2; r3; : : : ; rn�1; rns2g. Now by de�ntion s1ls2 is greater
than every element of E(t), hence again the claim follows. By closure under
multiset union, this reasoning carries over to the case where s1 or s2 contain
dummy symbols and the claim has been proved.

Now it is easy to show that this extends to: s >R t implies E(s) >mult
S E(t).

The following chain of implications �nishes the proof. Suppose S admits no
loop; then >S irre
exive; then >mult

S is irre
exive; then >R is irre
exive; so
R admits no loop.

The following example shows a subtle property of dummy elimination, by
which the reversed directions in Thm. 11 and Thm. 12 do not hold in general.

Example 4. Let R be the one-rule SRS gf ! gg�fff . The system E(R)
derived by dummy elimination, admits the following loop.

gff !E(R) ggf !E(R) gfff

In contrast, R terminates, a fact that can be proven by transformation order.
Choose the one-rule system T = fgg�fff ! �

0g where �0 is a new dummy
symbol. There are no critical pairs between T and R. The transformed
system gf ! �

0 trivially terminates.

6 Semantic Labelling

The purpose of semantic labelling [25] is to collect global information of a
term, and to deposit it as a label where it can be accessed locally. Local ter-
mination proof methods such as precedence-based path orders or monotonic
interpretations may greatly pro�t from such a step.

Let F be a set of function symbols, each having �xed arity � 0. A F-
algebra M is a set M , together with for every f 2 F of arity n a function
[f ] : Mn !M . It de�nes an evaluation homomorphism [ ] : T (F ;X )�(X !
M)!M inductively by

[x](�) = �(x);

[f(t1; : : : ; tn)](�) = [f ]([t1](�); : : : ; [tn](�))

where � : X ! M , x 2 X , t1; : : : ; tn 2 T (F ;X ). M is called a model of a
TRS R if [l](�) = [r](�) holds for all � : X !M and l! r in R.
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A labelling L is de�ned as follows. Choose for each function symbol f a
set Sf of labels. A new set �F of labelled function symbols is de�ned by

�F = ffs j f 2 F ^ s 2 Sfg

If jSf j = 1 then fs and f may be confused, and fs may be called unlabelled.
Choose for every f 2 F of arity n a map �f : Mn ! Sf . This induces a
labelling function lab : T (F ;X )� (X !M)! T (F ;X ), by

lab(x; �) = x;

lab(f(t1; : : : ; tn); �) = fd(lab(t1; �); : : : ; lab(tn; �))

where � : X !M , x 2 X , t1; : : : ; tn 2 T (F ;X ), and d = �f([t1](�); : : : ; [tn](�)).
The labelled TRS L(R) over T (F ;X ) is de�ned as follows.

L(R) = flab(l; �)! lab(r; �) j � : X !M ^ (l! r) 2 Rg

Theorem 15 ([25]). LetM be a model for a TRS R over F, and let L be
a labelling for F. Then !R terminates if and only if !L(R) terminates.

Removal of labels trivially preserves loops. The next question whether
an according preservation holds for non-looping, is answered negatively by
the following example.

Example 5. The one-rule SRS 1 ! 10 is trivially looping. Choose as a
model the nonnegative integers with [1](x) = 0 and [0](x) = x + 1. Label 1
by �1(x) = x. The 0 symbol remains unlabelled. The labelled system L(R)
consists of rules

1i ! 1i+10

for each nonnegative integer i. The labelled system does not admit a loop, as
we show next. For the purpose of contradiction, assume �t!+

L(R) �u�t�v were a
loop where �t, �u, and �v are terms in the labelled signature. Since the number
of labelled 1 symbols never changes during reduction, no labelled 1 symbol
occurs in �u or �v. So the sum of all labels in �u�t�v is the same as in �t. On
the other hand, the sum of all labels of a string increases by one, along each
reduction step. Contradiction.
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For the example to work it was essential that the set of labels is in�nite.
Indeed, we have:

Theorem 16. LetM be a �nite model for a TRS R over F , and let L be a
labelling for F . Then !L(R) admits a loop if and only if !R admits a loop.

Proof. Given a loop t!+
R c[t�]p, we have to construct a loop in the labelled

system. There are only �nitely many possible con�gurations of labels for
the symbols of t. By the pigeonhole principle there is n so large that in a
succession of n con�gurations the same con�guration appears at least twice.
We compose the given loop n times, and label this reduction. The section of
the reduction between two equal con�gurations forms a loop.

