From game trees to game graphs

W.T.M. Kars

RUU-CS-90-43
December 1990

Utrecht University

OISO —
; ‘, Department of Computer Science
- <
: § Padualaan 14, P.O. Box 80.089,
¥ 3508 TB Utrecht, The Netherlands,
Tel. : ... +31-30- 531454

From game trees to game graphs

W.T.M. Kars

Technical Report RUU-CS-90-43
December 1990

Department of Computer Science
Utrecht University
P.0.Box 80.089
3508 TB Utrecht
The Netherlands

I88N:0924-3275

From game trees to game graphs

W.T.M. Kars
Department of Computer Science, Utrecht University,
P.O. Box 80.089, 3508 TB Utrecht, the Netherlands.

Abstract

We extend the definition of the score of a game tree using the minimax rule to game
graphs containing cycles. This is accomplished by taking the limit of a sequence of scores
of game trees that in some sense approximate the game graph. We show that this score is
well-defined for all game graphs, and give algorithms for its evaluation, including one that
uses memoization.

1 Introduction

In this note we consider games for two players, called Max and Min, who take alternating turns
to move. Both players have perfect knowledge of the game and its current position and the game
is deterministic in that there is no chance involved. Examples of the sort of game we have in
mind are chess and the L-game of [de Bono] (cf. also [Berlekamp, Conway & Guy]). Games are
usually represented by a game graph, i.e. a directed graph whose vertices represent the possible
positions of the game and whose edges represent the possible moves. Algorithms for finding an
optimal move involve the generation of (part of) the game graph, evaluating the leaves of this
graph using some scoring function and backing up the scores to the root of the graph. The
scoring function assigns values to the leaves taken from some ordered domain. The higher a
score, the better it is for Max and the worse it is for Min. Backing up the score to the root
involves a minimax procedure: take the maximum of all subsequent scores if it’s Max’s move,
otherwise take the minimum. This reflects the fact that a player will do the best possible move,
assuming the other player will do the same and that both have perfect knowledge. Usually this
calculation is performed in a depth-first search (dfs) way.

All this is well-known and well-defined if the game graph is a tree, but what happens when
the graph contains semicycles or cycles?! Proper semicycles occur if a position may be reached
by more than one sequence of moves (without returning to a previous position). They pose no
problem: the score of a node is still defined uniquely by the minimax rule. In fact, the sharing
of nodes offers the opportunity to save work if memoization (a term taken from functional
programming) is used, i.e. if the scores of (shared) nodes are retained. This eliminates the need
for recalculation of a score when a different path to a shared node is followed by the dfs-algorithm.

Cycles occur if there is a sequence of moves leading back to a previous position. This implies

the possibility of non-termination (divergence). The rules of the game will have to deal with this
possibility. We will assume the simple and fair rule: divergence = draw.

1The terminology is taken from [Harary]: both semicycles and cycles are closed sequences of edges. The edges
in a cycle point in the same direction, whereas in a semicycle this is not necessary. Stated differently: a cycle
€ E* and a semicycle € (EU E~')*. A proper semicycle will be a semicycle that is not a cycle.

A crude way to handle cycles would be to consider the node that closes a cycle to be a terminal
node and evaluate it as such. However, we can do better than that, as we will show.

Section 2 contains the basic definitions of the types of graphs that will be used. Section 3
illustrates the main problem by an example. Section 4 contains the definition of the minimax
score for any game graph by a limit procedure. In section 5 we prove that this limit converges
in finite time for all finite game graphs, leading to a distributed algorithm for its calculation. In
section 6 it is shown that the score of a finite game graph may be computed by a simple dfs-
algorithm. Section 7 considers the problems raised if one wants to apply memoization, giving
rise to a more efficient algorithm for the evaluation of the score of a finite game graph, and
section 8 concludes with some final remarks.

The results appear to be new. Apart from [Boffey], who only handles proper semicycles, the only
work on extending the evaluation of game trees to game graphs seems to be [Gijlswijk et al.]
(see section 8). The monumental work by [Berlekamp, Conway & Guy] may contain a treatment
in some way, but the idiosyncratic notation and terminology makes it hard to compare it to the
present work.

2 Definitions and notation

The two most important types of structure that we need are the finite game graphs and the
infinite game trees.

