On the complexity of the Maximum Cut

problem

Hans L. Bodlaender, Klaus Jansen

RUU-CS-91-39
October 1991

Utrecht University

f (.2 Department of Computer Science
-4
5 5, Padualaan 14, P.O. Box 80.089,

477[’5\» 3508 TB Utrecht, The Netherlands,
Tel. : ... 4+ 31-30- 531454

On the complexity of the Maximum Cut

problem

Hans L. Bodlaender, Klaus Jansen

Technical Report RUU-CS-91-39
October 1991

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

ISSN: 09243275

On the complexity of the Maximum Cut
problem*

Hans L. Bodlaender! Klaus Jansent

Abstract

The complexity of the SIMPLE MAXCUT problem is investigated for several
special classes of graphs. It is shown that this problem is NP-complete when
restricted to one of the following classes: chordal graphs, undirected path
graphs, split graphs, tripartite graphs, and graphs that are the complement
of a bipartite graph. The problem can be solved in polynomial time, when
restricted to graphs with bounded treewidth, or cographs. We also give large
classes of graphs that can be seen as generalizations of classes of graphs with
bounded treewidth and of the class of the cographs, and allow polynomial
time algorithms for the SIMPLE MAX CUT problem.

1 Introduction

One of the best known combinatorial graph problems is the MAX CUT problem. In
this problem, we have a weighted, undirected graph G = (V, E) and we look for a
partition of the vertices of G into two disjoint sets, such that the total weight of the
edges that go from one set to the other is as large as possible. In the SIMPLE MAX
CUT problem, we take the variant where all edge weights are one.

Whereas the problems where we look for a partition with a minimum total weight
of the edges between the sets are solvable in polynomial time with flow techniques,
the (decision variants of the) MAX CUT, and even the SIMPLE MAX CUT problems
are NP-complete [11, 9]. This motivates the research to solve the (SIMPLE) MAX
CUT problem on special classes of graphs.

*The results of section 5 of this paper have already been published in: H.L. Bodlaender, The
Maximum Cut and Minimum Cut Into Bounded Sets problems on Cographs, Technical Report
RUU-CS-87-12, Department of Computer Science, Utrecht University, Utrecht, the Netherlands,
1987.

tDepartment of Computer Science, Utrecht University, P.O.Box 80.089, 3508 TB Utrecht, The
Netherlands. The work of this author was partially supported by the ESPRIT II Basic Research
Actions Program of the EC under contract no. 3075 (project ALCOM).

tFachbereich IV, Mathematik und Informatik, Universitat Trier, Postfach 3825, W-5500 Trier,
Germany

In [10] Johnson gives a table of the known results on the complexity of SIMPLE
MAX CUT restricted to several classes of graphs. The most notable of the results
listed there, is perhaps the fact that SIMPLE MAX CUT can be solved in polynomial
time on planar graphs. Several cases however remain open. In this paper we resolve
some of the open cases.

This paper is mostly concerned with the SIMPLE MAX CUT problem. In section
8 we comment on the MAX CUT problem (i.e., the problem where edges do not
necessarily have unit weights.) Some applications of the MAXCUT problem are given
in 4, 5, 13).

This paper is organized as follows. In section 2 we consider the chordal graphs,
and the undirected path graphs. In section 3, we consider the split graphs. In section
4, we consider tripartite graphs, and complements of bipartite graphs. In section
5, we consider cographs. An algorithm to solve SIMPLE MAX CUT on graphs with
bounded treewidth is described in section 6. In section 7, the results of sections
5 and 6 are generalized. Finally, in section 8 we comment on the problem with
arbitrary edge weights.

We conclude this introduction with some definitions. We first give a precise
description of the SIMPLE MAX CUT problem.

Problem: SIMPLE MAX CUT

Input: Undirected graph G = (V, E), k € IN.

Question: Does there exist a set S C V, such that |{(s,u) € E|s €
SSueV-S}>k?

If we have a partition of V into sets S C V, and V — S, then an edge (u,v) € E
withu € S, v €V — S is called a cut edge.

2 Chordal graphs

In this section we analysed the SIMPLE MAX CUT problem for chordal graphs. A
graph is chordal, if and only if it does not contain a cycle of length at least four as
an induced subgraph. Alternatively, a graph is chordal, if and only if there exists
a tree T = (W, F) such that one can associate with each vertex v € V, a subtree
T, = (W,,E,) of T, such that (v,w) € E iff W, N W,, # 0. This is equivalent to
stating that all maximal cliques of G can be arranged in a tree T, such that for
every vertex v, the cliques that contain v form a connected subtree of T. (In other
words: chordal graphs are the intersection graphs of subtrees of trees.)

We will show that SIMPLE MAX CUT is NP-complete for chordal graphs. Hereto,
we use the MAX 2-SAT problem, described below.

Problem: MAX 2-SAT

Input: A set of p disjunctive clauses each containing at most two literals
and an integer k < p.

Question: Is there a truth assignment to the variables which satisfies
at least k clauses ?

MAX 2-SAT was proven to be NP-complete by Garey, Johnson and Stockmeyer
[9]. (In [9] also a transformation from MAX 2-SAT to the SIMPLE MAX CUT problem
for undirected graphs was given.) We note [8] that 3-SAT remains NP-complete
if for each variable there are at most five clauses that contain either the variable
or its complement. Using the reduction of Garey, Johnson and Stockmeyer [9] we
can obtain a similar result for MAX 2-SAT such that for each variable there are at
most 20 clauses containing the variable or its complement. It is possible to replace
the number 20 by the smaller constant six using a different construction. In this
construction each literal (variable or its complement) occurres at most three times.

