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Two Strikes Against Perfect Phylogeny

Hans L. Bodlaender*  Mike R. Fellows!  Tandy J. Warnow?

Abstract

One of the major efforts in molecular biology is the computation of phylo-
genies for species sets. A longstanding open problem in this area is called the
Perfect Phylogeny problem. For almost two decades the complexity of this
problem remained open, with progress limited to polynomial time algorithms
for a few special cases, and many relaxations of the problem shown to be
NP-Complete. From an applications point of view, the problem is of interest
both in its general form, where the number of characters may vary, and in its
fixed-parameter form. The Perfect Phylogeny problem has been shown to be
equivalent to the problem of triangulating colored graphs[30]. It has also been
shown recently that for a given fixed number of characters the yes-instances
have bounded treewidth[45], opening the possibility of applying methodolo-
gies for bounded treewidth to the fixed-parameter form of the problem. We
show that the Perfect Phylogeny problem is difficult in two different ways.
We show that the general problem is NP-Complete, and we show that the
various finite-state approaches for bounded treewidth cannot be applied to
the fixed-parameter forms of the problem.

1 Introduction

Historically, one of the major efforts in molecular biology has been the computation
of phylogenetic trees, or phylogenies, which describe the evolution of a set of species
from a common ancestor. A phylogeny for the set S of species, is a rooted tree
in which the leaves represent the species in S and the internal nodes of the tree
represent the ancestral species. The computational complexity of determining a
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most-likely phylogeny for the species set then depends, among other things, on how
the species set is described. One of the standard models uses characters to describe
species. Here, a character is an equivalence relation on the species set, partitioning
the set into the different character states. Under this model, a proposed phylogeny
will also assign character states to each of the hypothesized species indicated by the
internal nodes. The desired property for the phylogeny is the following:

For each state of each character, the set of nodes in the tree having that
state should form a connected component.

When the phylogeny has this property, it is said to be perfect, and the characters
are also said to be perfectly compatible. The Perfect Phylogeny problem|28] (in short:
PP; also known as the Character Compatibility problem(21]) is then as follows.

Perfect Phylogeny: For a given set of characters defining a species set
S, does a perfect phylogeny exist?

If the number of characters is a fixed constant k, we call the problem the k-Perfect
Phylogeny problem.

This approach to constructing phylogenies was probably first discussed in the
biological literature in the 1960’s (see [13, 58] for two of the earliest papers, and the
series of papers by LeQuesne (38, 39, 40, 41]), but was given its precise mathematical
formulation by Estabrook and others in a series of papers beginning in 1972 (see
16, 17, 18, 19]). In 1974, Buneman showed[12] that the Perfect Phylogeny prob-
lem reduced to a graph-theoretic problem, which we call the Triangulating Colored
Graphs problem (or TCG). A graph is said to be triangulated if every induced cycle
contains at least four vertices. The Triangulating Colored Graphs problem is:

Input: Graph G = (V, E), coloring c: V — Z.
Question: Does there exist a supergraph G’ = (V, E' ) of G which is
properly colored by ¢ and which is triangulated?

If I is the instance of the Perfect Phylogeny problem, and G 1 the corresponding
instance of the Triangulating Colored Graphs problem, then vertices of G corre-
spond to the character states of I, with states of the same character having the
same color. Two vertices are adjacent if their corresponding character states share a
species in common. Thus, the number of colors of TC'G corresponds to the number
of characters in the Perfect Phylogeny problem.

In 1990, Kannan and Warnow [30] showed that these two problems were poly-
nomially equivalent. Linear time algorithms for the case of two and three-colored
graphs have been found {7, 30} (corresponding to two and three character compat-
ibility), and a polynomial time algorithm for the case of quaternary characters has
been found [31]). The latter algorithm can be used to construct phylogenetic trees
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from DNA sequences. For the general case, the best that is known is an O(n*+1)
algorithm to triangulate (if possible) a k-colored graph [45].

In this paper we will show the following:

Theorem A: Perfect Phylogeny is NP-complete.

Theorem B: k-PERFECT PHYLOGENY is not finite-state for bounded
treewidth, for k£ > 4.

