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Abstract

Analogous reasoning is a form of reasoning that is often used in daily
life situations. It is also a form of reasoning that appears in certain Al
applications such as learning and knowledge acquisition. Mostly a kind
of quantitative notion of (dis)similarity is employed. In this paper we
present a modal model for a qualitative notion of similarity and thus we
obtain a basis for qualitative analogous reasoning.

1 Introduction

Analogies are ubiquitous in common-sense situations. Often we reason by anal-
ogy to predict the outcome of a situation at hand on the basis of a similar
case we have encountered in the past. In fact, reasoning by analogy is the very
hart of learning by intelligent agents. By matching new cases to familiar ones
we may extend our knowledge by transposing (assuming or investigating) what
we know to hold in the old case with what it would correspond to in the new
case. Analogies are used in a wide spectrum of cases ranging from poetry where
metaphors are employed to explain things in other (more familiar or expressible)
terms via science where models of familiar notions may guide the exploration
of new concepts to even such a rigourous discipline as mathematics, where in
proofs often a phrase is used such as “we have proven the case in detail for such
and such; the case so and so is analogous”.

Not surprisingly, also in Al reasoning by analogy has an important role. For
instance, it is employed for automatic (machine) learning and for classifying
newly obtained knowledge into the scheme of knowledge so far in knowledge
acquisition. In the literature we find many classifications and variants of rea-
soning by analogy (e.g. transformational and derivational analogy, bottom up
analogy (Evans 68, Winston 80), top down analogy (Burstein 86)) as well as a
number of programs that are available (cf. Hall 89) and perform some form of
analogical reasoning in a concrete context (e.g. CARL in the context of learning



assignment statements in BASIC (Burstein 86, 88), a full treatment of which
is beyond the scope of this paper. We will focus on the following dichotomy
proposed by Indurkhya. (Actually, Indurkhya also distinguishes a third form,
proportional analogy, which is of a slightly different nature and which we shall
ignore here. In (van Leeuwen 95) it is indicated how also this form of analogous
reasoning can be fitted into our model framework.)

Indurkhya distinguishes the following types of analogy: analogy by rendition
and predictive analogy (Indurkhya 89).

Analogy by rendition (translation) views a situation (target) or object as if it
were another (source). Elements are mapped and translated. It is a way of
interpreting a target situation in the light of a known source situation in order
to gain more or different information about the target or to get a better under-
standing of it. This is accomplished by projecting ‘framework’ and terminology
from source to target. The source domain may be an artificial one, a model
in which one may focus on the relevant level of abstraction. It is thus closely
related to the use of models in problem solving and metaphors. Poets use this
kind of analogy all the time and designers obtain creative ideas through analogy
by rendition.

Predictive analogy is also based on rendition, but goes further than just stating
renditions or similarities between two domains that are both known completely:
when a rendition is possible between two domains predictions are made about
more similarities by considering relations on the already mapped elements. In
this context rendition must agree on the ontology of elements in both domains.
The emphasis here is on making an inference (prediction) about the target do-
main on the basis of what is known about a usually more familiar source domain.
This form of analogical reasoning is mostly considered in Al applications.

However, the distinction between analogy by rendition and predictive anal-
ogy is not entirely clear-cut, since it depends on what is known exactly about
the (source and particularly the) target domain whether a conclusion is a predic-
tion or rather a mere rendition. Below we shall consider rendition on the basic
elements of the logic at hand (atomic propositions in the propositional case),
while we view prediction as the result following from this rendition (translation)
to more complex formulas. Of course, if both domains are completely known,
these ‘predictions’ are then not much more than simple translations / renditions.
Later in the paper we will see how we can extend this idea to a first-order lan-
guage (and logic), where we can express more refined notions of rendition and
prediction. Also the idea that some predictions are not completely certain and
are some more or less ‘educated guesses’ will be discussed and treated formally
in the paper.

In this paper we shall give a semantical treatment of the above two forms
of reasoning, put into a possible world framework. Proofs of propositions and
theorems are omitted here; those of sections 2 and 3 can be found in (van
Leeuwen 95).



2 A Propositional Modal Logic of Analogy
2.1 Defining the concept of similarity

In this section we will try to identify some key concepts of analogical reasoning
within the context of propositional logic. The most important of these concepts
is that of similarity. It is important to note that we will develop a semantical
theory of these concepts. We consider this semantics-based treatment of ana-
logical reasoning one of the main contributions of our paper, which is lacking
in most approaches in the literature (a notable exception is (Thiele 86)). Fur-
thermore, we embed our theory into a possible world semantics. For this modal
approach we were influenced by (Morgan 79), who was in his turn inspired by
early work by C.S. Peirce. As compared to the work of Morgan, we make the
model much more explicit, both with respect to the modal aspect and the aspect
of the rendition mapping.