Theorem 2.1 SIMPLE MAX CUT is NP-complete for chordal graphs.

Proof:
(We will omit in this and all later proofs the statement that the problems are in
NP.)

We give a transformation from MAX 2-SAT to SIMPLE MAX CUT for chordal
graphs. Let X = {z1,...,%n,71,...,%n} be aset of variables, let (ay V by),...,(a,V
b,) denote a set of clauses.

Let m = 2p. First we define a number of sets:

o for each i € {1,...,n} take c® = {,...,9 1}, DO = {dP,...,d¥,,},
EW = {eg'),. .. ,ef,',{,,z .

e take S = {31,...,8m+1}.
o take R = {ry,...,7,}; take Q@ = {q1,...,¢p}
o for eachi € {1,...,p}, take T® = {1V, .. .,tf:;Lz}.

o take U = {w,...,up}, V = {v1,...,0}, W = {wy,...,wp}, and Z =
{21,...,Zp}.

o take Y = {y1,...,Ypt2n}

We now define the input graph G’ = (V’, E’) for the SIMPLE MAX CUT problem.
V' is the disjoint union of all sets: X, C®) (1 < i < n), DY (1 <7 < n), E®)
(1<i<n),S, R, QT (1<i<p),U,V,W,and Z. There is an edge between
a pair of vertices in G, if and only if at least one of the following sets contains both
vertices, i.e. each of the following sets forms a clique in G’:

o foreachi € {1,...,n}:
- {z;}uCc® UEW),

- {z;}uCc® u DO,

- {l‘,‘, -f:} U C(i)a
e for each j € {1,...,m + 1}, take a set (clique) RU {s;}.
e XURUY.

o for each i € {1,...,p}, and each j € {1,...,m + 2}, take a set (clique)
{ri, i t9}.
o for each i € {1,...,p}: if the ith clause is (a; V &), then take sets (cliques)

— {ai, bis i, @i}
- {a’i)bi,vi,wi}
- {ai,uiavi}

— {bi,vi, zi}

First, we claim that the graph G’, formed in this way is chordal. This follows
because we can arrange all cliques in a tree T, such that every vertex belongs to a set
of trees that forms a connected subtree of T, illustrated in figure 1. (Alternatively,
one can check by tedious case analysis that G’ does not contain an induced cycle of
length more than 3.)

In order to count the maximum number of possible cut edges, we consider six
types of edges:

1. Edges between vertices in C() u DO y E® y {z,}, for some i € {1,...,n}.

2. Edges of the form (77,).

7

3. Edges between verticesin X URUY.

4. Edges of the form (r;, s;).
5. Edges of the form (r;, ¢;), (r;,tg-i)), (q;,tgi)), for some i € {1,...,n}.

6. Edges of the form (qi’ai)7 (qi’ bi)) (aiaui)v (ai,.vi)a (ai’wi)a (bf,vi)’ (biawi)7
(biy 2i), (wiyvi), (vi, wi), (w;, z), for some ¢ € {1,...,n}, where the ith clause
is (a,- A\ b,').

Note that each edge of G' has exactly one type.

Write B=2n-(m+2)2+n-(m+1)+(2n+p):+p-(m+1)+2p-(m+2)+6p.
We now claim that G’ has a partition with at least B + 2k cut edges, if and only
there is a truth assignment, that verifies at least k clauses.

RuU {3m+1}

{z;} uCU U DL)

[
l
|
I
|

I

I

RU {81}

{zj,z;}uCl)

XURUY

{7‘,‘, qi, a4, bt}

{7‘,‘, qi, tg.)}

I
|
l
|

{ai, bi, vi, w;}

{ria qis ts':x)-0-2}

{ab Uy, '0,'}

{bl" Wy, Zt'}

Figure 1: Clique arrangement of G'.

5

Suppose we have a truth assignment, that verifies at least k clauses. We construct
a partition V' =V UV,, NV, = § in the following way:

Vi= RUQU {:c;,cg-‘)la:; false }
u{z;, dg-‘), eg')|:v.- true }
U{ui, zi|a; false A b; false }
U{v,-,z.-la.- false A b; true }
U{u;, w;|a; true A b; false }
U{vi, wila; true A b; true }

U{y1,. .- yn}
V= V\W.

We have 2n- (m+2)? cut edges of type 1, n-(m+1) cut edges of type 2, (2n+p)?
cut edges of type 3, p- (m + 1) cut edges of type 4, and 2p- (m +2) cut edges of type
5. For a clause that is true, the number of type 6 cut edges corresponding to that
clause is eight, and for a clause that is false, this number is six. Hence, the total
number of cut edges of type 6 is 6p + 2k. The total number of cut edges of all types
is precisely B + 2k.

We now show, that when we have a partition of V' in sets V;, V; with at least
B + 2k cut edges, then there must be a truth assigment with at least k true clauses.
We consider for each type of edges the maximum number of cut-edges. We compare
these numbers with the numbers obtained in the partition formed above. We often
use that the maximum number of cut edges in a clique of size 2r is r2.

Consider edges of type 1. There are at most (m + 2)? cut edges between vertices
in a set C) U D) U {z;}, and similarly for a set C) U D& U {z;}. Hence, we
cannot gain cut edges with respect to the partition defined above. Moreover, if not
CO U {z;} C W or CO U {z;} C V;, then we loose at least m + 1 cut edges of type
1.