Definition 2.1

a G, is the class of finite-branching, connected, rooted, directed graphs with no more than
w (i.e. countably infinite) nodes. G € G,, if G = (V, E,r) with

e V is a set of nodes (vertices), |V| < w,

e E CV xV is the set of directed edges,

e 7 € V is the root,

e for every v € V there is a (directed) path from r to v,

. forevervaV:|E'v|<w,whereE:c:{er|(z,y)€E}.

b G is the subclass of G, with a finite number of nodes. T, is the subclass of G, of (infinite)
trees and T the subclass of G of finite trees.

G, OO0
U U
T, O T

¢ For any class of graphs X, the class of game graphs of X, denoted by GX, is the subclass
of X of graphs which are

e bipartite, i.e. there is a partition of V: V = V_UV,, where V. NV, = @ and such
that E C (V. x V3)U (V4 x V_), and

o provided with a (scoring) function on the terminal nodes (leaves), t : F— K, where
F ={z € V| Ez = @} is the set of leaves and (K,<) is a finite ordered set
containing 0 (representing a draw), assumed fixed throughout this note.

Unless stated differently, a game graph will be normalized, in the sense that r € V, (Max
begins).

For any game graph G = (V,E,nt),V; =V, \ F is the set of maximizing nodes (Max’s

turn to play) and V| = V_ \ F is the set of minimizing nodes (Min’s turn to play).

Two game graphs are isomorphic (=) if there is a bijection between the nodes of the two
graphs which preserves adjacency, roots and t-scores.

O

We will use some notation of the Bird-Meertens formalism (see e.g. [Bird]) and of functional
programming in general. In particular, - denotes apposition (i.e. function application or function
composition, depending on the context).* denotes the map operator, which takes a function and
a list and applies the function to every element of the list. / denotes the reduce operator, which
takes an associative binary operator and a list and returns the value of the expression formed by
putting the operator between the elements of the list. T denotes the binary maximum operator
and | denotes the binary minimum operator.

Properties of T and | that will be needed: both are commutative, associative and idempotent
(a1 a = a) and they distribute over each other.

An overview of the notation may be found at the end of this note.

3 Problem statement
Given a game graph G = (V, E,r,t) € GG, the problem consists of (uniquely) extending ¢ to a
function s (the score) on V:
t€F - sz=tz (T)
subject to the minimax rule:
zeV; » sz=1/-sx-Ez (MM)
zeV, - sz=|/-sx-Ex

In the sequel this will usually be abbreviated by z € Vi — sz =]/-s+-E z. Note that T [-sxEzx
should be parsed as (1/)-(s*): (E z). We will also refer to the score of a game graph, when we
mean the score of its root.

Theorem 3.1 If G € GG is cycle-free, there is a unique solution s to (T+MM).

Proof Straightforward bottom-up calculation.
a

If G is not cycle-free, the score may not be determined uniquely by (T+MM).
Example 3.2 See the graph shown in figure 1.

The score (s-value) of a node will be denoted by the name of the node itself. The condition of
the minimax-rule is

Figure 1: Example of a graph with a cycle; a € V,c € V_.

(a=btlc) A (c=dla)
which is equivalent to
(a=b>c=d) Vv (d>a=c2b)

This means that s is uniquely determined if b > d, since then a = b and ¢ = d. This is obvious
if one considers the strategy followed by Max in a: Max will certainly not move to c, since this
will be followed by a move to d, leaving Max worse off.

However, if b < d, the minimax-rule only restricts the scores of a and ¢ to be equal and inside the
interval [b, d]. Examination of the possible move sequences shows the following. If Max moves
from a to ¢, Min could either ‘offer a draw’ by moving back to a or choose d. If d > 0, Min should
play a: Max may choose b, which is better for Min than d, or Max chooses ¢ again which will
result in a draw with score 0, which is also better for Min than d. However if d < 0, it is better
to play d rightaway. Moving to a will certainly not result in Max playing to b, since b < d < 0,
but Max will play ¢ again. In short, in ¢, Min will choose d if it is smaller than 0, otherwise it
chooses a. Following this line of reasoning gives the following scores, which are valid in all cases:

a = b1(d10)
c = dl(bTO)
O

For this particular case, we see that the score of a —taking into account the possibility of a
draw— may be calculated in a straightforward depth-first search (dfs) way, if the score of a
‘back link’ in the dfs is set to 0. In section 6 we will prove that this is true in general.