From a practical stand-point propositional logic is clearly too ‘poor’ as to
expressive power to enable one to represent ‘real-life’ examples of analogical
reasoning: viewing propositional logic as predicate logic without function, rela-
tion, and constant symbols, obviously there is little room for similarity between
models left, because of the sheer simplicity of these models. However, we be-
lieve that the simple setting of propositional logic enables one to concentrate on
some important issues without having the to deal with the complexity of richer
logics. The results of attempting to describe analogical reasoning in this setting
will also serve as a natural basis for our further development of the theory in
the sequel of this paper.

In commonsense use, analogical reasoning manifests itself between two do-
mains of knowledge, which may be represented by formal theories. The very
essence of analogical reasoning indicates that these two domains between which
it takes place should display some form of correspondence or similarity. When
looked upon semantically this means that the models of these theories should
show some form of similarity as well. In our simple propositional setting the only
way to express this similarity is to consider these on the level of propositional
atoms. We will do this in the most simple way conceivable: as a (similar-
ity) mapping T from propositional atoms from the one domain (which we shall
call the source domain) to the other (the target domain), representing that the
propositional atom T(p) in the target domain is similar to the propositional
atom p in the source domain (as far as the context of reasoning at hand is con-
cerned). In fact, this function T may be viewed as the (formal counterpart of
the) translation mapping (rendition) in the rendition type of analogy mentioned
in the introduction. Of course, one might also consider more general similarity
mappings T from formulas in £(P;) to formulas in L(P2) as primitive, but in
our view this yields a rather non-compositional theory in the sense that it is then
not clear at all how to determine the similarity mapping for complex formulas
of which the function T is not given.



To make a start with our formal treatment, we assume two sets of proposi-
tional atoms P; and P, which, for convenience, we assume to be disjoint. On
the basis of a set P of propositional atoms we construct a propositional language
L(P) as usual: the smallest set containing P and closed under the propositional
connectives =, A and V (and other connectives which may be introduced as
abbreviations in terms of these, such as —). We furthermore use T and L to
denote the constants for ‘truth’ and ‘falsehood’, respectively. The symbols ¢
and ¢ are used as metavariables for formulas in a propositional language. Un-
less stated otherwise, we shall use the language L£(P;) for the description of the
source domain and £(P:) for that of the target domain. As usual in proposi-
tional logic we describe the semantics of formulas by means of valuations. We
use tt for the truth value true and ff for the truth value false.

A propositional model over the set P of propositional atoms is a valuation
function v with v : L(P) — {tt, ff} (induced by a function v : P — {#t, ff}).
In this propositional context we may call P the signature of model v. The class
of valuations (propositional models) over P is denoted VAL(P).

It may not be necessary or even desirable to map all of the propositions
because some elements may be irrelevant. Therefore we choose T to be a partial
function. We will further assume this function to be injective, since this will
enable us to speak about its inverse later on. We do not assume surjectivity of
the function T, since it might well be that the target domain has some elements
(viz. propositional atoms) that do not correspond (have no counterpart) in the
source domain. First we define the concept of rendition as discussed above,
which is similarity on the smallest elements (atomic propositions):

Assuming an injective partial function T : P; — P, with dom(T) # 0, the
similarity mapping Ry from VAL(P;) to models VAL(P2) induced by T is
given by:

Vv € VAL('Pl),Uz € VAL(PQ) Vp € 'PlﬂdOm(T) : RT('Ul)(T(Pl)) = ’l)1(P1)

We can lift T to formulas which will create a base for the predictive part of
analogy. We just define:

o T(pAY) = T(p) AT(¥)
o T(p V) = T(p)VT(¥)
o T(p —¢) = T(p) = T(¥)
o T(-p) = -T(p)

Proposition 1 The above map T : L(P1) — L(P2) induced by a similarity
mapping T : Py — Ps satisfies the property: for allv € VAL(P:) we have:

Ve € L(P1)Ndom(T) : v E ¢ < Rr(v) F T(p)



2.2 Kripke models and modalities for analogous reasoning

To build a modal logic of analogical reasoning based on similarity mappings, we
start with a notion of Kripke model tailored for this purpose. We assume P # 0
to be the universe of propositional atoms. For convenience we consider partial
valuations v over P, which means that the function v : P — {tt, ff}) (and thus
also the function v : L(P) — {tt, ff}) is partial and may not be defined for all
arguments. The set of partial valuations over P is denoted VAL. To simplify
notation we will use these valuations directly as our set of worlds. Thus our
set of worlds are exactly the valuations over P. The use of partial valuations
enables us to effectively vary the domain of propositional atoms defined in a
world without having to bother with distinct sets of propositional atoms per
world. For a valuation v we denote its domain (i.e. the set of propositional
variables on which v is defined) by dom(v).

For the accessibility relations we use relations induced by similarity mappings
VAL — VAL: given aset {T;|i = 1,...,n} of partial functions P — P, we define
Rt, C VAL x VAL (overloading notation slightly) as:

Rt (v1,v2) © Rt,(v1) = v2

Note that since we have stipulated that R, is a partial injective function we
can define its inverse function R.}ll as:

Ryl (v1,v2) & Re,(v2,v1)

Naturally, R.'l'.f is the accessibility relation associated with the inverse T; Lof
the similarity mapping T;, thus R.}} = Rp-1.