7 Looping Overlap Closures

When speaking about reductions, one often resorts to special reductions,
called closures. Several characterizations of termination by closures are
known. In this section we will give a characterization of looping by means of
overlap closures.

De�nition 17 (Overlap Closure, [12]). Let a TRS R be given. The set
OC(R) of overlap closures is the smallest set of R-reductions, closed under
bijective renaming of variables, such that

oc1. if (l! r) 2 R then (l !R r) 2 OC(R),

oc2. if (s1 !
+
R t1) 2 OC(R) and (s2 !

+
R t2) 2 OC(R) have disjoint sets of

variables, and there is a position p in t1 such that t1jp is not a variable,
and t1jp, s2 are uni�able, then

s1� !
+
R t1� !

+
R t1[t2]p�

is in OC(R), where � is the most general uni�er of t1jp and s2.

oc3. if (s1 !
+
R t1) 2 OC(R) and (s2 !

+
R t2) 2 OC(R) have disjoint sets of

variables, and there is a position p in s2 such that s2jp is not a variable,
and t1, s2jp are uni�able, then

s2[s1]p� !
+
R s2� !

+
R t2�

is in OC(R), where � is the most general uni�er of t1 and s2jp.
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Lemma 18 ([12]). If R is left-linear then OC(R) is left-linear.

The fairly technical de�nition of overlap closure becomes clearer as soon
as one considers the fate of the positions in the terms during the reduction.
To this end, we use Rosen's [24] notion of residual.

Intuitively, residual positions \correspond" to each other in a rewrite step.
For the positions of the occurrence of the left hand side of the rule, there is
no corresponding position at the right hand side: They are touched. It is
apparent that only the touched positions are essential in a reduction.

Call a position p in a term t touched by the rewrite step t
u
��!
l!r

t0 if p is of

the form p = u:v where v is an inner position in l. A position p0 in t0 is called
a residual of p in t by the rewrite step t

u
��!
l!r

t0 if p = p0 is at or above u, or

p = u:v:w, p0 = u:v0:w where ljv = rjv0 is a variable. The residual relation is
inductively extended to reductions: A position p0 in t0 is called a residual of
p in t by the reduction t !n

R t0 if n = 0 and p = p0 or t !R t00 !n�1
R t0 and

there is a residual p00 in t00 of p such that p0 in t0 is a residual of t00 !n�1
R t0.

Now a position p may be called touched during the reduction t !+
R t0 if the

reduction is of the form t!�

R t00 !R t000 !�

R t0 and a residual p00 in t00 of p by
t!�

R t00 is touched in the step t00 !R t000.
Thus we can characterize overlap closures. We call a position an inner

position of t if it is not the top and not a variable position in t.

Lemma 19. If R is a left-linear TRS, then the set OC(R) is exactly the set
of reductions t !+

R t0 where every inner position of t is touched during the
reduction.

Proof. We prove that every overlap closure touches all inner positions of its
starting term, by structural induction along the de�nition of overlap closure.
For Case (oc1) the claim is obvious.

Case (oc2): Let u be an inner position in s1�. Either u is a non-variable
position in s1, or it has a residual p:u0 in t1� by s1� !

+
R t1�, in which case

u0 is a non-variable position in s2. The claim follows by inductive hypothesis
for s1 !

+
R t1 in the �rst case, and for s2 !

+
R t2 in the latter case.

Case (oc3): Let u be an inner position in s2[s1]p�. If u is of the form
p:u0 where u0 is a inner position of s1, then u is touched during s1 !

+
R t1 by

inductive hypothesis. If u is of the form p:u0 where u0 is a position in the
substitution part of s1�, then u has a residual p:u00 in s2[t1]p� = s2� which
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is a non-variable position in s2. Likewise if u is not of the form p:u0 for non-
empty u0 then u has residual u by s2[s1]p� !

+
R s2�, and u is a non-variable

position in s2. In both cases the claim follows by inductive hypothesis for
s2 !

+
R t2. This �nishes the �rst part.