4 Definition of s for general game graphs

The score of a game graph will be defined as the score of the (possibly infinite) isomorphic
tree that is obtained by ‘unraveling’ the proper semicycles and ‘unwinding’ the cycles. It is the
tree that contains all paths in the graph in a 1-1 way. See figures 2 and 3 for examples of this
transformation. '

The definition of the minimax score of (the root of) infinite trees should be subject to the
requirement that

e the score of a finite tree equals the usual one, i.e. it is a consistent extension, and

e the tree resulting from unwinding a simple cycle is assigned a score of 0.

Figure 2: Example of unraveling a graph with a proper semicycle.

Figure 4: Approximations of the tree of fig. 3.

This is accomplished by defining the score of an infinite tree to be the limit of the scores of
finite approximations of the tree. The nth approximation consists of that part of the tree that is
reachable from the root in n steps, and where fresh leaves, i.e. those leaves of the approximation
that are not leaves of the original tree, are assigned a score of 0. See figure 4 for an example.

Interpreting this definition in terms of the original graph, we get the following

Definition 4.1 For (V, E,r,t) € GG, let

8T = lim s, 7
n—>00

where

So P =0

spp1p = HpeEF —tp
elif peVy >/ -sax-Ep
fi

(W]

The limit in this definition exists for all game graphs, as will be shown in the next section.

The definition is evidently in accordance with the usual one when the graph is cycle-free. Fur-
thermore, assigning score 0 to fresh leaves ensures that a simple draw will be assigned a score
of 0 (see figure 5). Hence our requirements are fulfilled.

Tﬂ
aQ a
b b
a
™,

Figure 5: Approximations of a simple cycle.

5 Convergence of s

In this section we will show that the limit lim,—, S, exists and, for finite game graphs, converges
in O(|V|) steps, each taking O(|E|) time.

Let G = (V, E,r,t) € GG. By the definition of s,

OV
A s,

So

Sn+41

for some operator A : K¥—K" independent of n.

Definition 5.1 Define a partial order on K:

a<i1b=(b<a<0) Vv (a=0)V (0<agd)
Define a partial order on KV:

z<yy = WVweV:iz-v,y-v
o

It is straightforward to prove that <, and <y are partial orders, i.e. that they are reflexive,
antisymmetric and transitive.

Lemma 5.2 (KV,<y) is a complete partial order (cpo) with least element 0.

Proof Recall that a cpo is a poset with a least element and in which every ascending chain has
a least upperbound. An ascending chain in a poset (P,C) is a countable sequence of elements
of P: (@), such that for all 2 > 0: a; € aiy1-

Since the poset (KV,<y) is the Cartesian product of |V| copies of (K, <), it is sufficient to
prove that (K, <,) is a cpo (cf. [Loeckx & Siebert], p. 75).

It is easy to see that K is a cpo; for all s € K V.0 <y s, so 0 is the least element; also, since K

is finite, every ascending chain has a least upperbound.
a

Remark:let K_ = {a € K |a < 0} and Ky = {a € K | a > 0}, then (K, <) is just the so-called
coalesced sum of the cpos (K-,>) and (K, <).

Next we show that s, is a monotone sequence in KV. This amounts to proving that, if each
value in a set (viz. s, -E v) ‘moves away’ from 0, then this also holds for the maximum and
minimum of these values (Viz. $,41 v). Note that it is perfectly possible for a maximizing node
(€ V) to have a decreasing (in the sense of <) sequence of approximate scores.

Remark: hence, if we define a partial order <gr on GT, (incl. the empty tree) by T <gr T"
iff T = @ or T is an approximation of T" (see section 4), then it is not difficult to see that
(GT,,<gr) is a cpo with least element @, and (defining s & = 0) that s is an order-continuous
function: (GT,, <er) — (K, <1)-

Lemma 5.3
Vn €N:s, <v Snti
Proof By induction on n.
Let Po(v) = (85 v <1 8n41 ©), and Py = 8p v Sn41, 8O P, =Vv e V:P,(v).
Base: P, holds, since s, = 0, which by lemma 5.2 is the least element of the cpo (KV,<v).

Step: Assume P; holds for all k < n, we will prove that P, holds. Let v € V.

e v € F: Then so v=0and forall n > 0:s, v=1v is constant. Hence P,(v) holds.

o v € V;: For k € N let I; be a successor of v with a maximal value of s, i.e. [y € E v and
Ywe Ev:s, w< sl (= 8k v).