Our notion of Kripke model now comes down to the following. A (simpli-
fied) Kripke model is an ordered tuple M = (VAL,{Rrt,|i = 1,..,n}).

On the basis of this notion of a Kripke model, we introduce a modal language
which we can evaluate with these models. This modal language consists of the
propositional language over the propositional atoms P together with a clause
for modal operators Op,. The latter are interpreted on a Kripke model M =
(VAL,{Rr,li =1, ...,n}) as follows:

M,v E Ot,p <& forall wwith Rt,(v,w) : M,w|=¢.

We can also introduce further modalities derived from these Or,, viz. O7!,

0;, O}, O and O*, based on the (derived) relations R.}‘l, R; = Ry, U R.}}, R;,
n

the transitive, reflexive closure of the relation R;, R = |J R;, and R*, the

i=1
transitive, reflexive closure of the relation R, respectively. So, for instance,

M,v E Ofp & forall wwith R}(v,w) : M,w ¢,



and similarly for the other operators. Also we may use the duals O, 0.}}, O,
QF, © and O* of these operators, defined as usual.

These operators enable us to express properties of analogies transcending just
the relation between a source and a target domain. For instance, note that the
relation R} yields the equivalence class (analogy class) associated with similarity
mapping Ty, i.e. all models that are ‘analogous with respect to T;’. Thus, the
modality O} states something about what is common between domains that
are related on the basis of T;. The modality O* states even more general
properties, viz. those common to all domains that are related with respect to
some similarity mapping. (Perhaps these properties are even too general to be
useful, but this may depend on the context.)

As usual we define validity of a formula ¢ in a model M, denoted M = o,
by M,v [ ¢ for all valuations v in M, and validity of ¢, denoted |= ¢, by
M = p for all models M.

Since this gives us a normal modal logic in the sense of (Chellas 80), the
modal operators above satisfy the K-axiom:

E DT.“PADT:'(‘P_”/)) — O, 9

(If in every i-similar world both p and ¢ — holds, then in all those worlds ¢
holds.)

and the necessitation rule:
Fe¢ = EDne

Moreover, we can now directly put Proposition 1 in modal terms:

Theorem 1
E ¢ < 01, Ti(p)
¢

This theorem states precisely how rendition can be obtained by considering
a similar world.

The other modal operators satisfy the following validities (Here 0% stands
for a modal operator in the set {0*, 0} }):

o E DOjp — OppADOgly
o E ¢ —Or,00ip

o E ¢ — O30,

o Oy —e



[ ] F D&.)(,D-—)D(i)n'&)(p
o |k Oy — Oew) — (¢ — 049
o E Op « (D1pA ...AOqp)

This follows directly from the definition of the relations that are associated
with these operators.

Moreover, since always R; and R are symmetrical and R* is an equivalence
relation, independent of the properties of the relation Ry, itself, we also imme-
diately have the following validities:

1. E ¢ — 000

2. E ¢ — OOp

F e = BuHone

- E Biye = 00k
- F Oy = O Cue

2.3 Analogical inferences

We have seen above how the concept of analogy by rendition can be formalized
by means of our similarity mappings. We now show how we can also formulate
true analogical reasoning in the sense of making inferences in our setting.

Let R be an inference: R = 1 F @2 b ... . Now we would like to make
an ’analogous’ reasoning in another domain: R' = ¢}y F b F ... F ¢,

By using our similarity mappings and associated modal operators we can
now do this in a formal way. Let us say that the similarity mapping involved is
T. Then we would expect that the ‘source’ inference R := ¢1 F w2 F ... F o,
could be transformed into: R’ = T(p1) F T(p2) F ... b T(¢m). That this is
indeed the case is justified by the following derived rule:

p—9
OrT(p) — OrT(¥)

Via this rule we can now reason as follows: suppose ¢ F 1. Then by the
deduction theorem of classical logic we obtain - ¢ — 1, and so by the above
rule, - OpT(p) — OrT(¥), and hence OpT(p) F OrT(¥). This is indeed the
formal statement of the ‘translated’ inference above. Note, moreover, that our
modal framework exactly pin-points the worlds where this analogous reasoning
takes place. If one did not have this, one would be forced to use a ‘semantically
polluted’ inference rule (so not really an inference rule at all) such as

vEp—
w | T(p) — T(¥)




where w = Rr(v).

3 Extension to First-Order Logic

If we want to extend our propositional logic to a first-order one, we need to
enrich the structure of our models, and consequently redefine our notion of
similarity between models. Here we build on work by (Thiele 86) but again
provide for a possible world semantics. The way we consider similarity mappings
in the first-order case is also reminding of work done on so-called interpretability
logics in a completely different context, viz. in metamathematics for the proof
of consistency and undecidability of mathematical theories (cf. e.g. (Tarski,
Mostowski & Robinson 53)).