As every edge of type 2 is in the partition defined above a cut edge, we cannot
gain cut edges of type 2. However, if for some ¢, z; and Z; belong to the same set
(Vi or V), then we loose at least m + 1 cut edges of type 1 and 2.

There are at most (|X U RUY|/2)? cut edges of type 3. Hence, no cut edges of
type 3 can be gained.

Again, as every edge of type 4 is a cut edge in the partition defined above, no
gain of type 4 cut edges is possible. However, if not R C V; or R C V;, then every
vertex in S is adjacent to only one cut edge, and we have a loss of at least m + 1
cut edges.

With a similar argument, it follows that no gain of cut edges of type 5 is possible,
but if for some ¢, ¢; and r; do not belong to the same set, there is a loss of at least
m + 1 cut edges.

A simple case analysis shows, that the number of cut edges of type 6, for one

clause (a; V b;) is at most eight. Hence, the maximum number of type 6 edges that
can be gained is at most 2p.

It follows that we cannot have a partition with at least B + 2k (and even a
partition with at least B) cut edges, if we loose somewhere m + 1 = 2p + 1 edges.
It follows that RUQ C V; or RUQ C V,. It also follows that for each ¢, z; and 7
belong to a different set. Call z; true, if it does not belongs to the same set in the
partition as R U @, otherwise call z; false.

We claim that this truth assignment satisfies at least k clauses. We have shown
that the number of cut edges of types 1 to 5 is at most B — 6p. So, there must be
at least 6p + 2k cut edges of type 6. If the clause (a; V b;) is false, then a;, b; and ¢;
belong to the same set. In this case, at most six cut edges of type 6 can be obtained
in the subgraph formed by the eleven edges of type 6 for this value of 5. If the clause
is true, the maximum number of cut edges that can be obtained in the subgraph
is precisely eight. Hence, at least k clauses must be true. This proves the claim.
NP-hardness of the problem follows, because G’ can be constructed in polynomial
time. o

Now we analyse a subclass of the chordal graphs, the undirected path graphs.
A graph is an undirected path graph, if it is the intersection graphs of paths in
an (unrooted, undirected) tree. In other words, G = (V, E) is an undirected path
graph, if and only if there exists a tree T = (W, F'), and for every vertex v € V a
path P, in T, such that for all pairs of vertices v,w € V, v # w: (v,w) € E, if and
only if P, and P, have at least one vertex in common.

Theorem 2.2 SIMPLE MAX CUT is NP-complete for undirected path graphs.

Proof:

We can show this by changing the construction from the proof above. We use that
MAX 2-SAT remains NP-complete, when for each variable, the number of clauses
that contains the variable is bounded by the constant 3. Note that for almost every
type of vertex in the proof above, its corresponding subtree of T is a path. The only
exception to this are the vertices in X. Hence, we must change the construction
with respect to the vertices in X. This is done in the following way.

We replace each variable z; by z;,,...,z;3 and ; by Tils---,Ti3. We enlarge
the sets D) and E¥) by two vertices. It then can be argued, that if we do not
have {zi1,...,713} € W) and {777,...,775} C W,, or {zig,...,z13} € W, and
{ZFi1,...,T1a} C W, then there is a loss of at least m + 1 edges.

For the jth occurrence of z; in a clause we use instead of z; the vertex z; j.
The same arguments as in the previous proof now apply for this new graph. How-
ever, the vertices of this graphs can be represented as undirected paths in the tree
corresponding to the set of cliques, hence we have an undirected path graph. D

3 Split graphs

A graph G = (V,E) is a split graph, if and only if there is a partition of the
vertices V of G into a clique C and an independent set U. Another necessary and
sufficient condition for a graph G to be a split graph is that G and its complement
G are chordal graphs, see also Foldes and Hammer [7]. We analyse in this section a
subclass of the split graphs, namely the class of those split graphs where each vertex
of the independent set U is incident to exactly two vertices of the clique C. We call
these graphs the 2-split graphs.

Theorem 3.1 SIMPLE MAX CUT is NP-complete for 2-split graphs.

Proof:

We use a transformation from the (unrestricted) SIMPLE MAX CUT problem. Let
a graph G = (V,E) be given. Let G° = (V, E°) be the complement of G. Let
H = (VUES F), where F = {(v,w) |v,w eV, v#£w}U{(v,e) |vEV, e€ E v
is an endpoint of edge e}. In other words, we take a vertexin H for every vertexin G
and every edge in the complement of G. V forms a clique, E° forms an independent
set in H. Every edge-representing vertex is connected to the vertices, representing
its endpoints.

We claim that G allows a partition with at least K cut edges, if and only if H
allows a partition with at least 2 - |E¢| + K cut edges.

Suppose we have a partition Wy, W, of G with at least K cut edges. We partition
the vertices of H as follows: partition V as in the partition of G; for every e € E°:
if both endpoints of e belong to W, then put e in W;, otherwise put e in W;. It is
easy to see that this partition gives the desired number of cut edges.

Now suppose we have a partition of H into sets W, W,, that has at least
2 - |E°| + K cut edges. Partition the vertices of G in sets Wy NV, W, N V. This
partition gives the desired number of cut edges. This can be noted as follows: for
every edge (v,w) € E, we have one cut edge in H if (v,w) is a cut edge in G,
otherwise we have no cut edge. For every edge e = (v,w) € E°, we have that of
the three edges (v, w), (e,v), and (e, w), exactly two will be a cut edge. Hence, the
total number of cut edges in H equals the number of cut edges in G plus 2 - | E€|.