Note that Pi(v) = Q(Sk v, Sk41 v) Where

Q(a,b) = (b<a<0) Vv (a=0)V (0<a<b)
= (a<0—-b<La)A
(a=0 — true) A
(a>0 — a<b)

so the proof of P,(v) will consider these 3 cases.
The following equations will be useful

Q(a,b)A(a<0)=(0>a2b) (A)
Q(a,b)A(a>0)=(0<a<b) (B)

1. s, v < 0. Proof obligation: s, v 2 Sn41 ©.

First:
Sp1 lp < “def. of s,”
Sp ¥ < “assumption”
0

so by (A) using Pn—1(ls), Which holds by the induction hypothesis:
8p ln £ 8n1 l. (*)

Then:
Sp ¥ > “def. of s,”
Sp-1ln 2 “(*)”
Sy ln = “def. of 1,,”
Spn+1 U

2. s, v = 0. No proof obligation.

3. s, v > 0. Proof obligation: s,41 v 2 $n v.

First:
Spet lnoy = “def. of l,_y"
Sa ¥ > “assumption”
0

so by (B) using P,_1(ln-1), Which holds by the induction hypothesis:

Sn ln—l 2 Spn-1 ln—l (**)

Then:
Sp41 U > “def. of sp41”
Sn ln—l .>_ “(**)”
Sn~1 lﬂ—l = “def. of ln—l”
Sa v

e v € V: The proof goes analogous to the previous case.
a
Theorem 5.4
(8n)2., converges in O(|K| x |V]) steps.

Proof

By lemma 5.3 (8,)2>, is an ascending chain, which by lemma 5.2 has a least upperbound.
Furthermore, since 8,41 = A S,, S SOON aS Sy = Sk for some k, then sp4; = s for all
i > 0. This means that the slowest rate of convergence is obtained if only one component of s,

8

changes value to the next higher value in K. Since the longest ascending chain in K has length
|K_| 1 |K4| < |K|, convergence takes < |K| x |V steps.
a

Note that each step takes O(|E|) time!

The upperbound for the number of steps until convergence may be sharpened somewhat by
observing that the possible values of any s; v are taken from the set (t F)u {0}, since the
maximum and minimum of a finite set are contained in that set.

This leads to a straightforward (synchronous) distributed algorithm for the computation of s.
Consider a processor network with the same topology as the game graph: for every v € V there
is a processor p, and for every (v, w) € V there is a communication link from p,, to p, (order
reversed!). Every processor p, maintains the current value of s, v in a variable S, initialized
to 0. Processor p, repeatedly executes a loop, in which it sends the current value of S to its
parent, awaits the S-values of all its children and recomputes S by taking the maximum (if
v € V;) or minimum (if v € V}) of the children’s values. A ‘leaf’ processor p, (v € F) repeatedly
sends the value t v to its parent after the first step. This algorithm should be completed with
a stability detection algorithm. We will not pursue this further, but direct our attention to
sequential algorithms.

6 Dfs-algorithm

In this section we will show that the score of a finite game graph may be evaluated by a
straightforward depth-first search algorithm, in which a recurring position is assigned score 0.
A recurring position is a position which is already on the current path from the root.

First some notation: for T € GT,, P T means that P is a subtree of T'. A subtree will always
be a mazimal subtree in the sense that it contains all nodes reachable from its root. For n € K,
7 denotes a game tree consisting of a leaf with t-value =, i.e. & = ({r},9,r,Ar.n). If P T and
Q € GT,, then T[Q/P)] denotes the result of replacing P by Q in T.

A basic observation states that in order to compute the score of a tree, a subtree may be replaced
by its score: if P T € GT,, then s T = s T[s P/P). This will be derived from a more general
lemma, for which some extra definitions and notation is introduced.

Definition 6.1
The binary relation =, is defined on GT, as the ‘equivalence kernel of s’, i.e.

P=,Q < sP=sQ
a

Lemma 6.2 =, is an equivalence relation.

Proof It is easy to prove that =, is reflexive, symmetric and transitive.
a

Lemma 6.3 P =, s P.

Proof Straight from the definitions of ~and =,.
a

Now we introduce contexts, which will allow us to state the substitution result mentioned before
in a more symmetrical way. A contezt C[]is a tree with a ‘hole’; it may be conceived of as a tree
in which a subtree is replaced by some marker. An empty contezt is just a hole. C[P] denotes

the result of replacing the marker in C[] by a tree P. C, denotes the class of all contexts of
trees in GT,.

