On the efficient incremental evaluation of
Higher Order Attribute Grammars

H.H. Vogt, S.D. Swierstra, M.F. Kuiper

Technical Report RUU-CS-90-36
December 1991
(revised version)

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

ISSN: 0024-3275

1

Attribute grammars describe the computation of attributes: values attached to nodes of a
tree. The tree is described with a context-free grammar. Attribute computation is defined
by semantic functions. AGs are used to define languages and form the basis of compilers,
language-based editors and other language-based tools. For an introduction and more on

On the efficient incremental evaluation of
Higher Order Attribute Grammars*

Harald Vogt! Doaitse Swierstra and Matthijs Kuiper

Department of Computer Science, Utrecht University

P.O. Boz 80.089, 3508 TB Utrecht, The Netherlands
E-Mail: {harald,doaitse,matthys} @cs.ruu.nl

Abstract

This paper presents a new algorithm for the incremental evaluation of Ordered
Attribute Grammars (OAGs), which also solves the problem of the incremental
evaluation of Ordered Higher-order Attribute Grammars (OHAGs). Two new ap-
proaches are used in the algorithm.

First, instead of caching all results of semantic functions in the grammar, all
results of visits to trees are cached. There are no attributed trees, because all
attributes are stored in the cache. Trees are built using hash consing, thus shar-
ing multiple instances of the same tree and avoiding repeated attributions of the
same tree with the same inherited attributes. Second, each visit computes not only
synthesized attributes but also bindings for future visits. Bindings, which contain
attribute values computed in one visit and used in future visits, are also stored in
the cache. As a result, future visits get the necessary earlier computed values (the
bindings) as a parameter.

The algorithm runs in O(|Affected| + |paths_to_roots|) steps after modifying
subtrees, where |paths_to_roots| is the sum of the lengths of all paths from the root
to all modified subtrees, which is almost as good as an optimal algorithm for first-
order AGs, which runs in O(]|Affected]).

Introduction

AGs see: [Deransart, Jourdan and Lorho 88, Deransart and Jourdan 90).

*Revised version of RUU-CS-90-36 and a copy of the paper in the CSN 91 proceedings.
tSupport has been received from the Netherlands Organisation for Scientific Research N.W.O. under

NFI-project STOP, project Specification and Transformations Of Programs.

1

Higher-order AGs ([Vogt, Swierstra and Kuiper 89, Teitelbaum and Chapman 90] and
[Swierstra and Vogt 91]) remove the artificial distinction between the syntactic level
(context-free grammar) and the semantic level (attributes) in attribute grammars. This
strict separation is removed in two ways: First, trees can be used directly as a value within
an attribute equation. Second, a part of the tree can be defined by attribution. Trees used
as a value and trees defined by attribution are known as non-terminal attributes (NTAs).

It is known that the (incremental) attribute evaluator for Ordered AGs [Kastens 80,
Yeh 83, Reps and Teitelbaum 88] can be trivially adapted to handle Ordered Higher-
order AGs [Vogt, Swierstra and Kuiper 89]. The adapted evaluator, however, attributes
each instance of equal NTAs separately. This leads to nonoptimal incremental behaviour
after a change to a NTA, as can be seen in the recently published algorithm of
[Teitelbaum and Chapman 90]. Our evaluation algorithm handles multiple occurrences
of the same NTA (and the same subtree) efficiently in O(|Affected| + |paths_to_roots|)
steps, where |paths_to_roots| is the sum of the lengths of all paths from the root to roots
of modified subtrees.

The new incremental evaluator can be used for language-based editors like those gen-
erated by the Synthesizer Generator [Reps and Teitelbaum 88] and for minimizing the
amount of work for restoring semantic values in tree-based program transformations
[Vogt, v.d. Berg and Freije 90]. The new algorithm is based on the combination of the
following four ideas:

o The algorithm computes attribute values by using visit functions. A visit function
takes as first parameter a tree and some of the inherited attributes of the root of the
tree. Some of the returned values are synthesized attributes of the root of the tree.
Our evaluator consists of visit functions that recursively call each other to attribute
the tree.

¢ As in [Teitelbaum and Chapman 90]’s algorithm, trees are built using hash consing
for trees. In our algorithm this is the only representation for trees, thus multiple
instances of the same tree will be shared.