The theorem now follows, because H can be constructed from G is polynomial
time. m]

Double interval graphs are the intersection graphs of sets A,,..., A, such that
for all 7, 1 < 7 < n, A; is the union of two closed intervals of the real line. These
graphs are introduced by Harary and Trotter in [15].

Lemma 3.2 Each 2-split graph is a double interval graph.

Proof:
Let G = (V, E) be a 2-split graph with a clique C = {¢,,...,c,} and an independent

8

set U = {u1,...,u,} where each element u; is connected with two vertices aj, b;
of the clique. Define for each vertex a set of two intervals such that G is the
intersection graph of the corresponding sets. For each vertex ¢; € C take T(c;) =
{[m(i — 1) + 1,mi],[mn + 1,mn + 1]} and for each vertex u; € U take T(u;) =
{m(a; — 1) + j,m(a; — 1) + 5], [m(b; — 1) + j, m(b; — 1) + j]}. o

Hence, as consequence we get:

Corollary 3.3 SIMPLE MAX CUT is NP-complete for double interval graphs.

4 Graphs, related to bipartite graphs

Bipartite graphs are graphs G = (V, E) in which the vertex set can be partitioned
into two sets Vj and V; such that no edge joins two vertices in the same set. Simple
MAXCUT is trivial for bipartite graphs. Thus, it is interesting to look at related
graph classes. We consider the tripartite graphs, and the graphs that are the com-
plement of a bipartite graph. The latter graphs we call the co-bipartite graphs.

A generalization of bipartite graphs are the tripartite graphs G = (V,E). A
graph is tripartite, if and only if the vertex set can be partitioned into three inde-
pendent sets V;,V; and V3. In other words, a graph is tripartite if its chromatic
number is at most three.

Theorem 4.1 SIMPLE MAX CUT is NP-complete for tripartite graphs.

Proof:

By transformation from SIMPLE MAX CUT for split graphs to tripartite graphs. Let
G = (V, E) be a split graph, where the vertex set is partitioned into a clique C and
an independent set U, and define a graph G = (V, E). For each pair ¢;, ¢; € C with
i # J define a graph Gy; j; with vertex set

Viay = Aeicinziigy, 260 viap wi.g)
Eugy = (=i) (2450 6), Wi),
(2,33) (Wi 3 €5)s (Uiy» €5),
(601 651 (266 ¥6ay)s (2.3 uig))

and replace the edge (c;,c;) by the graph G{ij}- The resulting graph is tripartite
and we can show that G allows a partition with at least k cut edges if and only if
G allows a partition with at least k + 3|C|(|C| — 1) cut edges.

IfceSandc & S, we have in G one edge and get in G{ij) seven edges, if we
put ¥ sy, ug,s) into S. If for 7 # j both vertices c;, ¢; € S, we can get at most six
edges in G; ;. We can obtain this by putting Y(ijy into S. O

Theorem 4.2 SIMPLE MAX CUT is NP-complete for co-bipartite graphs.

9

Proof:
We use a transformation from the SIMPLE MAX CUT problem, restricted to split
graphs. Suppose G = (CU U, E) is a split graph, U forms an independent set, and
C forms a clique in G. Take a set U, disjoint from C U U, with |U’| = |U|. Let
H=(CuUUU", Eu{(v,w) |v#£w, v,we UuU'}). In other words, H is obtained
from G by adding the vertices in U’, and putting a clique on U U U". Clearly, H is
a co-bipartite graph.

We claim that G has a partition with at least K cut edges, if and only if H has
a partition with at least |U|2 + K cut edges. Suppose we have a partition Wy, W,
of G with at least K cut edges. Extend this partition by putting exactly |W; N U |
vertices from U’ in W,, and putting the other |[W,NU| vertices from U’ in W;. Now
MinUuU)| = |W,n(UU) = |U|. Hence, there are in H |U? cut edges in
the clique on U U U’, and at least K cut edges in the remainder of H.

Next, suppose we have a partition Wy, W, of H with at least |UI?+ K cut edges.
There are at most |U|? of these cut edges that go between two vertices in U U ['.

Hence, the partition (CUU)NW;, (CUU)NW; of G contains at least K cut edges.
O

5 Cographs

In this section, we show that the SIMPLE MAX cUT problem can be solved in O(n?)
time, when restricted to cographs. First, we need some definitions.

Definition 5.1 Let G, = (W, Ey), Gy = (Va, E;) be two graphs, with Vi and V,
disjoint sets. The disjoint union of Gy and G, is the graph Gy UG, = MUV, E U
E3). The product of G, and G, is the graph G1 x G, = (UV4, B, UE,U{(v,w) |v €
Vi, w € V3}).

Definition 5.2 The class of cographs is the smallest set of graphs, fulfilling the
following rules:

1. Every graph G = (V, E) with one vertez and no edges (V| =1 and |E| = 0)
s a cograph.

2.If Gy = (WB,E) isa cograph, G, = (V3,E,) is a cograph, and V; and V; are
disjoint sets, then Gy U G, is a cograph.

3. If Gy = (W, E,) isa cograph, G; = (V3, E,) is a cograph, and V; and V, are
disjoint sets, then Gy X G, is a cograph.

To each cograph G one can associate a corresponding rooted binary tree T,

called the cotree of G, in the following way. Each non-leaf node in the tree is labeled
with either “U” (union-nodes) or “x” (product-nodes). Each non-leaf node has

10

exactly two children. Each node of the cotree corresponds to a cograph. A leaf node
corresponds to a cograph with one vertex and no edges. A union-node (product-
node) corresponds to the disjoint union (product) of the cographs, associated with
the two children of the node. Finally, the cograph that is associated with the root
of the cotree is just G, the cograph represented by this cotree.