Lemma 6.4 [Substitution property]
For P,Q € GT, and C[] € C,,

P=,Q = C[P)=,C[Q]
Proof By the definition of s there exists, for every n € N, a function C, : K—K, such

that for all T € 6T, : 8, C[T] = Cpn (Sna T), where d is the depth of the hole in C[] and
n©d=01(n— d) (this may be proved by induction).

Since K is finite, existence of the limit lim,— s, C[T] means that (s, C[T]);_, is eventually
constant, i.e. VI € GT, : ANy EN:Vn > Nr:5, C[T] = s c(T).

Let N = (Np 1 Ng)+ d, then forall n > N
Sn C[P]=Cn (sned P)=Cn (s P)=Cn (3 Q)=Cn ('sned Q)=5n C[Q]

from which the statement of the lemma follows.
a

Together, lemma 6.2 and lemma 6.4 show that =, is a congruence with respect to ‘tree con-
structors’.

Lemma 6.5 [Special substitution property]
Let P,Q € GT, and C[] € C,. Then

C[P] =, Cls P]

Proof Use lemma 6.3 in the substitution lemma.
a

Using the substitution property we are able to prove that a subtree isomorphic as a game graph
to a proper subtree may be replaced by a leaf with t-score 0. This is precisely the situation that
occurs if the tree results from unwinding a graph containing a cycle.

Theorem 6.6 [Cutoff theorem]
Let P € GT, and Q[], R[] € C, with Q[] non-empty. Then

Q[P)= P = R[Q[P]]=. R[Q[0]]

Proof (In ‘substitution notation’ this reads: Let R € GT., and P Q R with P 2 Q. Then
R =, R[ﬁ/P])'

It suffices to prove that for all P € GT,, and Q[] € C,, with Q[] non-empty,
QIP|= P = Q[P] =, Q[0]
since the result then follows by the substitution property.

Let T = Q[P). Let T = po,...,pa = P be the path from the root of T to the root of P. By the
special substitution property the subtrees of p; (j # d) that are not on this path (i.e. that are

10

not rooted at pj4+;) may be replaced by their score. The resulting tree will still be denoted by
T.Lletaj=ifp;eV; »1/{s5|S pjspit1 ¢ S}fi,j=0,...,d—-1.

Claim: 84 T = 8441 T.

Proof sketch of claim (the full proof may be found in the appendix): Assume WLOG that p, € V5.
ThensgT=ao 1 (a1l ---(ag-11 0)) and, since T' & P, 8441 T=aot (a1l - (ag-11l (a0 T 0)))-
Using distributivity and idempotency of 1 and |, it may be shown that the second occurrence
of "ao 1” may be ‘absorbed’ by the first one. (End of Proof sketch)

This result —with 1 and | interchanged— may be applied to the tree rooted at p,, again using
that T = P, thereby proving that s4 p; = Sa41 p1 holds, and therefore s441 Po = o T (84 1) =
ao T (Sa41 P1) = Sas2 Po. Using induction, it follows that for al n € N: 84 T = s44n T.

Finally,

3T=n]_.i_1}1ws"T=sdT=sQﬁ]]
a

This theorem enables us to translate any dfs-based algorithm for the evaluation of the score of
finite game trees to finite game graphs by adding cycle detection. For example, the following
algorithm computes the score of a finite game graph G = (V,E,nrt).

Algorithm 6.7

st = if markedr — 0
elif reF—otr

elif r € V; — markr; ss:=]/-s*-E r; unmarkr; ss
fi

o

Theorem 6.8

Algorithm 6.7 correctly computes the score of a finite game graph G in time O(|W]), where W
is the set of nodes of the graph obtained by unraveling the proper semicycles of G.

Proof Apply theorem 6.6 to the tree resulting from unwinding and unraveling G and translate
the result back in terms of the original graph. In order to detect cycles, graph marking is used.
In every node a bit is maintained indicating whether the node lies on the current path from the
root. It is cleared when the graph is generated. It is set (mark) just before the descendants of the
node are visited, and cleared (unmark) just afterwards. Clearly each node in the unraveling of

G is visited once. In particular, if the graph contains no proper semicycles, it takes time O(|V]).
a

In the same way other well-known evaluation algorithms, like the -3 algorithm, may be trans-
lated to finite game graphs.