The significance of Theorem B is the following. There are a large number of
papers, that show that many problems, that are often combinatorially hard, become
linear time solvable on graphs with bounded treewidth, given with a suitable tree-
decomposition. (The latter can be found in O(nlogn) time [8, 50].) See, amongst
others, [1, 4, 5, 6, 11, 14, 29, 32, 33, 54, 59]. The underlying technique of all these
results is — in a certain sense — the same, and can be described as follows: for each
node of a rooted tree-representation of the input graph, some information of a certain
type is computed. This computation for a node can be done quickly when given the
information, computed for the children of the node. In many cases, this information
is an element, taken from a finite set. In such a case, we call the problem ’finite
state’. By theorem B, such an algorithm is not possible for k-Perfect Phylogeny
for k > 4. For problems, that like k-Perfect Phylogeny for fixed %k have no growing
parameter associated with it, all general techniques to solve them on graphs with
a given tree-decomposition of constant bounded treewidth can be seen as special
cases of this finite state concept. (In contrast, problems like Independent Set, with
a growing parameter associated to it, require a generalization of the finite state
concept. Here, the information’ is a constant size table, with each entry an integer.
However, an extension of our arguments show that such approaches also cannot yield
linear time algorithms.) (The result also shows, that the graph reduction method
from (3] will not work for the problem with k > 4.)

In contrast, for k = 2.3, k-Perfect Phylogeny is finite state. (For k = 2, this is
trivial. For k = 3, it follows from the characterization in [7] that the problem can
be formulated in monadic second order form, and hence, by the result of Courcelle
(14], it is finite state.)

Since a standard tool for molecular biologists involves checking small subsets of
characters for perfect compatibility, efficient algorithms for small % can be of use.

2 Preliminary definitions and results

A clique in a graph G = (V, E) is a subset S of V, such that for all v,w € S, (v,w) €
E. A graph g = (V, E) is triangulated, if and only if it does not contain an induced
cycle of length at least four. It is known [52, 26] that a graph G is triangulated if
and only if there exists an linear ordering of the vertex set V1, V2, ..., U, such that
for each 7, the neighbors of v; which follow v; in the ordering, form a clique. Such
an ordering is called a perfect elimination scheme.

The following lemma is due to Dirac [15).



Lemma 1 Let G = (V, E) be a triangulated graph which is not a complete graph.
Then V contains two non-adjacent simplicial vertices.

A graph G = (V, E) with vertex coloring ¢ : V — Z is c-triangulatable if there
exists a supergraph G’ = (V,E’), E C E', which is properly colored by ¢ (thus
(v,w) € E' implies ¢(v) # c(w)) and which is triangulated. The supergraph G’ is
said to be a c-triangulation of G.

A useful characterization of c-triangulable graphs is with the help of tree-
decompositions.

Definition A tree-decomposition of a graph G = (V,E) is a pair ({X; |1 € I},T =
(I, F)) with {X; | i € I} a collection of subsets of V, and T = (I, F) a tree, such
that

[ J UiGI X,‘ = V-.
e For all (v,w) € E, there exists an 1 € I with v,w € Xj.
e ForallveV, {i € I|v€ X;} forms a connected subtree of T.

The treewidth of a tree-decomposition ({X; | i € I},T = (I, F)) is max;es | Xi| —
1. The treewidth of a graph is the minimum treewidth over all possible tree-
decompositions of that graph.

Consider G = (V, E) with tree-decomposition ({X; | ¢t € I},T = (I, F)). The graph
H = (V,E') with (v,w) € E' & 31 € I, v,w € X; contains G as a subgraph, has the
same treewidth as G, and is triangulated. (For every v € V, let T, be the subtree of
T, induced by the set of nodes {¢ € I | v € X;}. Then (v,w) € E', if and only if T,
and T, have a non-empty intersection. So H is the intersection graph of subtrees of

a tree, hence H is triangulated, see [26]. The following proposition can now easily
be observed.

Proposition 1 A graph G = (V, E) with coloringc: V — C, (C a set of colors),
is c-triangulatable, if and only if there exists a tree-decomposition ({X; |1 € I},T =
(I,F)) of G, such that for all i € I, v,w € V: ifv # w, and v,w € X;, then
c(v) # c(w).

In [9] a short proof of the following fact can be found:

Proposition 2 Let ({X; | ¢ € I},T = (I,F)) be a tree-decomposition of G =
(V,E). Let W C V form a clique in G. Then there exists an i € I with W C X;.

One can also easily verify the following propositions.