We remark that the most usual definition of cotrees allows for arbitrary degree
of internal nodes. However, it is easy to see that this has the same power, and can
easily be transformed in cotrees with two children per internal node. In (6], it is
shown that one can decide in O(n+e€) time, whether a graph is a cograph, and build
a corresponding cotree.

Our algorithm has the following structure: first find a cotree for the input graph
G, which is a cograph. Then for each node of the cotree, we compute a table,
called mazcy, where H is the cograph corresponding to the node. These tables are
computed ‘bottom-up’ in the cotree: first all tables of leaf-nodes are computed, and
in general a table of an internal node is computed after the tables of its two children
are computed. v

Let H = (V', E’) be a cograph. The table mazcy has entries for all integers 1,
0 < < |V’|, that denote the maximum size of a cut of H into a set of size i and a
set of size |V’| — ¢, in other words:

mazecy(i) = max{|{(v,w) | v € Wy, w € W,}| | WU W, = V', W, N
W2 - 0, IWll = Z}

Clearly, the size of the maximum cut of G is maXp<i<|v) mazcg(t), hence, when
we have the table mazcg, i.e., the table of the root node of the cotree, then we know
the size of the maximum cut. It remains to show that the tables can be computed
efficiently.

For leaf nodes, the corresponding cograph H has one vertex and no edges, hence
the tables associated with leaf nodes are all of the form: mazcy(0) = 0, mazcy(l) =
0.

The following lemma shows how a table mazcg, ug, or a table marcg xg, can
be computed, after the tables mazcg, and mazcg, are computed.

Lemma 5.3 Let G, = (V1, E)) and G, = (Va, E3) be graphs, with V; and V, disjoint
sets. Then:

(i) mazeg,ug, (1) = max{mazcg, (j) + mazcg,(i—j) | 0<j <34, j < Vil, i—j <
[Val}.

(i1) mazegyxs, (i) = max{mazcg, (j) + mazes, (i - 1)+ - ([Val - (i —)) + (V| -
3 G=3)10<i<i, j <[Vl i -5 < [Val).

Proof:

Consider a partition of V; UV} into two disjoint sets W, and W,, with Wi =4 If
Vi N W contains exactly j vertices, then 0 < J <4 j < |Vif; there are exactly ¢ — j
vertices in V; N Wy, and hence ¢ — j < |V;3|. The maximum number of cut edges

11

in the graph G; U G, under the assumption that there are J vertices in V; N Wy,
and 7 — j vertices in V; N W, is mazcg, (j) + mazcg, (¢ — 7). In case of the graph
G1 X Gy, there are additionally j - (|Vz| — (i — j)) edges between vertices in nnw,
and vertices in V; N W,, and (¢ —7) - (IVi] = j) edges between vertices in VanW,
and vertices in V; N W,. m]

It directly follows that one can compute the table mazcg,uG, and mazrcg, xg, in
O(IVil - [V4]) time.

Let ¢(n) denote the maximum total time to compute all tables mazc for cotrees
corresponding to cographs with n vertices. We have that for all n > 1, t(n) <
maXjgign-1¢-1*(n—1)+¢() +#(n — 1), for some constant c. (G must be the product
or union of two cographs G1, G;. In case Gy has i vertices, computing all tables of
the subtree rooted at the node representing Gy costs at most #(¢) time, computing
all tables of the subtree rooted at the other child of the root costs at most t(n —1)
time, and computing the table of the root-node costs O(i(n — 7)) time.) From this
formula, it follows by induction, that there exists a constant ¢ , such that for all
integers n > 1, ¢(n) < ¢ - n2.

Theorem 5.4 There exists an O(n?) algorithm for SIMPLE MAX CUT on cographs.

It is possible to modify this algorithm such that it also yields a partition with the
maximum number of cut edges. This modification uses also O(n?) time. The mod-
ification can be carried out in the following way: for each table mazcy associated
with an internal node, and for each entry in such a table, store, when comput-
ing this table, also the value of j where the maximum as described in lemma 5.3.
More formal, store values mazvaly,yy, and mazvaly, x g, , with if mazvaly,yy, = 7,
then mazcg,ug, (1) = mazcg, (§) + mazcg, (i — j), and if mazvaly,xy, = j, then
mazce,xG, (i) = max{mazcg, (j)+mazeg, (i—5)+5-(|Val— (i) + (|Vi|—5)- (i— 1)}
These values are obtained as a by-product of the algorithm described above. When
all tables are computed, the partition of G with the maximum cut can easily be
constructed. Suppose the maximum value in the table mazcg is mazcg(ip), and
mazvalg(ip) = jo. We construct the desired partition with i vertices in W, as
follows. If G consists of one vertex, then put this vertex in Wj, if and only if 75 = 1.
Otherwise, G is disjoint union or product of two graphs Hy, H,. We know the max-
imum cut is achieved if we choose Jo vertices of W, in H,, and 7o — Jo vertices of
W) in H,. Recursively construct the partitions of H; and H, with these numbers of
vertices in W;. The resulting partition gives the maximum cut. It is straightforward,
that the extra overhead is bounded by O(n?).

6 Graphs with bounded treewidth

In this section we show how the SIMPLE MAX CUT problem can be solved on graphs
with bounded treewidth. This result is already well-known (see e.g. [16] and neither

12

are the techniques used here very novel. We include the result with proof here,
as it will be generalized in the next section. The notion of treewidth of a graph
was introduced by Robertson and Seymour {14], and is equivalent to several other
interesting graph theoretic notions, for instance the notion of partial k-trees (see

e.g., [1, 2]).