Because many instantiations of a NTA may exists, each with its own attributes,
attributes are no longer stored within the tree, but in a cache. In a normal incre-
mental treewalk evaluator a partially attributed tree can be considered as a cache.
Attributes needed by a visit and computed by a previous visit are not recomputed
but are found in the partially attributed tree.

e A call to a visit function corresponds to a visit in a visit sequence of an Ordered
HAG. Instead of caching the results of semantic functions, as was done in [Pugh 88|,
the results of visit functions are cached. This is more efficient because a cache hit
of a visit function means that this visit to (a possible large) tree can be skipped.

Furthermore, a visit function may return the results of several semantic functions
at a time.

o Although the above idea seems appealing at first sight, a complication is the fact
that attributes computed in an earlier visit may have to be available for later visits.

Bindings contain attribute values computed in one visit and used in future visits to
the same tree: each visit function computes synthesized attributes and bindings for
future visits. Bindings computed by earlier visits are passed as an extra parameter
to visit functions.

The visit functions can be implemented in any imperative or functional language. Fur-

thermore, visit functions have no free variables and can therefore be viewed as supercom-
binators [Hughes 82].

Efficient caching is partly achieved by efficient equality testing between parameters of visit
functions, which are trees, inherited attributes and bindings. Therefore, hash consing for
trees and bindings is used, so testing for equality between trees and between bindings
is reduced to a fast pointer comparison. Furthermore, several space optimizations for
bindings are possible.

Although the computation of these bindings may appear to be cumbersome, they have a
considerable advantage when evaluating incrementally. They contain precisely the infor-
mation on which visits depend and no more.

The remainder of this article is structured as follows. Section 2 presents an informal defi-
nition and example. Section 3 defines visit functions and bindings. A space optimization
for bindings is presented in section 4. We discuss visit function caching in section 5.
Section 6 presents the results of a simulation of our algorithm for incremental evaluation
for a larger example. The incremental behaviour of the algorithm is discussed in section
7. Section 8 presents the conclusions.

2 Informal definition and example

First, visit sequences from which the visit functions will be derived are presented and
illustrated by an example. Then bindings and visit functions for the example will be
shown. Finally, incremental evaluation will be discussed.

2.1 Visit (sub)sequences

In [Vogt, Swierstra and Kuiper 89] the equivalent of OAGs [Kastens 80] for HAGs, the so
called Ordered Higher-order Attribute Grammars (OHAGs), are defined. An OHAG is
characterized by the existence of a total order on the defining attribute occurrences for
each production p. This order induces a fixed sequence of computation for the defining
attribute occurrences, applicable in any tree production p occurs in. Such a fixed sequence
is called a visit sequence and will be denoted by VS(p). The following introduction to
visit sequences for a HAG is almost literally taken from [Kastens 80].

This evaluation order is the starting point for the construction of a flexible and efficient
attribute evaluation algorithm based on visit sequences. It is closely adapted to the
particular attribute dependencies of the AG. The principle is demonstrated here. Assume

that an instance of X is derived by

S=Y -, uXy -4 wwzy = s.

The corresponding part of the structure tree is shown in Fig-
Y ure 1. An attribute evaluation algorithm traverses the struc-
\ rule p ture tree using the operations "move down to a descendant

node” (e.g. from Y to X) or "move up to the ancestor node”
X Y (e.g. from X to Y). During a visit to node Y some attributes
\ rule ¢ defined in production p are evaluated according to semantic

functions, if p is applied at Y. In general several visits to
each node are needed before all attributes are evaluated. A
local tree walk rule (a visit sequence) is associated with each
p. It is a sequence of four types of instructions: move up to
the ancestor, move down to a certain descendant, evaluate a
certain attribute and evaluate followed by expansion of the la-
beled tree by the value of a non-terminal attribute. The last instruction is specific for a

HAG.

VS(p) is split into visit subsequences VSS(p,v) by splitting after each "move up to the
ancestor” instruction in VS(p). The attribute grammar in Figure 2 is used in the sequel
only to demonstrate visit subsequences, bindings and visit functions. Section 6 contains
a larger example.

S
S

Figure 1:
A structure tree.

2.2 Visit functions for the example grammar

The evaluator is obtained by translating each visit subsequence VSS(p,v) into a wvisit
function visit_N_v where N is the left hand side of p.

All visit functions together form a functional attribute evaluator program. We use a
Miranda-like notation [Turner 1985] for visit functions. Because the visit functions are
strict, which results in explicit scheduling of the computation, visit functions could also
be easily translated into Pascal or any other non-lazy imperative language.