Proposition 3 Let ({X; | ¢ € I},T = (I,F)) be a tree-decomposition of G =
(V,E). Letio € I be such that X;, is not a separator of G, ie., G[V — X; ] is
connected. Then there exists a set I' C I, such that ({X; | ¢ € I'},T[I']) is a
tree-decomposition of G, and iy is a leaf of T.
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Figure 1: The Decision Component

Proposition 4 Let ({X; | ¢ € I},T = (I,F)) be a tree-decomposition of G =
(V,E). Suppose z1,%3,...,x, form a path in G, 2, € X;,, x, € X;,. Then for every
i2 € I, that lies on the path from iy to iy in T: X;, N {z1,22,...,2,} # 0.

3 Perfect Phylogeny is N P-complete

This section is devoted to the proof of the following result:

Theorem 1 Triangulating Colored Graphs is NP-Complete, even when every color
is given to ezactly two vertices.

As TCG and PP are polynomial equivalent, it directly follows from this result
that Perfect Phylogeny is NP-complete.

That Triangulating Colored Graphs is in NP is obvious. Given the colored graph

= (V, E), we present a triangulation G’ = (V, E’). Verifying that G’ is a properly
colored supergraph of G is easy to do in polynomial time. Then, by Lemma 1,
we can repeatedly delete simplicial vertices until we reduce G’ to the empty graph,
verifying that G’ is triangulated. Thus, in polynomial time we can verify that G’ is
a properly colored triangulated supergraph of G'.

We now show that TCG is NP-hard, by a reduction from 3-SAT to TCG.

For a given instance I of 3-SAT, we create a graph, Gy, which consists of decision
components and clause components. We will assume that no clause contains both a
variable and its complement. For each variable X and for each clause i containing
either X or X, we have the decision component given by Figure 1.

We call the variable H the head, F is called the foot, the variables Sx and Sy
are called the shoulders, and K¥% and I\— are called knees. For each variable X
we will superimpose the r copies of the dec131on component (corresponding to the r
clauses containing X or X), so that only K% and KF{' are not identified with other
vertices. Thus, there will be one vertex H, one vertex F', and for each variable X
there will be one pair of shoulders Sy and Sy, and r pairs of knees, K}, K3, K%,

KY’ LK K'—', corresponding to the r clauses ¢y,12,...,?, containing one of X

or X.



Figure 2: The Clause Component

We assign colors so that every color class consists of exactly two vertices. The
head H and foot F' are given the same color, each pair of shoulders, Sx and Sy is
given the same color, and each pair of knees L'} and K5 is given the same color.

Note that the head H is the same over all the variables X, and the foot F is
the same over all variables X as well. Thus, there is one head and one foot in the
graph, and for each variable there is a single pair of shoulders, and as many pairs of
knees as there are clauses containing the variable or its complement.

Note that there are exactly two color-respecting triangulations for the variable
component for X: you either add the edges in all paths H — K% — Sy — F, or you
add the edges in all paths H — | ':\— — Sy — F. Each way of triangulating the graph
can be described as adding a Mark of Zorro in one of two possible orientations.
Thus, a triangulation either includes all edges (H, Ky ) or all edges (H, K%). We
will refer to the first orientation as the positive orientation, and the second as the
negative orientation. When the triangulation is positively oriented, we will set X to
true, and otherwise we will set X to false.

We now describe the clause components. For the i'* clause (X,Y, Z) we have
the graph given by Figure 2.

Note that we do not add any new vertices, but only add edges between knees
which already exist. The knees Ky, K-, and L'} are said to be active, while the
complements I 'j\—,, I\’;—, and I{% are said to be inactive. In general, if the literal L
appears in the :** clause, then K} is said to be active, and its complement K% 1s
said to be inactive. Thus, for each pair of knees K} and K%, exactly one will be
active, and the other inactive.

As G can be constructed in polynomial time given I, NP-hardness of TCG
follows from the following lemma.

Lemma 2 The 3-SAT instance I is satisfiable if and only if G can be triangulated
without introducing edges between vertices of the same color.

Proof: We will first show that if G; has a color-respecting triangulation, then I
can be satisfied. So let us assume that G is a color-respecting triangulation of Gj.



As we mentioned before, G; defines for us a truth assignment for the variables. We
need to show that the truth assignment it defines is a satisfying truth assignment,
i.e. we need to show that this also ensures that at least one literal in each clause is
set to true.

So suppose that the truth function we derive from G, does not satisfy the clause
i = (X,Y,Z) in I; i.e. we assume that the graph G; does not contain any of the
edges between H and K%, K}, or K'y,. We will show that this contradicts G, being
both properly colored by ¢ and triangulated.