In the second part, we prove that a non-empty reduction t !+
R t0 that

touches all inner positions of t, is an overlap closure. To this end we perform
induction on the length n of t !n

R t0. If n = 1 then t !R t0 must be a
renaming of a rule in R, otherwise there remain untouched inner positions.
Then t!R t0 is an overlap closure by Case (oc1).

Now let n > 1, and let the reduction be t!n�1
R t00

u
��!
l!r

t0. Let P be the

set of inner positions of t untouched during t!n�1
R t00. Assign each p 2 P a

unique variable yp not used in the reduction. Now the reduction t !n�1
R t00

can be split into jP j+ 1 reductions

(tjp)[yp1]p1[yp2]p2 � � � [ypm]pm !
�

R (t00jp0)[yp1]p0

1
[yp2]p0

2
� � � [ypm]p0

m

(4)

where p 2 P or p is the top position, and p1; : : : ; pm 2 P are the topmost
positions below p. For each p the (nonempty!) set of its residuals by t!n�1

R t00

is denoted by p0. The expression t[y]p0 is to denote simultaneous replacement
of each subterm at a position in p0 by y. The expression t00jp0 is to denote
t00 at some position in p0; this is well-de�ned since the term t00 has the same
subterm at each position in p0.

By construction, every inner position of (tjp)[yp1]p1[yp2]p2 � � � [ypm]pm is
touched during (4). Every nonempty reduction of these is an overlap clo-
sure by inductive hypothesis. At least one of these reductions is non-empty.

Together with the rule l ! r we have a set of at least two overlap closures.
Recall that each position in P has at least one residual that is touched by
t

u
��!
l!r

t0. So the nonempty reductions (4) may be sticked together, one after

the other, with l! r to yield an overlap closure by Case (oc3).

Let us review related work. Geupel characterized termination of left-linear
TRSs.

Theorem 20 ([11]). If a left-linear TRS does not terminate, then some
right hand side of an overlap closure issues an in�nite reduction.

Guttag, Kapur, and Musser gave a characterization of cycling. A TRS is
called quasi-terminating if every reduction is either �nite or ends in a cycle.
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Theorem 21 ([12]). A left-linear, quasi-terminating TRS terminates (i.e.,
admits no cycle), if and only if there is no re
exive overlap closure.

As Zhang [27] demonstrates, the left-linearity condition in both theorems
is essential. It is now natural to seek a similar characterization for looping.
We can o�er a characterization result for SRSs. We will call an overlap
closure of the form t!+

R ptq a looping overlap closure.

Theorem 22. An SRS admits a loop if and only if it has a looping overlap
closure.

Proof. Let R be an SRS. \If" is trivial; we have to prove \only if".
We prove that from a loop t !+

R utv an overlap closure t0 !+
R u0t0v0

can be constructed, by induction on the number of positions in t that are
not touched during the given reduction. If this number is zero, then we
are �nished, thanks to Lemma 19. Otherwise we construct a loop with a
smaller number of untouched positions in the starting term. To this loop the
inductive hypothesis applies, which yields the claim.

Suppose that t !+
R utv is given during which a position p in t is not

touched. Since no step touches p, every string in the given reduction contains
a (unique) residual of p, and can therefore be split into two parts. Thus the
entire reduction t!+

R utv can be split into two reductions,

t1 !
�

R t01 and t2 !
�

R t02

such that

t = t1t2 and utv = ut1t2v = t01t
0

2

holds. Case 1: t01 is longer than ut1. Then there is v0 such that t01 = ut1v
0,

and the reduction t1 !
�

R t01 is nonempty. So t1 !
+
R ut1v

0 is another loop,
with less untouched positions in t1. Case 2: t

0

1 is shorter than ut1. Then t02
must be longer than t2v, which is solved by a symmetric reasoning. Case 3:
t01 = ut1 and t02 = t2v hold. One of the reductions must be nonempty, as
t!+

R utv is nonempty. This reduction may be used as the wanted loop.

Example 6. We can give an alternative proof that the three-rule SRS R in
Ex. 1 admits no loops, by showing that it has no looping overlap closures.
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Overlap closures are of the following forms, where w;w0 2 fb; dg�.

bwd!+
R dw0b if w!�

R w0

bwc!+
R dw0c if wc!�

R w0c

awd!+
R aw0b if abw !�

R aw0

and some overlap closures of the form awc!+
R aw0c where w is strictly shorter

than w0. Not all of the latter are overlap closures, but this is not essential
for our argument. It is easy to show that none of these reductions can be
looping, as the reductions in the \if" part can be done with a terminating
subset of the rules. So there is no looping overlap closure. By Thm. 22 it
follows that R admits no loop.