Definition 6.1 A tree-decomposition of a graph G = (V,E) is a pair ({X; | i €
I},T = (I, F)), where {X; | i € I} is a collection of subsets of V, and T = (I, F)
is a tree, such that the following conditions hold:

1. UiGI Xi == V
2. For all edges (v,w) € E, there exists a node i € I, with v,w € X;.

3. For every vertezx v € V, the subgraph of T, induced by the nodes {i € I | v €
Xi} is connected.

The treewidth of a tree-decomposition ({X; | i € I},T = (I, F)) is max;er | X;| — 1.
The treewidth of a graph is the minimum treewidth over all possible tree-decompo-
sitions of the graph.

It is possible to make small modifications to a tree-decomposition, without in-
creasing its treewidth, such that one can see T as a rooted tree, with root r € I,
and the following conditions hold:

1. T is a binary tree.
2. If a node 7 € I has two children j; and j;, then X; = X;, = X;,.

3. If a node ¢ € I has one child 7, then either X; C X; and |X; — X;| = 1, or
X; C X, and IXj - Xil=1.

We will assume in the remainder that a tree-decomposition of G of this type is given,
with treewidth at most k, for some constant k. Note that a tree-decomposition of
G with treewidth < k can be found, if it exists, in O(nlog® n) time [3]. We omit the
description of the transformations to the above form from this version of the paper.

For every node i € I, let Y; denote the set of all vertices in a set X jwithj =17 o0r
J is a descendant of ¢ in the rooted tree T'. Our algorithm is based upon computing
for every node ¢ € I a table mazc;. For every subset S of Xi, there is an entry in
the table mazc;, fulfilling

mazc(S) = s'g}’fn%x.:sl{(v’w) EE|veS, weY:- S}

In other words, for § C X;, mazc;(S) denotes the maximum number of cut edges
for a partition of ¥;, such that all vertices in S are in one set in the partition, and
all vertices in X; — S are in the other set in the partition.

13

The tables are again computed in a bottom-up manner: start with computing
the tables for the leaves, then always compute the table for an internal node later
than the tables of its child or children are computed. The following lemma shows
how the tables can computed efficiently:

Lemma 6.2 (i) Let i be a leaf in T. Then for all S C X;, mazci(S) = |{(v,w) €
E|lveS, we X; - S}|.

(ii) Let i be a node with one child j in T. Suppose X; C X;. Then for all S C X;,
mazci(S) = maxsicx;, s'inx,=s mazc;(S’).

(iii) Let i be a node with one child j in T. Suppose X; U {v} = X;, v € X;. For all
S CX,, ifv €S, then mazxci(S) = mazci(S — {v}) +|{(s,v) | v € Xi — S}|, and if
v € S, then mazci(S) = mazc;(S) + |{(s,v) | v € S}

(iv) Let i be a node with two childs jy, j» in T, with X; = X; = Xj,. For all
S C X;, mazci(S) = mazc;, (S) + mazc,(S) — |{(v,w) € E|veE S, we X;—S}|.

Proof:
It is easy to see that these conditions hold from the definitions. The subtraction in
case (iv) is needed because these edges are otherwise counted twice. 0

From the lemma, one can see that computing a table mazc; can be done in O(1)
time. So, in O(n) time, one can compute the table of the root r. The size of the
maximum cut is maxscx, mazc,(S).

Theorem 6.3 SIMPLE MAX CUT can be solved in O(n) time on graphs, given with
a tree-decomposition of constant bounded treewidth.

Again, it is possible to modify the algorithm, such that it also yields a partition
with the maximum number of cut edges. Note that the result of this section is not
new, but included here because it is generalized in the next section.

7 Composition of graphs

In this section, we give a result, that generalizes the results of the previous two
sections.

Definition 7.1 Let Hy = (Vo, Eo) be a graph with r vertices; Vo = {v1,v2, -, v2}.
Let Hy = (W, Ey), Hy, = (W3, Ey), ..., H, = (V,,E,) be r disjoint graphs. The
composition graph Ho[Hy, H,,---, H,] is the graph, obtained by taking the disjoint
union of Hy, Hy, ..., H,, and adding all edges between pairs of vertices v, w,
withv € V;, w € V}, and (3,5) € Eo: HolHy,Hy, -, H,] = (Ur<i<r Vi, Ur<icr Ei U
{(vyw) | F,j: 1<, j<r,veV,weV,, (1,j) € Eo}). T T

14

It often is useful to try to write a graph G = (V, E) as a composition graph
G = Hy[H,, Hy,- -+, H,], for some suitable choice of Hy, ..., H,. Sucha composition,
where H, is as small as possible, r > 2, can be found in polynomial time [12].
(Clearly, a trivial composition, where G = Hp and all graphs Hy,--- , H,, consist
of one vertex allways exists, but is not really usefull.) Then, it is often useful to
decompose the graphs Hy, H,, ..., H, again, and then possibly decompose the
formed parts of these graphs again, etc.

In this way, one can associate with a graph a decomposition tree. (Note that this
is an entirely different notion as the notion of tree-decomposition!) A decomposition
tree is a rooted tree, where every non-leaf node is labeled with a graph. We call this
graph a label graph. The number of vertices in a label graph equals the number of
children of the node to which the graph is labeled; these vertices are always numbered
1,2,...To each node of the decomposition tree, one can associate then a graph, called
the factor graph, in the following way. To a leaf node, associate a graph with one
vertex and no edges. To a non-leaf node, with label graph Ho = ({1,2,---,7}, Eo),
associate the graph Ho[H,,- - -, H,], where for all ¢, 1 < i < r, H; is the factor graph
associated to the i’th child of the node. The factor graph associated to the root of
the tree is the graph, represented by this decomposition tree.