3.1 Similarity in a first-order setting

First of all, we extend our propositional language to a first-order one: we
assume a set VAR of variables, a set FUNC of function symbols and a set
PRED of predicate symbols. As usual, function and predicate symbols have
an arity associated with them determining the number of arguments. (0-ary
function symbols are called constants; 0-ary predicates are called atomic propo-
sitions.) We call a pair & = (FUNC, PRED) a signature. A signature ¥; =
(FUNC,, PRED,) is a subsignature of ¥y = (FUNC,, PRED,) if FUNC, C
FUNC, and PRED; C PRED,. We can also speak about the intersection
¥; N, of two signatures £; and X3 in the obvious way (just take the intersec-
tions of the sets of function symbols and of the sets of predicate symbols).

The set TERM(VAR, FUNC,PRED), or just abbreviated TERM, is the
minimal set containing VAR and closed under the construction g(t1, eyt for
function symbols g € FUNC and t; € TERM (i = 1,...,n) where the arity of
g is n. The set AT(VAR,FUNC, PRED), or AT, of atomic formulas is given
as the smallest set closed under the constructions

e P(ty,...,t,) for function symbols P € PRED and t; € TERM (i =
1,...,n) where the arity of P is n, and

o 1y =1y for ty,15 € TERM.

The set L(VAR, FUNC, PRED), usually abbreviated £, of first-order formulas
is the minimal set closed under the classical connectives and the construction
Vz ¢ and 3z ¢ with 2 € VAR and ¢ € £, and containing the set AT of atomic
formulas. We denote the set of free variables of a formula ¢ by FV(p).

As usual, a language L(V AR, FUNC, PRED) over signature £ = (FUNC,
PRED) is interpreted on E-structures of the form w = (A,X,®,I), where A
is a domain of values for the interpretation of the variables and constants, ®



is a function such that, for all ¢ € FUNC, ® : g — (A" —part A) where n
is the arity of g, and II is a function such that, for all P € PRED, Il : P
(A" =10t {tt, ff}) where n is the arity of P. (Here X —pgrt Y and X —¢ot Y
stand for the classes of partial and total functions from X to Y, respectively.)
When convenient we may also denote II(P) as a subset of A". We denote the
class of T-structures as STRUCT(X), while the class of E-structures with fixed
domain A is denoted STRUCT(A,X). We omit the standard clauses for the
interpretation of the language on these structures, since they can be found in
any textbook on logic (such as e.g. (van Dalen 89)).

Given a structure w = (A, X%, ®,M), with ¥ = (FUNC,PRED). Let Ap
be another domain and let £g = (FUNC,, PREDg) be another signature.
We define the substructure w | Ag,Xg of w as the structure (A N Ap, X N
o, ® | Ao, Zo, I | Ag,Eo), where & | Ag,Eo is a function interpreting only
the function symbols in FUNC N FUNCj in the domain (and range) A N A,
and similarly for II | Ag, Zo.

In this more refined set-up we can also be more precise about the similarity
mapping. Instead of just stipulating a mapping from atomic formulas to atomic
formulas, we now define a mapping between signatures £; = (FUNCh, PRED,)
and £y = (FUNC,, PRED;) where we assume FUNC.,FUNC; C FUNC
and PRED,, PRED; C PRED. In fact, we shall define a similarity mapping
based on a signature isomorphism:

A pair (T%, T?) is a signature isomorphism from £; = (FUNCy, PRED;)
to 22 = (FUNCQ, PREDg) if

1. T! is a bijective, arity-preserving mapping from FUNC) to FUN Cs.
9. T? is a bijective, arity-preserving mapping from PRED, to PRED:,.

We can extend a signature isomorphism to a function T on TERM and AT
as follows:

Let T : FUNC — FUNC' and T? : PRED — PRED' be arbitrary func-
tions, then we define T': AT(VAR,FUNC,PRED) — AT(VAR,FUNC',
PRED') on atoms as follows:

o T(z;)=2z; forz; e VAR

o T(f) =T!(f) for f € FUNC

e T(P)=T*P) for P€ PRED

o T(f(t1,ortn)) = T(f) (T(t1), -, T(tn)) if £ has arity n
o [T(t1 = t2)] = [T(t1) = T(t:)]

o T(P(t1,...,t:)) = T(P) (T(t1), -, T(tn)) if P has arity n



An isomorphism between signatures together with a bijection between the
domains of the structures based on these signatures induces a similarity mapping
between these structures .

Assuming a signature isomorphism (77,7%) from £ = (FUNC, PRED) to
¥ = (FUNC',PRED'), and a bijective function T° from the domain A to
the domain A’, the similarity mapping Rt from STRUCT(A, X) to structures
STRUCT(A', ') induced by T = (T°,T*,T?) is given by:

for all w = (A,X,9,II) € STRUCT(A,Z), Rr(w) = (A, X, 2,II') €
STRUCT(A,Y') satisfying

1. ®(f)(ay, ..., an) exists & ¥ (T(f))(T%(a1); .., T°(an)) exists, and
T®(f)(as, - an)) = @ (THN(T(a1), -, T(an))
forall f € FUNC and (ay,..,8,) € A"
Note: for constants this means T°(®(c)) = ®'(T"(c))

2. (P)(ay,...,an) = W (TZP))(T°(ar), .-, T%(an))
for all P € PRED and (ay,...,an) € A"

Let a1 /1, ..., an/2n] be the interpretation of the term #(y, ...., Zp) in struc-
ture w under the valuation z; — ay,....2n + ay. (This can be defined induc-
tively, which we omit here.)