The first parameter in the definition of visit_N_v is a pattern describing the subtree to
which this visit is applied. The first element of the pattern is a marker, a constant which
indicates the applied production rule. The other elements are identifiers representing the
subtrees of the node. Following the functional style we will have one set of visit functions
for each production with left hand side N.

All other arguments, except the last, of visit_N_v represent the inherited attributes used
in VSS(p,v). Before we discuss the results of a visit function, consider the grammar in
Figure 2 again. The inherited attribute X.i and the synthesized attribute X.s in Figure 2
are also used in the second visit to N and X but passed to or computed in the first visit.

Therefore, every visit_N_v not only computes synthesized attributes but also bindings
(inherited and synthesized attributes computed in visit_N_v and used in subsequent visits

rmR— N { Ni:=Ri; Ny:=Ns; Rz:=N.z;}
pN— X {Xi:=Ni; Ns:=X.s; Xy:=Ny; Nz:= Xz + X.s; }
¢X - int { X.s:=X.4; X.z:= X.y + X.i + int.v; }

—u dependency
——= dependency crossing
visit border

VS(p) VS(q)
= VSS(p,1) = VSS(q,1)
=Xi:=N.i =Xs:= X1
; Visit X,1 ; VisitParent 1
; Ns:=X.s ; VSS(q,2)
; VisitParent 1 =X.z:= Xy + X.1 + int.v
; VSS(p,2) ; VisitParent 2
=Xy:=Ny
=== Visit border ; Visit X,2

;s Nz:=X.z+ X.s
; VisitParent 2

synthesized X.s
® (i] inherited X i

Figure 2: An example AG (top), the dependencies (left) and visit sequences (right). The
dashed lines indicate dependencies of an attribute computed in the second visit on an
attribute defined in the first visit. ViS(r) is omitted.

to N). So visit_N_v computes a list of (novy-v) bindings, one for each subsequent visit
(here novy is the number of visits to N). The bindings used in visit_N_v+i but computed
in visit_N_v are denoted by binds_N'~"*,

The last argument of visit_N_v is a list of bindings for visit_N_v computed in earlier visits
1...(v—1) to N. The bindings themself are lists containing attribute values and further
bindings. Both lists are constructed using hash consing. Elements of a list are addressed
by projection, e.g. binds_N*".1 is the first element of the list.

We now turn to the visit functions for the visit subsequences VSS(p,u) and VSS(q,v)
of grammar in Figure 2. We will put a box around attributes that are returned in a
binding. In the example this concerns I_.Z(_ﬂ and |£ . The first visit to N will return the
synthesized attribute N.s, and a binding list binds_N'~* containing the later needed X.s
together with binds_X'~*. The binding list binds_N'~? is defined by [[X.s], binds_X'~2].

visit.N_1 (p [X]) N.i = (N.s, binds.N'~2)
where X.i = N.i
(X.s, binds_ X'—2) = visit X_1 X X.i
Ns=Xs

binds_N'=* = [[X.s], binds_X!~*]

In the above definition (p [X]) denotes the first argument: a tree at which production p
is applied, with one son, X. The second argument is the inherited attribute i of N. The

5

function returns the synthesized attribute s and binding for the second visit to N (X.s
together with the bindings from the first visit to subtree X). Function visit_N_2 does not
return a binding because it is the last visit to a N-tree.

visit_N_2 (p [X]) N.y [binds_N'~2]= N.z
where X.y = N.y
binds_X'~% = binds_N'~2.2
X.z = visit X 2 X X.y [binds X'~

= binds_N'~2.1

Nz=Xz+Xs

The other visit functions have a similar structure.

visit_X_1 (q [int]) X.i = (X.s, binds_X'™?)
where X.s = X.i

binds X'~% = [[X.i]]

visit_X_2 (g [int]) X.y [binds X'~*]= X.z
where = binds_X'~2.1
Xz=Xy+ X.i+into

We have chosen the order of definition and use in the where clause in such a way that the
visit functions could be also defined in an imperative language. A where clause contains
three kinds of definitions:

1. assignments and visits from the corresponding VSS(p,v).

2. lookups of attributes and bindings in bindings (for example in visit_N_2 the binding
binds_X'~* is looked up in binds_N'—2).

3. definitions for returned bindings. The precise definition of visit functions and bind-
ings is given in section 3.

2.3 Incremental evaluation

After a tree T is modified into 7, in our model with hash consed trees, T’ shares all
unmodified parts with T'. To evaluate the attributes of T and T’ the same visit function
visit_R_1 is used, where R is the root non-terminal. Note that tree T is totally rebuilt
before visit_R_1 is called.