Example 7. Let S be as R above where c has been identi�ed with a.

ba! da (5)

bd! db (6)

ad! abb (7)

It has no looping overlap closures either, as we are going to show. By the
identi�cation, the set of overlap closures of R (with a instead of c) extend by
some reductions of the form

u!+
R u0 bwu!+

R dw0u0; uw00d!+
R u0w000b; bwuw00d!+

R dw0u0w000b

where w;w0; w00; w000; w1; w2; : : : 2 fb; dg
�, and

u = aw1aw2 � � �awna;

u0 = aw0

1aw
0

2 � � �aw
0

na

for some n2 are such that for every i

bwa!�

R dw0a; aw00d!�

R aw000b; awia!
�

R aw0

ia (8)

are overlap closures or empty.
Because the number of a symbols is not changed by rewriting, any looping

overlap closure must break down to looping overlap closures of the form (8).
As we have argued in the previous example these are non-looping. So there
cannot be looping overlap closures in S either; so S admits no loops.

2including the case n = 0 where u = a = u
0
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It is an open question whether in Thm. 22 \SRS" may be replaced by
\left-linear TRS", or whether \overlap closure" may be replaced by \forward
closure". A collection of results about forward closures and termination is
presented in Dershowitz and Hoot [8].

8 New Examples

In this section we present a one-rule TRS and a two-rule SRS, each having
an in�nite reduction but no looping reduction.

Example 8. The one-rule TRS R given by

f(c; a(x); y) ! g(f(c; x; a(y)); f(x; y; a(a(c))))

admits an in�nite reduction, but no loop.

Let S consist of the two rules

f(c; a(x); y)! f(c; x; a(y)) (9)

f(c; a(x); y)! f(x; y; a(a(c))); (10)

then S admits for every i > 0 a reduction

f(c; a(c); ai(c))!S f(c; ai(c); a(a(c)))!i�1
S f(c; a(c); ai+1(c))

yielding the in�nite non-looping reduction

f(c; a(c); a(c))!+
S f(c; a(c); a(a(c)))!+

S f(c; a(c); a(a(a(c))))!+
S � � �

Since in this in�nite S-reduction all reduction steps are in the root, it easily
extends to an in�nite R-reduction.

For proving non-loopingness of R we �rst prove non-loopingness of S.
Assume S admits a loop t !+

S c[t�]. Since no other symbols than a can be
created during reduction, the context c only consists of a's; since no a can
be created outside the outermost f -symbol we conclude t !+

S t�. Taking a
reduction of this shape of minimal depth we may assume that t = f(t1; t2; t3)
and that the reduction contains steps at the root level.

If only Rule (9) is applied in a root reduction step then the decrease of the
second argument of f leads to a contradiction. Hence the reduction contains
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at least one step by Rule (10). We may even assume that it contains at least
two; else, we compose the given loop with itself. Hence our reduction is of
the shape

f(t1; t2; t3)!
�

S f(c; a(u); v)
| {z }
no root reduction steps of Rule (10)

!S f(u; v; a(a(c)))!�

S f(c; a(r); s)
| {z }

no root reduction steps of Rule (10)

!S

f(r; s; a(a(c)))!�

S f(t1�; t2�; t3�) :

We claim that then t1, t2, and t3 are ground. From the �rst part of this
reduction follows t1 !

�

S c, hence t1 = c. By applicability of an S-rewrite
step to f(u; v; a(a(c))) we have u = c. Looking at the second argument gives
t2 !

�

S ai(u) = ai(c) for some i > 0, hence t2 = ai(c). Finally either the
reduction f(r; s; a(a(c)))!�

S f(t1�; t2�; t3�) contains no steps at the top; in
this case r !�

S t1� = c and so r = c holds. Or r = c by applicability of
a top S-rewrite step in this reduction. In both cases v = aj+1(r) = aj+1(c)
follows. By ai(t3) !