Lemma 1 Let w € STRUCT(A,X) and w' = Rp(w) for T = (T°,T",T?).
For any ay, ....a, € A and any term t:

TO@[a1/21, s n/2a]) = TO" [°(@1)/21, ., T(an)/2n]

¢

In the sequel of this paper we employ the notation w |= ¢ [a1/21, ..., @n/ z,]
(for a € A) meaning that ¢ is true in w under the valuation £, — ai,....L, — Gn.

The translation lemma above for terms gives rise to a first-order version of
rendition of atomis formulas as put in the following proposition.

Proposition 2 Let £ = (FUNC,PRED) and ¥’ = (FUNC', PRED'). Sup-
pose w € STRUCT(A,X), and w' = Rr(w) € STRUCT(AY) for T =
(T°,T*,T?). LetT be the functionT : AT(VAR,FUNC, PRED) — AT(VAR,
FUNC',PRED') from the above definition, in terms of T* and T?.

Then for any ay,....,an € A and P(z1,....,2,) € AT(VAR,FUNC, PRED):

w s P(%1, .y Zn) [01/21, .y 8n[2q] >

W' | T(PY (1 s n) [T2(@1)/1, s T(an)/2a] O

10



T can be lifted to formulas ¢ € L(VAR, FUNC, PRED) (providing a base for
prediction again) as follows:

o T(VZ10(21, oy n)) = Y21 T(P)(Z1, oor En)
T(@e10)(21, s @n)) = 21 T(L)(21, ey Zn)
T(p V) =T(p) VI(¥)

T(p Ap) = T(p) AT(¥)

T(p = ¥) =T(p) > T(¥)

o T(~p) =-T(p)

Proposition 3 Let £ = (FUNC, PRED) and &' = (FUNC', PRED'). Sup-

pose w € STRUCT(A,X), and w' = Rr(w) € STRUCT(A,Y') for T =

(T9, T, T?). LetT be the function T : AT(VAR, FUNC,PRED) — AT(VAR,
FUNC',PRED') from the above definition, in terms of T* and T?.

then for any formula ¢ € L(V AR, FUNC, PRED) with FV(p) = {z1,....,Zn}

and any ay,....,an € A

w k@ [a1/21, oy an/Tn] = W' E T(p) [T°(a1)/21, ..., T*(an)/2n)
In particular, if FV(p) = 0 then

wgE e <= v ET(p)

¢

3.2 First-order modal logic of analogy

We now enhance our Kripke models to cater for our first-order language. Es-
sentially, worlds are changed from simple valuations on propositional atoms to
first-order structures containing a signature (FUNC, PRED) and a domain of
interpretation for the variables and constants.

For the accessibility relations we use relations induced by similarity mappings
STRUCT(A,X) to structures STRUCT(A',X'): given a set {T;li = 1,...,n}
of the form T; = (T?, T}, T?) as above, we define Rt, C STRUCT(X)x
STRUCT(X') as:

R, (w1)(w2) & R, (w1) = ws.

Note that since we have stipulated that Ry, is a triple of bijective functions we
can again define its inverse R.}} as:

Rz, (w1)(w2) & R, (wa)(w1)-

11



Our notion of Kripke model now becomes the following. We assume a uni-
versal domain A and signature ¥ = (FUNC, PRED), and consider worlds as
first-order structures of type w = (A, X', @', II'), where A’ C A, ¥’ is a sub-
signature of X, and ® and II are interpretation functions of the function and
predicate symbols, respectively, of the signature £’ in the domain A', as ex-
plained above. The class of all X'-structures for all X' that are subsignatures
of ¥ is denoted by STRUCT. The worlds in our first-order Kripke models will
be just a subset of STRUCT. Note that this more liberal than in the proposi-
tional setting where we took as universe of worlds just all valuation functions.
We think that in the first-order setting this liberality is more realistic, since we
are very unlikely to consider all possible X'-structures. On the other hand, in
the propositional setting we also considered partial valuations in order to cope
with similarities between worlds with different relevant propositions.

In the first-order setting that we propose, we do this a little different. For
convenience, we will work with similarity mappings between structures which
are signature isomorphic and for which there is a bijection between the domains,
but we will allow that the actual structures in the Kripke models have a richer
structure (but irrelevant as to the similarity under consideration). Technically,
we allow for this by looking at relevant subdomains and subsignatures. So, for
example, we might consider a similarity mapping between two structures w; =
(A1, %1,®1,1;) and wy = (Az, Xg, @2, 115) with respect to the restriction to
the domain/signature pairs oo = (Ag, Lo) and o = (Aj, £y) which means that
actually only there is a similarity mapping from the substructure w; | Ao, Xo
to the substructure w; | Aj, X} of ws. We denote such a mapping as T(ao, 7).