The notion of decomposition tree generalizes the notion of cotree: in a cotree
the only label graphs are K, (a graph with two vertices and one edge — the label

of product nodes), and K% (a graph with two vertices and no edges — the label of
union nodes).

The following result generalizes the results of the previous two sections.

Theorem 7.2 For all constants k, the SIMPLE MAX CUT problem s solvable in

polynomial time for graphs, with a decomposition tree, where every label tree has
treewidth at most k.

The first step of the algorithm is to find the decomposition tree. By using the
results from [12], it follows that the decomposition tree can be found in polynomial
time, such that the size and also the treewidth of label graphs are minimal. Also, a
tree-decomposition of treewidth at most k of the type as described in the previous
section is computed for every label graph.

For each factor graph H = (V’, E'), associated with a node of the decomposition
tree, we compute — just as we did for cographs — a table mazcy, which has entries
for all integers 7, 0 < ¢ < |V’|, that denote the maximum size of a cut of H into a
set of size ¢ and a set of size |V’| — ¢, in other words:

mazcy(i) = max{|{(v,w) | v € W1, w € Wo}| | WU W, = V', Wi N
W2 = 0, lWll - 2}

These tables are easily computed for factor graphs, associated with leaves. Again,
the tables are computed bottom up in the decomposition tree.

15

Suppose we want to compute the table for a factor graph H = Ho[Hy,- -, H,),
(Ho = ({1,2,-+-,r}, Eo) is the label graph of some non-leaf node of the decompo-
sition tree, and Hy, = (W, E1), ..., H, = (V;, E;) are the factor graphs, associated
with the children of that node.) We have already computed all tables mazcy,, ..
mazcy,.

As in the previous section, for every node a € I, let Y, denote the set of all
vertices in a set X3 with # = a or 8 is a descendant of « in the rooted tree T'.

Let H, = (Z,, F,) denote the graph, obtained by removing all vertices from H,
that are not in a graph H;, with ¢ € Y5, or in other words, H, is the subgraph of
H, induced by all vertices in Z, = Uiey, Vi-

In order to compute the table mazcy, we compute now for every node a € I of
the tree-decomposition ({H, | @ € I}, T = (I, F)) of label graph Hp a table mazcy,,
which has an entry for every funtion f : X, — {0,1,2,...}, such that f(i) < |Vi|,
where for all such funtions f:

9

mazc,(f,r) denotes the maximum cut size of a partition of Z, into two
disjoint sets Wy, Wy, such that for all i € Xo, [Wy NV;| = f(i), and
|W1| =T7T.

In other words, we look for the maximum cut of H,, such that f describes for all
graphs H; with i an element of the set X,, how many vertices of H; are in the set
W.

We compute the tables mazc), bottom up. (Note that we work with two types
of trees: we have one decomposition tree, and with every node of the decomposition
tree, we have associated a tree-decomposition.)

Lemma 7.3 (i) Let o be a leaf in T. Then for all f : Xo — {0,1,2,...}, with
for all i € Xo : f(i) < |Vil, r = Tiex, f(§): mazcy(f,r) = Tiex, mazen,(f(i)) +
ek, spexal) - (Vil = FG) + F3) - (Vi = £@))). Por all other values of r,
mazc,(f,r) = —oo.

(it) Let @ be a node with one child B in T. Suppose X, C Xp. Then for all
r>0, f: Xy — {0,1,2,...} with for all i € X, : f(i) < |Vi|: mazc,(f,r) =
max{mazcy(f',r) | Vi € Xo : f(i) = f'(i) VVi € Xg: f'(3) < [Vil}.

(i) Let a be a node with one child B in T. Suppose Xp U {io} = Xq, 10 & Xp.
Then for all r > 0, f : X, — {0,1,2,...} with for all 1 € X, : f(2) < |Vi|: let
f' be the function f restricted to Xg. Then mazc,(f,r) = mazcy(f,r — f(i0)) +
o ensex.Fi0) - (Vi = FG) + (Wil — Flio)) - £().

(iv) Let a be a node with two childs By, By in T, with Xo = Xp, = Xp,. Then for
alr >0, f: X, — {0,1,2,...} with for all i € X, : f(3) < |Vi|: maxd,(f,r) =
ma'xrl,rzzo, r1+r2—z'.ex° f(@)=r mawcbl (f’ r1)+ma:1:c,32(f, "'2)_E(i,j)GEo,i,jGXa(f(i)'(l‘/jl_

fG) + (il = £(2) - £(5))-

Proof:
(i) In each V;, i € X4, we must put f(¢) vertices in the first set of the partition.

16

In the subgraph, induced by a set V;, the maximum number of cut edges is then
mazcy,(f(i)). For each edge (7,7) with both ¢ and j in X,, there are f(i) - (|V;| —
F(3) + (il = £(i)) - £(5) cut edges.

(ii) Note that H, = Hp. We take the maximum over all possible ways to extend
the function f to the domain Xj.

(iii) Consider a partition of Z, into two disjoint sets of W, W,, with for all
i € Xo, [WAN V)| = f(i), and |Wy| =r. W} = Wy N Zs, W] = W, N Z; is a partition
of Zg, with for all i € Xp, W] NVi| = £(i), and |[W!| = r — f(io). For every edge
(i0,5) € Eo, j € Xa, there are exactly f(io) - (|V;| = f(5)) + (IVio| = £(i0)) - £(5) cut
edges between vertices in V;, and V;.