The incremental evaluator automatically skips unchanged parts of the tree because of
cache-hits of visit functions, provided the inherited attributes have not changed. Hash
consing for trees and bindings is used to achieve efficient caching, for which fast equality
tests are essential. Separate bindings for each visit are computed, so for example visit_N_1
and visit_N_{ could be recomputed after a subtree replacement, but visit_N_{2,8} could
be found in the cache and skipped. Some other advantages are illustrated in Figure 3, in
which the following can be noted:

e NTA1 and NTA2 are defined by attribution, indicated by boxes (D).

e Multiple instances of the same (sub)tree, for example multiple instantiated NTAs,
are shared by using hash consing for trees (Trees T2 and T°2).

o Those parts of an attributed tree derived from NTA1 and NTA2 which can be
reused after NTA1 and NTA2 change value are identified automatically because of
the hash consing for trees and cached visit functions (Trees 79 and T4 in (b)). This
holds also for a subtree modification in the initial parse tree (Tree T1).

® Because trees T1, T3 and T4 may be attributed the same in (a) and (b) they will
be skipped after the subtree modification and the amount of work which has to be
done in (b) is O(|Affected T’2| + |paths_to_roots|) steps, where |paths_to_roots| is
the sum of the lengths of all paths from the root to all subtree modifications (NEW,
X1 and X2).

(b)

Figure 3: A subtree modification at node NEW induces subtree modifications at nodes
X1 and X2 in the trees derived from NTA1 and NTA2. In this example we suppose that
all instantiated trees T1, T2, T2, T3 and T4 are attributed the same in (a) and (b).

3 Visit functions and bindings

We now turn to the definition of visit functions and bindings.

Let p be a production of the form p:N — ... X; Let VS(p) be the visit sequence for
p. Let novy be the number of visits to N. Let VSS(p,1) ... VSS(p,novy) be the visit
subsequences in VS(p).

VSS(p,v) is translated into the visit function visit_N_v as follows:
visit Nov (p [... X; ...]) ikl [binds_N'=" ... binds M'~="]=

(synl, binds_N*=**! .. binds_N*~"°N)
where Lines from 1) to 3).

7

1) The assignments and visits in VSS(p,v).

2) Lookups of attributes and bindings computed
in earlier visits.

8) Definitions for the returned bindings.

inhl) are the available inherited attributes needed in and not available in visits before
VSS(p,u). synl are the synthesized attributes computed in VSS(p,v). The elements 1) to
3) are defined as follows. 1) is just copying from VSS(p,v). In 1) a Visit X;,w is translated
into
(syn, binds Xv~v+! | . binds Xv~moX) =
visit X_w X; inh [binds X'=%, ..., binds_X(»~1)~v)

When X; is a non-terminal attribute, the variable defining X; is used as the first argument
pattern for visit_X;_w.

There are three kinds of lookups in 2): Inherited attributes, synthesized attributes and
bindings. The lookup method is the same for all, so we will only describe the method for
an inherited attribute here. Let N.inh be an inherited attribute of N which is used in
visit_N_v but not defined in visit_N_v. Then, the lookup N.inh = binds_N*>".f is added,
for the appropriate e and f.

In 3) the bindings results of visit_N_v are defined. Recall that the binds_N'="*i are defined
in terms of the visit sequence of production p. binds_N*~**¢ is defined as a list containing
those inherited attributes of N and synthesized attributes of sons of N used in visit.N_v
and in visit_N_v+i (denoted by inout_N,*~"*') plus the bindings computed by visits to
N’s sons during visit_N_v which are used in future visits to those sons during visit_N_v+i
(denoted by binds-sons_N,*~"*%). For example binds_N'~? in the example visit functions
in section 2 is

binds_N'~2 = [inout_N,'~2 binds-sons_N,'~?] = X.s, binds_X'?],
P P

where during execution the value of binds_N'~* will be [X.s, [X.i]]. inout_N,*"*% and
binds-sons_N,*~"* are defined as follows:

inout_N,'~**' = (N.inh U X.syn) N V8S(p,v) N VSS(p,v+i)

binds-sons Ny ="+ = { binds X~ | (visit X.uw e VSS(p,1)
A (visit_X_j € VSS(p,v+i)) }

The following theorem holds for the above defined functional program.

Theorem 3.1 Let HAG be a well-defined Ordered Higher Order Attribute grammar, and
let S be a structure tree of HAG. The ezecution of the above defined functional program
for HAG with input S terminates and attributes the tree S correctly. Furthermore, no
attributes are evaluated twice.