7 Memoization

When subtrees are shared (proper semicycles), computation of the score may be accelerated
if memoization is used. The score of a subtree is (temporarily) stored and may be looked up
later if the same node is reached via a different path (cf. transposition tables in chess programs
[Newborn]). Care must be taken when this is applied to the above algorithm, since not every
value returned by c for a subtree is a valid s-value!

11

Example 7.1 Consider a game graph which contains the graph in figure 1 as a subgraph.
Suppose the dfs-algorithm visits a first. This triggers the evaluation of c. c is assigned score
0 | d, leading to the correct a-score of b1 (d] 0). If later on c is visited again (by a different
path) and its previous score was memoed, the wrong score for ¢ will be produced (the correct
value is d | (b1 0)).

a

However, not all is lost. In the previous example, the score of ¢ was calculated based on the
assumption that this value would be used for the calculation of the score of a. In fact, if ¢ is
visited later on and a is still on the current path, then the previous score of ¢ can still be used!
We’ll call the memoed value of score ¢ depending upon a. This means that ¢ lies on a cycle
which closes at a. In order to accomodate memoization we adapt the algorithm 6.7. We use an
additional function ¢ which not only returns the score but also the set of the nodes upon which
this score depends.

The following primitives are assumed for doing memoization. The memo values are maintained
in the nodes.

o putmemo:V x K x 2V—K x 2".

putmemo (p, v, d) enters v as score of p depending on the set d and also returns (v,d). (2¥
denotes the powerset of V).

o memoed : V—2Y.
memoed p returns the last value of d which was entered for p using putmemo, or L if no
such value exists. For all lists I: (L C I) = false.

o getmemo: V—K x2V.

getmemo p retrieves the last value of (v, d) stored by putmemo for p (only used if memoed p #
1)

Algorithm 7.2

ST = mlc(lr)
where
cly = ifpel — (0,{p})

elif (memoed p) Cl — getmemo p
elif p € F — putmemo (p,tp,{})
elif p € V; — putmemo (p, mms, mmd \ {p})
where mms =1/ - (m*) - suc
mmd = Uf - (%) - suc
suc = (c(p:1))*-Ep

a

7, and 7, denote projection functions operating on pairs. In order not to distract from the
essentials, this algorithm shows a simpler way to detect cycles. The first parameter of ¢ is a
list of the nodes on the current path from the root excluding the current node. For efficiency,
however, graph marking could be used.

Theorem 7.3

Algorithm 7.2 correctly computes the score of a finite game graph.

12

Proof

A memoed score may be used if it depends only on nodes on the current path. For p € V; the
score is computed as before, viz. by taking the maximum/minimum of the subscores in suc. The
set of nodes on which its score depends is just the union of the dependency sets of the subscores.

However, a dependency upon itself may be discharged.
a

The following example shows that this algorithm succeeds in reducing the number of nodes
visited from exponential to quadratic in |V|.

Example 7.4 See the example in figure 6. To every node there is also a leaf attached. Let L,
be a ladder graph with n layers, apart from the top node. L, contains a total of 4n + 2 nodes,
half of which are leaves. Tests show that the number of nodes visited by the dfs-algorithm
without memoization equals (3n + 9)2"~! — 2 = O(n2"), whereas with memoization this reduces
to 3(9n? — 5n + 16) = O(n?).

a

Figure 6: ‘Ladder’ graph with cycles.

8 Remarks and future work

Motivated by the examples, we conjecture that algorithm 7.2 visits O(|V|?) nodes. There is room
for improvement of the algorithms and for sharpening the upperbounds. For example, it may
be that convergence of s only depends on d, = max,ev d(r,v), where d(a, b) is the length of the
shortest path from a to b.

Some of the results may be generalized. For example, the requirement that a game graph should
be bipartite is not necessary. All that is needed is that V' is partitioned into 2 sets V; and V_. This
allows for games in which the moves are not strictly alternating. Other directions for extensions
include dropping some of the finiteness assumptions (e.g. the finite branching requirement), and
allowing K to be a (complete) lattice.

An important and interesting extension concerns the incremental evaluation of the score when
part of the graph changes. This applies to the situation where the game graph is only a part of
the ‘real’ game graph, and which changes every time a move is made.