By our comments earlier, G; must contain the Mark of Zorro in one of the two
possible orientations; since we exclude the edges (H,K.), for a € {X,Y,Z}, it
must include the negative orientations of the Mark of Zorro in the decision compo-
nents for X,Y and Z. Thus, we assume that each of the following edges is in Gi:
(H,K%),(Ss, KL), (Ss, F), for each variable a € {X,Y,Z} and clause ¢ containing
a. Consider the subgraph G of G; induced by the vertex set {H, F, Sz, K{,Ki:a
in {X,Y,Z}}. This subgraph G, is triangulated, since G, is triangulated. However,
we will show that G, does not admit a perfect elimination scheme (which respects
the coloring), and hence is not triangulated.

Since G, is triangulated, it must contain at least two simplicial vertices (see
Lemma 1). Because G is properly colored. only H can possibly be simplicial (every
other vertex is adjacent to two vertices of the same color). Therefore, we see that
G, can not be both triangulated and properly colored, contradicting our hypothesis.

Thus, we have shown that a color-respecting triangulation of G implies satisfi-
ability of I.

We now show the converse. Suppose I is satisfiable, and that G is the graph
we derive from I, and that f is a satisfying truth assignment for I. We will show
that we can triangulate G| without adding edges between vertices of the same color,
using the truth assignment f.

We will assume that we have renamed the variables so that X is always true,
and X always false.

We now describe some terminology we use in defining the triangulated super-
graph of G;. Recall that we distinguish between active and inactive knees (see our
discussion following the definition of the clause component). We also have another
way of distinguishing vertices, which we will now describe here. We presume here
that the variable X is true, and its complement X is false. We will therefore refer
to the vertices in the set {Sx, K : variableX} as true; thus, each Sx is a true
shoulder, and each K¥ is a true knee. Similarly, the complements are called false
shoulders or false knees.

To triangulate G; we will then add the following edges:

e The positively oriented Mark of Zorro in each decision component.
e The complete graph on {true shoulders, true knees}, and

e The complete bipartite graph on {true shoulders, false knees}.

~
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Thus, we have added to the neighbor set of each true shoulder the foot F, the
head H, and every knee and every true shoulder. We have added to the neighbor
set of each true knee the head H and every true knee as well. It is obvious that
this enlarged graph G’ is properly colored. We will now show it is triangulated by
exhibiting a perfect elimination scheme for G'.

Consider the following partition of the vertex set of G into five subsets:

1. S; = { False shoulders, inactive false knees}.

2. 5, = { The head H}.

3. S3 = { Active false knees adjacent to inactive false knees}.
4. S, = { Active false knees adjacent to inactive true knees}.
5. S5 = { True knees K¥, true shoulders Sy, and foot F }.

First, it is clear that these sets so defined constitute a partition of the vertices of G
into five pair-wise disjoint sets. We use these sets to produce a perfect elimination
scheme, by first listing all the vertices in S;, then those in S5, and so forth, down
to Ss. We need to show, however, that each vertex is simplicial in the graph which
remains after the previous vertices have been deleted. If we can show this, we will
have proved that G’ is a properly colored triangulated supergraph of Gy.

We now verify this assertion for each set S;.

A false shoulder Sy is adjacent only to H and to the true knees K. This set
forms a clique. An inactive false knee, Kf\—,, is adjacent to every true shoulder, the
foot F, and an active (true or false) knee in the clause component. This set also
forms a clique. Thus, the vertices in S; are each simplicial, and can be deleted.

After we delete each false shoulder and inactive false knee, the neighbors of H
become the true shoulders and true knees. This set is a clique, and thus H can then
be deleted. Let G, = G' — (51 U S3).

Consider a vertex in S3. This is an active false knee I{-{l\- which is adjacent to
inactive false knee Ki.. In G, I\-\- was adjacent to all true shoulders, the foot F', the
inactive false knee K., and two other active knees. However, in Gl, we have deleted
the inactive false knee I\——, and thus in G, the neighbor set of I is a clique. Thus,
we can delete every ve1tex in S3 from G,. Let G, = G, — S;.

A vertex in Sy is an active false knee I\— which is adjacent to an inactive true
knee K} . Thus the clause 7 contains X and } Since this clause is satisfied, it must
contain a true literal, Z. Therefore we can presume that the neighbors of K3 i in G
are K&, Ky, K}, the true shoulders, and foot F. However, of these vertices, only
K%, K}, the true shoulders and foot F' remain in Gy, since K‘7 is adjacent to K%,
and is therefore in S3. This set also forms a clique, and thus we can delete every
vertex in 94 from G,. Let G3 = Gy — S4.