A (first-order) Kripke model is an ordered tuple M = (STRUCT',{Ry(0,,0")
li = 1,...,n}), where STRUCT' C STRUCT and o; = (A;, Z;) with A; C A
and ¥; is a subsignature of ¥, and similarly for o;.

Here the relations Ry, (q,,0!) give the similarity mappings that are considered.
Note that in view of the above, with each such mapping it is specified with
respect to which restricting signature one should take the similarity.

On the basis of this Kripke model, we can interpret modal operators of type
O1,(0:,0%) and derived modalities D';‘}(v.-,a’-)’ 0;, O and 0%, as in the proposi-
tional case: for instance, '

M,w | Or o onp & forall w' with R-r'.(,,‘.,aé)(w,w') : Mu E e
D';‘}(a,-,of)’ 0;, O and O* are based on the (derived) relations R';‘i(o,-,a:)’ R, =
Rr(0:01) Y R';‘,-l(a.-,ag)’ R = icjl R;, and R*, the transitive, reflexive closure of
the relation R, respectively. So, for instance,

M,v | O & forall w with R*(v,w) : M,w ¢,
and similarly for the other operators. Also we may use the duals Or,(s,,00),
Orko: ot

Ti(o4,0!)

O;, © and O* of these operators, defined as usual.
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As usual we define validity of a formula ¢ in a model M, denoted M [ ¢,
by M, w [= ¢ for all worlds w in M, and validity of ¢, denoted |= ¢, by M = ¢
for all models M.

We can now put Proposition 3 in modal terms if we abuse our language
slightly:

Theorem 2

E oo DT;Ti(‘P)[TO(xl)/zla -~~aT0(wn)/zn]
¢

Note that this formula contains the substitution of a variable z by the for-
mula 7°(z), not to be confused with T'(z), which is just equal to z itself. The
interpretation of this nonstandard formula is as follows: in a world w of a model
M, if the variable z has the value a, T°(z) denotes the element 7°(a).

Apart from the validities we have seen in the propositional case, we now also
get validities involving the first-order elements of the logic. A very infamous
formula that comes up in the context of first-order modal logic is the so-called
Barcan formula:

VzOr,(5;,00)¢ < OT;(0:,0)) V2P

As explained in (Gamut 91) especially the implication of this formula for the
dual operators, viz.

320T(05,00)P < OTi(0i,0) 0P

is in most contexts rather counter-intuitive. However, in the present context
the Barcan formula is not valid in general, as one can see easily by the following
counterexample:

Take ¢ = Pz and two similar worlds with disjoint non-empty domains. Then
it is easy to see that the lefthandside of the Barcan formula is false (or not
even defined, as the predicate P must be true for elements which are not in the
domain), whereas the righthandside may well be true. However, (again) abusing
language slightly we can express a modified version of the Barcan formula which
is true:

E VzOr,(o,,0lT°(2)/2] © Or, (0,0 Ve

Note that again this formula contains the substitution of z by the formula
T®(z), to be interpreted as earlier.
This formula as well as its dual form seem to be quite intuitive in this context.

13



3.3 Example: solar system - atom

Let us consider a Kripke model with two worlds w; and ws. World w; represents
the solar system:

wy = (A, L1, ®1,101), where

Ay = {sun, planet,, planet,, ..,planet, };

%, = (FUNC., PRED,) with FUNC) = {Sun, Successor_planet}, PRED, =
{Large, Small, Middle,Y ellow, Planet, Re flecting, Emitting, Attracts, Orbits};
®(Sun) = sun, ®(Successor_planet)(planet;) = planet;; fori=1,...,n—1,
®(Successor_planet)(sun) = planet,, and ®(Successor_planet)(planet,) is
undefined;

(Large) = {Sun}, I(Small) = {planety, ..., planet, }, M(Middle) = O(Yellow)
= M(Emitting) = {sun}, II( Planet) = (Reflecting) = {planet,, ..., planet,},
I(Attracts) = {(sun, planet,), ..., (sun, planet, )}, W(Orbits) = {(planet,, sun),
..., (planet,, sun)},

In the world w; the following formulas are true: Vz Small(z) — Planet(z),
Vz Planet(z) — Orbits(z, Sun), VaVy (Successor_planet(z) = y) — Planet(y)),
—Planet(Sun).

The world w, represents the atom.

w2 = (AZ; 227 QZ) HZ); where

Az = {nucleus, electrony, electrony, ..., electrony, };

¥y = (FUNC,, PRED,) with FUNC; = {Nucleus, Successor_shell},
PRED, = {Large, Small, Centre, Positive, Spin, Electron, Attracts};
®(Nucleus) = nucleus, ®(Successor_shell)(electron;) = electron;yy for i =
1,...,n — 1, ®(Successor_shell)(nucleus) = electron;, and ®(Successor- shell)
(electron,) is undefined;

M(Large) = {nucleus}, W(Small) = {electrony, ..., electron, }, M(Centre) =
II( Positive) = {sun}, I(Spin) = M(Electron) = {electron, ..., electron,},
I(Attracts) = {(nucleus, electron;), ..., (nucleus, electrony)}.