(iv) Consider a partition of Z, into two disjoint sets of Wy, W, with for all
) c Xa, |W1 ﬂV}| = f(z), and IW]I =T7r. W‘Y = Wl 0257, W;’ = Wzan is a
partition of Zg,, v € {1,2}. Note that |W}|+|W?| = r—T;cx.. There are precisely
S arenigexa(F0)- (15— £(7)) +(Vil = £(3)) - £(7)) edges that are both cut edge
in the partition W}, W of Zp,, and a cut edge in the partition W}, W2 of Zs,. O

From lemma 7.3, it follows directly how all tables mazc’ can be computed in a
bottom up manner, given all tables mazcy,. The time, needed per table is linear in
the size of the table, plus the sizes of the tables of its children, hence is polynomial in
n (but exponential in k.) When we have the table mazc,, with gamma the root-node
of the tree-decomposition, then we can compute the table mazcyy (remember that
H = Hy[H,,- -, H,]), using the following lemma.

Lemma 7.4 For allt >0, r < |Vy|, mazcy(r) = max{mazc (f,r) | Vi € X, :

f(@) < Vil}.

Proof:
Note that H = H,. We just take the maximum over all possible numbers of vertices
in W that are in each of the sets V; with i € X,. 0O

We now are one level higher in the decomposition tree. The processes are re-
peated until the table mazcg is obtained, from which the answer to the simple
max cut problem can be determined. As each table computation can be done in
polynomial time, and a linear number of tables must be computed, the whole algo-
rithm takes time, polynomial in n, when & is a fixed constant. We now have proved
theorem 7.2.

It is also possible to construct the partition which gives the maximum number
of cut edges, without increasing the running time of the algorithm by more than

a constant factor. This can be done similarly as in the previous two sections. We
omit the details.

17

8 Weighted Max Cut

We conclude this paper with some small observations on the weigthed variant of the
problem. First, observe that MAX CUT is NP-complete, when restricted to cliques,
when only edge weigths 0 and 1 are allowed. (The problem in this form is equivalent
to the SIMPLE MAX CUT problem.) So, MAX CUT is NP-complete for all classes of
graphs that contain all cliques, (e.g., for the class of cographs.) Secondly, as first
shown by Wimer [16], MAX CUT can be solved in linear time on graphs given with
a treedecomposition of bounded treewidth. (It is possible to modify the results of
section 6 and obtain an algorithm, quite similar to the algorithm of Wimer.)

References

[1] S. ARNBORG, Efficient algorithms for combinatorial problems on graphs with
bounded decomposability — A survey, BIT 25 (1985), pp. 2 — 23.

[2) H.L. BODLAENDER, Classes of graphs with bounded treewidth, Technical Re-

port RUU-CS-86-22, Dept. of Computer Science, Utrecht University, Utrecht,
1986.

[3] H.L. BODLAENDER AND T. KLOKS, Better algorithms for the pathwidth and
treewidth of graphs, Proc. 18th Int. Coll. on Automata, Languages and Pro-
gramming, Springer Verlag Lecture Notes on Comp. Science, vol. 510, (1991)
pp. 544 — 555.

[4] K. CHANG AND D. Du, Efficient algorithms for the layer assignment problem,
IEEE Trans. CAD 6 (1987), pp. 67 — 78.

[5] R. CHEN, Y. KAJITANI AND S. CHAN, A graph theoretic via minimiza-
tion algorithm for two layer printed circuit boards, IEEE Trans. Circuit Syst.
(1983), pp. 284 — 299.

[6] D.G. CoRNEIL, Y. PERL, AND L.K. STEWART, A linear recognition algo-
rithm for cographs, SIAM J. Comput. 4 (1985), pp. 926 — 934.

[7] S. FOLDES AND P.L. HAMMER, Split graphs, Proc. 8th Southeastern Conf.
on Combinatorics, Graph Theory and Computing, Louisiana State University,
Baton Rouge, Louisiana, pp. 311 — 315.

[8] M.R. GAREY AND D.S. JOHNSON, Computers and Intractability: A Guide
to the Theory of NP-Completness, Freeman, San Francisco, 1979.

[9] M.R. GAREY, D.S. JOHNSON AND L. STOCKMEYER, Some simplified NP-
complete graph problems, Theo. Comput. Sci 1 (1976), pp. 237 - 267.

18

[10]

(1]

[12]

[13]

[14]

[15]

[16]

D.S. JouNnsoN, The NP-completeness column: an ongoing guide, J. Algorith.
6 (1985), pp. 434 — 451.

R.M. KARP, Reducibility among combinatorial problems, in: Miller and

Thatcher: Complexity of Computer Computations, Plenum Press (1972), pp-
85 — 104.

J.H. MULLER AND J. SPINRAD, Incremental modular decomposition, J.
ACM, 36 (1989), pp. 1 - 19.

R. PINTER, Optimal layer assignment for interconnect, Proc. Int. Symp. Cir-
cuit Syst. (ISCAS) (1982), pp. 398 - 401.

N. ROBERTSON AND P.D. SEYMOUR, Graph minors. II. Algorithmic aspects
of tree-width, J. Algorithms 7 (1986), pp. 309-322.

W.T. TROTTER, JR. AND F. HARARY, On double and multiple interval
graphs, J. Graph Theory 3 (1979), pp. 205 - 211.

T.V. WIMER, Linear algorithms on k-terminal graphs, PhD thesis, Depart-
ment of Computer Science, Clemson University, 1987.

19