Gs is a complete graph, since the remaining vertices are the true knees, true
shoulders, and the foot. This graph is obviously triangulated, and any ordering of
the vertices of G3 is a perfect elimination scheme.

We have shown that any ordering compatible with this partition of the vertex set

is a perfect elimination scheme, and thus G’ is a properly triangulated supergraph
of G I- l

4 Non-cutset-regularity of the problem with
four colors

In [20], Fellows and Abrahamson developed the theory of cutset regularity of graphs.
To describe the theory, we first define some terminology used in it.

A t-boundary graph G contains a distinguished ordered subset of ¢ nodes, called
bd(G)). The binary operator & on two t-boundary graphs is defined as follows:
G @ H is the t-boundaried graph obtained by identifying the :** boundary nodes
in bd(G) with the i** boundary node in bd(H), for each ¢ = 1,2,...,t. For a fixed
graph family F, we then define an equivalence relation on the set of t-boundary
graphs as follows: Two t-boundary graphs X and Y are equivalent (X ~r Y') if and
only if for every t-boundary graph Z, X & Z € F <= Y @ Z € F. The “small”
universe U?_ ., is defined to be the set of all t-boundaried graphs that arise in the
parsing of graphs of treewidth at most . A graph family F is t-cutset requlariff ~p
has finite index on U}, ;-

One of the main results in {20] is the followmg:

Theorem 2 (Fellows and Abrahamson [20]) A graph family F is t-finite state if
and only if F is t-cutset regular.

An important consequence of this result is that, if a graph family is ¢-finite state, then
recognition of this family can be done efficiently, and without computing obstruction
sets.

Using this theorem, we can show that the class of triangulatable ¢-colored graphs
is not t-finite state, for t > 4.
Consider the following two classes of 4-colored 4-boundary graphs:

For r > 2, let G, = (V,, E,, B, f) with
o Vi = {wl,'l.Ug,w3,'LU4}U {Z]' | 1 S.} < 471}7

L Er = {(wlazl)v (’1.02,22), (U)13Z‘2)a (102’31)9 (w3az4r—l)s (w4yz4r)7 (11)3,24,-),
(wa, zar-1)} U {zj,2j11) | 1 S j < dr},

e B = {w;,ws, ws, wy}, and

o f(w;)=3j(1<j<4).
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Let ¢: V. — {1,2,3,4} be the coloring of G, defined by c(wj)=7(1<j<4),and
c(z;) = (j+1) mod 4 +1 (1 < j < 4r). See Figure 3 for an example.
For s > 2, let H, = (V!, E!, B, f!) with

o Vi={y;|1<j<ds},

* B} ={(yi¥5) | 1 < jr,d2 S48, 1 # J2, in — jal < 2,
® B, = {y1,¥2, Y4s-1, Yas}, and

e fi(yr) =1, Fo(y2) =2, fi(yas-1) =3, filyse) = 4.

Let ¢c: V] — {1,2,3,4} be the coloring of G,, defined by c(y,) = (j — 1) mod 4 + 1.
See Figure 4 for an example.

Note that for every r,s > 2, ¢ is a coloring of G, @ H,.
Lemma 3 Ifs < r, then G, ® H, is c-triangulatable.
Proof: First add an edge between z; and zy(r—s)+3- (If 7 = s, then omit this step.)

We now triangulate the cycle on the edge (2, Z4(r-s)+3), and the remainder of the
graph independently.

10



Figure 6: G, @ H, triangulated

The cycle with edges (z2, 24(r—s)+3), and (zi,zi41) for 1 < ¢ < 4(r — s) + 3 can
be triangulated, as the vertices on the cycle contain more than two different colors
(see [30], Theorem 3.1.)

Further, add edges

(ij zj+4(r—s)-1) 2< ] <4s5—-1
(yﬁ zj+4(r-.s)) 2< ] <45 -1
(yj7 zj+4(r-s)+1) 2 S ] <45—-1
The graph now looks as depicted in Figure 6.

One can easily verify that this graph is triangulated. There are no edges between
vertices of the same color. |

Suppose s > r. Let G = G, ® H,. Suppose we have a tree-decomposition
(Xi i eI},T = (I,F)) of G, with for all ¢ € I, for all v,w € V, if v # w and
v,w € X then ¢(v) # c¢(w). Let H be the triangulated graph (V, {(v,w) | 31, v,w €
Xi, v # w}). (See Proposition 1.) From Proposition 2, it follows that there exists

11



an ip € I with X;, = {v1,y2,21, 22}, and an ¢; € I with X = {Yas—1,Yass Zar—1, Zar }-
By Proposition 3, we may assume that iy and ¢; are leaves from T'.