In the world w, the following formulas are true: Vo Small(z) — Electron(z),
VzVy (Successor-shell(z) = y) — Electron(y)), ~Electron(Nucleus)

Now let us consider X¢ = (FUNCy, PREDg) with FUNCy FUNC; and
PREDy = {Large, Small, Centre, Planet, Emitting}, and Xg (FUNCGy,

PRED)}) with FUNC) = FUNC, and PREDj = {Large, Small, Centre,

Attracts, Electron}. Furthermore, let oo = (A, Xo) and o = (A4, X5) . We can
now define a similarity mapping T1(c0,05) = (T°,T*,T?) by taking: T? a bijec-
tion between .A; and A, such that T%(planet;) = electron;, T%(sun) = nucleus,
T! a bijection between FUNC; and FUNCj such that T"(Successor_planet) =
Successor_shell, T'(Sun) = Nucleus, and T? a bijection between PRED; N
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PRED, and PRED, N PRED), such that T?(Large) = Large, T*(Small) =
Small, T2(Middle) = Centre, T*(Planet) = Electron, T?(Attracts) = Attracts.

This similarity mapping T1(09,0}) induces an accessibility relation R, (s4,0)
and a corresponding modality O, (5,,01)- If We take, for simplicity, our Kripke
model only consisting of the worlds w; and w3, we can now show that (w1, w2) €
R, (00,03) (This is left to the reader to verify).

We can now check Proposition 3 for the formulas that hold in w;. We know for
example (abbreviating T1(00,04) by T): w | Vz (Small(z) — Planet(z)),
so by Proposition 3 we obtain that w |= T1(Ve Small(z) — Planet(z)) =
Vz (T1(Small)(T1(z)) — T1(Electron)(T1(z))) = Yz (Small(z) — Electron(z)),
which is indeed true, as we have seen before.

Note that the worlds w; and wo share some predicate symbols such as ‘Large’
and ‘Small’. This enables us to express something more abstract but nontrivial
(of course, always valid 1st-order formulas hold) with respect to the similarity
class induced by the similarity mapping T, i.e. something that holds for both
w; and wy. We can do this by means of the modal operator 0O3%. For instance,
we have that:

w | O%3z3y(Large(z) A Small(y) A Attracts(z, y))

thus abstracting from which large thing exactly is attracting which small thing.

4 Defeasible Analogical Reasoning

In the previous sections we have treated reasoning by analogy in such a way that
the conclusions of such reasoning are certain and inescapable. This is obviously
an over-idealization and not true in general. If one knows exactly to what degree
two similar structures are similar, then drawing certain conclusions seems to be
a correct procedure. However, in practice this is almost never the case. We
have uncertainties about the target domain which is the very reason why we try
to compare it with a familiar source domain and draw some conclusions from
it which are meant to be tentative and might be defeated by the discovery of
new information about the target domain. In this case it seems even to be very
undesirable to be able only ‘hard’ conclusions, since this implies that either we
cannot infer interesting but uncertain things about the target domain (and this
is what we are aiming for), or when we derive something which is contradictory
with later observations we are faced with a hard inconsistency.

For instance, consider the solar system - Atom example. Here there s a
similarity between the Sun and the nucleus of the atom, and we might transfer
what we know about the Sun to the nucleus to a certain degree. This we might
want to specify completely in the sense that we specify exactly which predicates
are considered in the similarity mapping. For instance, the predicate ‘is the
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middle of the (sun) system’ can be mapped onto the predicate ‘is the centre of
the (atom) system’. On the other hand, the predicate ‘is yellow’ for the sun
cannot be mapped so easily to something similar in the domain of the atom.
In general, however, we do not know exactly which predicates ‘carry over’ and
which do not.

For this reason we introduce the notion of defeasibility for analogical rea-
soning. The upshot of this is that conclusions concerning certain predicates are
‘likely’, but not quite certain, and can be defeated by new information about
the target domain (such as direct observations, although we will not specify the
source of information here). Some argue that this likelihood has to do with
(high) probabilities. This might well be the case in particular contexts but as
in studies of default reasoning we are more inclined to look at this from a more
qualitative perspective and view ‘rendition rules’ in analogical reasoning as de-
fault rules, i.e. rules that under normal circumstances can be applied, but allow
exceptions if one has the disposal of additional information.

So, in a sense, what we will do, is combining our modal framework of analog-
ical reasoning with defeasible reasoning, and, in particular, some form of default
reasoning. The way we will do this is inspired by earlier work on default and
counterfactual reasoning we have done (Meyer & Van der Hoek 93, 95).