Finally, the connections between this work and the work of [Gijlswijk et al.] could be investigated.
They use a completely different, bottom-up algorithm to analyse the L-Game, which runs in time
O(D x|V|), where D is the maximum of the in- and outdegrees of all nodes, and where essentially
K ={-1,0,+1}.

13

A Appendix

A.1 Proof of the claim in theorem 6.6
In this section we will prove that s4 T = 8441 T, where T is the unwinding of a simple cycle of
length d. This result was used in the proof of theorem 6.6.
Define an M-expression as
M [ao, ey @n-1] T = a0 Jo (a1 T2 ** - (Gn-1 In-12))
where an operator ;€ {1, |} is associated with each a;.

We will prove that a recurring occurrence of a value in an M-expression with an identical
associated operator may be absorbed.

Theorem A.1 Forall n > 2,z € K,[ao,...,an]:
If ay = a, and [o=]n, then

M [agy..,an) 2 =M [@0y ey @n-1] Z

Proof By induction on n.

Base:
M [ag,a1]z = “def.of M7
ao Jo (a1 31 2) = “ao=a1,lo=l1"
ao Jo (@0 Joz) = “Jo assoc. and idempotent”
aoIoz = “def.of M”
M [ao]
Step:
M [ag,...,0a) Z = “def.of M7
ao Jo (a1 51:-(an In z)) = ¢, distributes over], ”
(ao $o @1) T1 (a0 o (a2 12 -+ (an In 2))) = “def.of M’
(a0 To a1) 11 (M [ao, s, - -,@n] T) = “ind. hyp.”
(a0 Jo a1) 11 (M [@0,@2y- . -y @n-1] Z) = “def.of M”
(a0 Lo @1) $1 (a0 Jo (a2 12 - (@n-1 In-12))) = “Jo distributes over .7
ao Jo (a1 11 -+ (anr In-12)) = “def.of M”
M [agy...y@n-1] T
a

Let T € GT, be a tree of the following form: T' consists of a path T = poy.vyPd = P to the
root of a subtree P which is isomorphic to T, and to every p; (J # d) there is a leaf attached
with t-value a;.

Corollary A.2

saT=841 T

Proof

This is a special case of theorem A.1, where
sapo = M [ag,...,a4-1] 0 and (since P=T)
Sag1 Po = M [ao,...,4-1,80] 0

and the associated operators alternate, i.e. {o=T, 1={, ... (assuming po € V1)
g

14

Summary of notation

|S| cardinality of set S
fa function application (left associative)
/ reduce operator
* map operator
apposition operator
]| empty list
a:l list with element a appended to list
[a,b] = a:b:]
G finite graphs, see def. 2.1
GG finite game graphs
G, countable graphs
GG, countable game graphs
To countable trees
GT, countable game trees
~ isomorphism of game graphs
Ep ={geV|(p,q) € E},whereG=(V,E) €6
1 used in the context if pe V; -1/ zfi =

ifpeV; =1/ zelifpeV, —-|/zf

root of G € GG,,

Pis asubtreeof TET,

P is a proper subtree of T € T,

substitute Q € T, for P in T, where P TeT,
for n € K: the game tree ({r},d,r,Ar.n)

class of contexts in GT,,

QDY Q
On
X

€

References

Elwyn R. Berlekamp, John H. Conway and Richard K. Guy. Winning Ways for your mathemat-
ical plays, Volume 1: Games in General. Academic Press, 1982.

Richard S. Bird. Lectures on Constructive Functional Programming. Technical Monograph PRG-
69. Oxford University Computing Laboratory, 1988.

T.B. Boffey. Applying the minimax rule over graphs which are not trees. Inf. Proc. Letters 2,
1973, 79-81.

Edward de Bono. The Five-day Course in Thinking. Pelican, 1969.

V.W. Gijlswijk, G.A.P. Kindervater, G.J. van Tubergen and J.J.0.0. Wiegerinck. Computer

Analysis of E. de Bono’s L-Game. Report 76-18, Dept. of Mathematics, Univ. of Amsterdam,
1976.

F. Harary. Graph Theory. Addison-Wesley, 1969.
Jacques Loeckx and Kurt Siebert. The Foundations of Program Verification. Wiley, 1984.

Monroe Newborn. Computer Chess: Ten Years of Significant Progress. In: Marshall C. Yovits
(ed.), Advances in Computers, Vol. 29, 198-250. Academic Press, 1989.

15