�

S a(v) = aj+2(c) one gets t3 = aj+2�i(c). So t1, t2, t3,
and hence also t, are ground. This way the whole reduction only contains
ground terms, hence t!+

S t. Since Rule (9) is terminating and preserves size
and Rule (10) increases size, this is a contradiction. Hence S is non-looping.

Non-loopingness of R now follows by the following proposition.

Proposition 23. Let l; r; r0 be linear terms not containing the symbol g. If
the one-rule TRS l ! g(r; r0) admits a loop, then the two-rule TRS l !
r; l! r0 admits a loop, too.

Proof. Let R and S be the one-rule and two-rule TRS, respectively, and let
a loop t !+

R c[t�]p = u be given. We may assume that t does not contain
the symbol g.

For, assume t contains g at a position p, i.e. t = t[g(t1; t2)]q. Since g
symbols are not touched during the derivation, every term in the derivation
may be split in the same way at the respective residual position of q. Thus
the derivation may be decomposed into three parts

t[z]q !
�

R u[z]q0 ; t1 !
�

R u1; t2 !
�

R u2

where z is any variable, and u[g(u1; u2)]q0 = c[t�]p, and q0 is the residual of
q. Either q0 is at or below p:q:1, in which case t1 !

�

R u1 is a loop. Or q
0 is at

or below p:q:2, in which case t2 !
+
R u2 is a loop. Or q0 = p:q in which case
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any nonempty of the three derivations forms a loop. Else t[c]q !
+
R u[c]q0 is a

loop. In each case, the starting term has a smaller number of g symbols.
By induction on the number of g symbols in the starting term, we conclude

that we get a loop with no g symbol in the starting term. We show next how
to read o� an S-reduction. Let pi denote the position in the i-th term of the
derivation whose residual in u is p. If pi+1 is at or below pi:1 then we use
l! r to simulate the R-step by an S-step. If pi+1 is at or below pi:2 then we
use l ! r0 accordingly. Else, we may ignore the step since it falls below or
beside t. The constructed S-reduction is nonempty and reduces t to a term
where t re-occurs: so it forms a loop.

We feel that a more elegant proof could be given, if dummy elimination and
characterization by overlap closures were available for left-linear, right-linear,
nonerasing TRSs.

We are in a much better situation with SRSs.

Example 9. The two-rule SRS

bad! dad�babb

bd! db

over the alphabet � = fa; b; d;�g is non-terminating but admits no loop.

Let R be the two-rule system. Non-termination is easy to show: The
string babad issues an in�nite R-reduction like in the three-rule example. For
the proof that R admits no loop, we proceed in two steps. First, we apply
dummy elimination to R, yielding the system E(R) as follows.

bad! dad (11)

bad! babb (12)

bd! db (13)

Every E(R)-reduction is also a S-reduction where S is the SRS of Ex. 7.
Since S admits no loop, E(R) admits no loop either. By Thm. 12 then, R
admits no loop either.

9 Decidability

In this section all signatures and TRSs are assumed to be �nite. It is well-
known that termination of TRSs is an undecidable property, even for SRSs
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[13] and for one-rule TRSs [4, 17]. The problem whether termination is
undecidable for one-rule SRSs is still open.

In this section we consider the question of decidability of loopingness.
It turns out that, like termination, the existence of loops is undecidable
even for one-rule TRSs. However, the existence of loops is semi-decidable,
while termination is neither semi-decidable nor co-semi-decidable. Before
presenting the results we recall some standard de�nitions and results.

A problem upon a �xed kind of data with a logical answer `yes' or `no' is
called semi-decidable if there exists an algorithm with the same kind of data
as input with the following properties:

� if the right answer for the problem on the input is `yes', then the algo-
rithm delivers `true' in a �nite amount of time;

� if the right answer for the problem on the input is `no', then the algo-
rithm either delivers `false' or does not terminate.

A problem is called co-semi-decidable if its complement (`yes' and `no' ex-
changed) is semi-decidable. It is known that a semi-decidable, co-semi-
decidable problem is decidable, and that semi-decidability coincides with
recursive enumerability.

In case of the halting problem for Turing machines the input consists of
a Turing machine and an initial con�guration, and the problem is whether
the Turing machine halts starting from that particular initial con�guration.
A Turing machine is called uniformly halting if it halts for every initial con-
�guration.

Proposition 24. Termination is neither semi-decidable nor co-semi-decid-
able, both for SRSs and for one rule TRSs.