Note from Proposition 4, that every node i; on the path in T’ between ¢o and 7,
contains at least one vertex z; (j € {1,2,....4r}), so it can contain at most three
vertices y; (j € {1,...,4s}). Write Y = {y1,¥2,...,Y4s}, and Z = {21, 23, ... ) 24r }-

Claim 1 For every j, 1 < j < 4s—2, there exists a node iy € I on the path between
io and 1y in T, with {y;,y;j+1,Yj+2} € Xi,.

Proof: Suppose the claim does not hold for certain j, 1 < j < 4s — 2. There exists
a node i3 € I with {y;,yj+1,yj+2 C Xi,. By assumption, i3 lies not on the path
from ig to 7; in T. Let 74 be the unique node that lies on each of the paths between
7:0 and 1:1, io and 1:2, and il and l2

There must exist a vertex y; ¢ X, with j' € {j,7 + 1,7 + 2}. Note that
there exist four paths in G[Y], from {y;,y;+1,¥j+2} t0 {¥1, Y2, Y4s—1,Yas} that are
vertex disjoint, except that two paths share the vertex y;. Now, by Proposition
4, X;, contains at least one vertex of each path, and, as y;; € X;,, we have that
|Xi, NY| > 4, contradiction. |

Note that for such i, on the path between iy and 7, with X;, 2 {y;,Y;+1,¥j+2}>
there must be a z; € Xj,.

Claim 2 Suppose i,, i3 lie on the path between ig and i, in T, and X;, =

{y4a+lay4a+2ay4a+3vzj1}7 Xi:s : {y4/3+19y4;3+2ay4ﬂ+35212}’ 0 < a’ﬂ < s, a ;é ﬂ
Then c(zj;) = ¢(25,) = 4, and j1 # J2.

Proof: The color of zj, (z;,) must be different from the colors of the other elements
in X;, (Xi,), hence must be 4.

Suppose j; = j,. W.l.o.g. suppose a < (3. By claim 1, there must exist a node
i4 on the path from iy to 7; with X;, 3 {y4a+2, Y4a+3, Yda+4}. I i3 lies before i; on
the path from 7o to ¢;, then note that there is a path in G[Y] from y; to ysa41 that
is disjoint from X;,. By Proposition 4, X;, must contain at least one vertex on this
path, contradiction. There are three remaining cases.

Case 1. 14 lies on the path in T from 7o to 7,. Note that there is a path in G[Y]
from y; to Yaq41 that is disjoint from X;,. So |X;, N Y| > 4, contradiction.

Case 2. i, lies on the path in T from i3 to ¢;. Note that there is a path in G[Y]
from y4p43 to y4, that is disjoint from Xj,. So |X;, NY| > 4, contradiction.

Case 3. 14 lies on the path in T from ¢; to 5. It follows that z; € X;,. A
contradiction arises, as also yyo+4 € Xi, and ¢(2j,) = c(Yaat+4) = 4. 1

It follows that there must be at least s different vertices z; with ¢(z;) = 4. So
G, ® H, can only be c-triangulatable, when s < r. Hence we have the following
theorem.

Lemma 4 G, ® H, is c-triangulatable, if and only if s < r.

12



Tt follows that every graph G, must be in a different equivalence class, and hence
TCG with four colors and 4-Perfect Phylogeny are not cutset-regular, and hence, by
theorem 2 not finite-state. Clearly, the same results also hold for a larger number
of colors or characteristics.

Theorem 3 For every k > 4, k-Perfect Phylogeny, and Triangulating Colored
Graphs with k colors are not finite state for bounded treewidth.

With a slightly more complex, but further more or less similar construction one
can show that the number of equivalence classes can be exponential in the number
of vertices of the graphs involved.

From this, it follows that not only the problem is not ouly not finite state, but
also that no other linear time table based approach is possible. (For instance, con-
sider Independent Set. As the size of independent sets is a parameter that can be
O(n) large, it is not finite state. However, there exists a "table hased’ linear time al-
gorithm for the problem, when restricted to graphs. given with a tree-decomposition
of constant bounded treewidth (see e.g. [1]). When this situation occurs, then the
number of equivalence classes is still polynomial. Hence. it cannot occur for the
Perfect Phylogeny problem.)
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