Before engaging into the formal details we will give the general idea. Suppose
we have two domains that we think are similar in certain respects. And suppose
we have information ¢ about the source domain that is likely to translate to the
target domain (so, technically we are then speaking about a predicate that is in
the domain of our similarity mapping, but which must be considered defeasible).
Then we can use our framework to derive its translation T'(¢) for the target
domain. Now, we first check whether this assertion T(y) is consistent with
what we know already about the target domain. If this is not the case, we
forget about the conclusion, If it is, we draw the tentative conclusion that T(p)
holds in the target domain. In the formalism we will use, it will be indicated
or marked as tentative by means of a modal operator, which basically states
that the formula is true in a selected or preferred subset of the worlds that
describe the (knowledge about the) target domain. Naturally, this allows for
the possibility that when new information about the target domain is obtained,
this will lead us to a (set of) world(s) that are not within this preferred subset of
worlds, which means that the tentatively believed conclusion about the target
domain will not be true after all.

Formally we go about as follows:

We extend our modal language with some new operators. Firstly, we in-
troduce operators Of. . These operators will be used to point to a (preferred)
subset of the set of worlds that pertain to the target domain with respect to
the similarity mapping T;. For further convenience, we also introduce modal
operators [S], where S is a subset of the set VAL of all worlds. This will facil-
itate speaking about the source and target domains, since these operators give
us so-to-speak a direct pointer to the worlds pertaining to these, whereas the
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modalities associated with the similarity mappings do this in a rather indirect
manner. Finally, we also consider the duals O7, and < § > ¢ defined as usual.

We enrich our Kripke structures with some extra elements:

An (enriched) Kripke model is an ordered tuple M = (VAL,{Ry|i =
1,..,n},{Ry |i = 1,...,n}), where, for all i and j, Ry, C Rr,.

The additional operators are interpreted on these enriched Kripke models as
follows:

M,v | Ofp & forall w with Ry (v,w) : MwlEe

and

Moy = [Slp & forallweS : Muwlkey

One now immediately obtains the following validities:
1. | Or,p— Op,p

2. E [Silp — [S2)p for S1 2 Sy

3. E<S>T — ([SillSade < [Sale)

4. E<S5>T = ([S1]<S2>p e <8:>9)

Using the expressibility of our modal language we can now give defeasible
versions of analogical derivation rules:
Instead of the (strict) rule

¢ — Or,(Ti(p))

which was a validity in the previous sections, where we based the modality O,
on a strict rendition function T;, we now relax this and use the defeasible rule:

¢ A O1(Ti(p)) — O (Tilp)) (1)

which expresses formally what we described informally above: if the T;-translation
of the source domain information ¢ is compatible with the information about
the target domain determined by the similarity mapping T;, then we prefer a
set of worlds within the target domain satisfying this translated information
Ti(e).

In the example of the solar system - atom we might, for instance, when we
are not completely sure about this, try to render the predicate (light) emitting
in the solar system to a predicate (radiation) emitting (added to the signature)
in the atom system to be used as a kind of hypothesis. For this rendition one
now can use the above defeasible rule

Emitting(Sun) A Or,(Ti(Emitting(Sun))) — Of, (Ti(Emitting(Sun)))
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yielding the rule:
Emitting(Sun) A Or,(Emitting(Nucleus)) — O (Emitting(Nucleus))

This means that unless there is information in the target domain that it is
not the case that Emitting(Nucleus) is true, it is assumed that it is so.

Note that the target domain is generally dependent on the similarity map-
ping T; and the world where you are (in or rather pertaining to the source
domain), since in general we allow the same similarity mapping T; to point to
different target domains from different source domains.

This is the reason why we do not have ‘S5-like’ validities such as

o Or,(T) = (Or,07,(¢) — OF,(#)
o O, (T) = (O7,01:(p) < Ox.(9))

To ease working with these defeasible rules and reasoning about a particular
source and target domain, we may use the modalities [S)e, which are ‘S5-like’.
The way to use these in practice is the following: identify your (fixed) source
domain and the set S of worlds associated with this. Determine the target
domain(s) S; with respect to the similarity mapping(s) T; under consideration.
If this can be done, formula (??) can be written in a more ‘rigid’ or direct way:

[Sle A < Si > (Ti(p)) — [Si)(Ti(p)) for some S; C 5; (2)

When reasoning with this representation we have the disposal of the validities
1.-4. mentioned above.

5 Conclusion

In this paper we have given a semantical approach to analogical reasoning based
on a possible worlds framework. Starting out from a very simple and rather naive
notion of similarity and associated models and modal operators expressing such
similarity in a purely propositional setting we have extended our approach to a
first-order language and logic, and ended with the incorporation of the notion
of defeasibility in analogical inferences. Of course, the semantics proposed does
not yet capture the full complexity of all forms of reasoning by analogy. To
begin with, only a qualitative form of analogical reasoning is treated, where it is
abstracted away from all possible kinds of similarity measures. This issue should
bear a relation with the defeasible nature of this form of reasoning, which can
also be viewed both qualitatively and quantitatively. This will be subject of
further study.
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