Proof. Turing machines M can be transformed to SRSs RM such that RM is
terminating if and only ifM is uniformly halting [13]. In a similar way, Turing
machines can be transformed to a one-rule TRS [4]. Now the proposition
follows from the known fact that unifom halting of Turing machines is neither
semi-decidable nor co-semi-decidable (for a proof see e.g. [5], p. 224).

Now we arrive at the results on looping.

Proposition 25. It is semi-decidable whether a TRS admits a loop.
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Proof. Since the signature is �nite, there exists an enumeration t1; t2; t3; : : :
of all terms. Since the TRS is �nite its rewrite relation is �nitely branching
and computable. For a �xed t and �xed positive integer k all �nitely many u
satisfying t!k u can be computed, and it can be checked whether u = c[t�]p
for some c; p; � or not. Now the semi-decision procedure consists of steps
1; 2; 3; : : : , where in step n it is checked whether i � n and k � n, and c; �
exist satisfying ti !

k c[ti�]p.

Proposition 26. It is not co-semi-decidable whether a one rule TRS admits
a loop.

Proof. Due to proposition 25 it is su�cient to prove that non-loopingness
is undecidable. For arbitrary TRSs this has been proved by Plaisted [22].
The stronger result for one rule TRSs has been proved by Middeldorp and
Gramlich [19, 20] and Lescanne [17].

For ground TRSs termination has been proved to be decidable by Huet
and Lankford [13]; this result easily extends to right-ground TRSs [6]. It
is easy to see that for right-ground TRSs the notions of termination and
non-loopingness coincide, hence non-loopingness is decidable for right-ground
TRSs.

As in the proof of proposition 25 it is easily seen that it is semi-decidable
whether a term initiates a loop with respect to some TRS. On the other
hand it is co-semi-decidable whether a term initiates an in�nite derivation
with respect to some TRS. As a consequence, for classes of TRSs in which
every in�nite derivation contains a loop, for instance non-length-increasing
TRSs and right-ground TRSs, it is decidable whether a term initiates an
in�nite derivation or not.

For SRSs, Otto [21] has shown that the existence of proper loops (i.e.
loops that are not cycles) is undecidable. Kurth [16] has given a decision
procedure for the problem whether a one-rule SRS admits a loop of length 1,
2, or 3. In a recent technical report [18], McNaughton has given a decidable
property, namely the existence of in�nite, \well-behaved" derivations, which
is su�cient for the existence of loops. We take this as a heavy argument in
favour of decidability of the existence of loops for one-rule SRSs.

Finally, a remarkable connection to simple termination is worth mention-
ing. As Kurihara and Ohuchi [14] have shown, a �nite TRS R over signature
F is simply terminating if and only if, the transitive closure of the rewrite
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relation of the TRS R [ Emb(F) is irre
exive. Here

Emb(F) =def ff(x1; : : : ; xn)! xi j f 2 F n-ary; x1; : : : ; xn 2 X ; 1 � i � ng

By our characterization of non-looping by irre
exivity (Prop. 14), we can
derive the following little result.

Proposition 27. A �nite TRS R over signature F is simply terminating if
and only if, R [ Emb(F) is non-looping.

Proof.

R simplifying () !+
R[Emb(F) irre
exive

() >R[Emb(F) irre
exive () R [ Emb(F) non-looping :

So our methods may be useful to prove that a �nite TRS is simply terminat-
ing, without using a simpli�cation order for this purpose.

As an immediate consequence by Prop. 25 we get:

Corollary. Simple termination is co-semi-decidable for TRSs.

This is in contrast to termination which is neither semi-decidable nor
co-semi-decidable.

10 Conclusion

We have checked four methods which preserve termination of TRSs, whether
they preserve non-looping, too. It turns out that transformation order does
not preserve non-looping, even under fairly hard restrictions. A practically
important special case of transformation order, dummy introduction, however
does. Dummy elimination preserves non-looping SRSs. Semantic labelling
generally does not preserve non-looping; it does if the underlying model is
�nite.

The methods which preserve non-looping can be used to infer that a
given TRS is non-looping, as exhibited in the two-rule example. The other
methods are applicable to detect non-termination in the non-looping case, as
they may map a non-looping in�nite reduction to a looping one.
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