4 Optimizations for bindings

Several optimizations that reduce the number of occurrences of values in binds N*—?*
are possible.

We discuss three optimizations that reduce the number of occurrences of attribute values
in binds.N"~* and one optimization that does the same for the binding list. The first
optimization reduces double occurrences of attribute values in different bindings and is
illustrated by the following production

Here
binds_N'=% = binds_N' =% = [N.i]
and

binds_N*~* = [N.i]

The binds_.N'~* can be omitted by only binding N.i for the first visit which uses N.i after
visit_N_1. This can be achieved by defining inout_N,""** in binds.N'="* as follows

inout_N,"~**" = {N.inh | N.inh € VSS(p,v)
A N.inh € VSS(p,v+i)
A-(3j : v<j<v+i: Ninhe VSS(p,j)) }
U the same extension for X.syn of course

In words, binds_N'~"*' (the bindings defined in visit_N_v and needed in wvisit_N_v+i)
contains only N.inh if visit_N_v+i is the first visit after visit_N_v using N.inh. This
construction eliminates binds_N'~* = [N.i] from the example.

The second optimization reduces inherited attributes from bindings, as is illustrated by
the following example

_® i [z] Here binds_N'~% = [N.i]

and VS(r) = Eval N.i

[Vg Visit N,1
—@ [1S I z Eval N.y
- ORR, Visit N,2
T Eval R.z

"@ 1 VisitParent 1

Note that VS(r) is mapped into one visit function visit_K_1. Here N.i is bound, and
also stored local to visit_K_1 since the two visits to N occur in the same visit function

vistt_K_1! So N.i can be passed directly as an argument to the second visit to N and can
be removed from binds_N'—%,

The third optimization removes empty bindings from the visit functions and is explained
by the following example

Here
“STheonly binds.N'™* = [X.s]
binding and

No bindin%s here N% binding.i here binds_ N'={23} = &

Some binds_N"~"*' may be always empty. Whether a binding will be always empty can
be deduced statically from the attribute grammar.

The last optimization reduces the space for hash consed binding lists. Hash consing lists in
the “right order” omits duplicate attribute values. For example, if binds_N,"~"** = [C.z,
C.w, C.y, B.a, bsons_C, bsons_B] and binds_N,"~"** = [C.z, B.a, C.y, bsons_C] then they

should be consed as [C.w, bsons_B, | C.z, C.y, B.a, bsons_C|]and [| C.z, C.y, B.a, bsons_.C

Instead of consing individual elements of a list, parts of a list can be sometimes consed as
a whole. In the above example IC’.z, C.y, B.a, bsons-C’l could be consed as one record,
thus saving pointer space,

5 Visit function caching

This section describes the implementation of function caching used for caching the visit
functions of the functional evaluator and was inspired upon [Pugh 88]. A hash table is
used to implement the cache. A single cache is used to store the cache results for all
functions. Tree T, labeled with root N, is attributed in visit v by calling

visit N.v T inherited_attributes bindings

The result of this function is uniquely determined by the function-name, the arguments
of the function and the bindings. The visit functions can be cached as follows:

cached_apply(wisit_ N_v, T, inhs, binds) =
index := hash(wisit_N_v, T, inhs, binds)
V <function, tree, arguments, bindings, result> € cache[index] do
if function = visit_N_v and EQUAL(tree,T)
and EQUAL(arguments,inhs) and EQUAL(bindings,binds)
then return result
result := visit_.N_v T inhs binds
cache[index] := cache[index] U {<wisit. N.v, T, inhs, binds, result>}
return result

10

[—
.

To implement visit function caching, we need efficient solutions to several problems. We
need to be able to

e compute a hash index based on a function name and an argument list. For a
discussion of this problem, see [Pugh 88] for more details.

e determine whether a pending function call matches a cache entry, which requires
efficient testing for equality between the arguments (in case of trees and bindings
very large structures!) in the pending function call and in a candidate match.

The case of trees and bindings in the last problem is solved by hash consing for trees and
bindings.

6 A large example

Consider the HAG in Figure 4, which describes the mapping of a structure consisting of a
sequence of defining identifier occurrences and a sequence of applied identifier occurrences
onto a sequence of integers containing the index positions of the applied occurrences in

the defining sequence. For example, the sentence let a,b,c in c,c,b,c ni is mapped onto
the sequence [3,3,2,3].

block(_,_): ROOT — let DECLS in APPS ni
def(_,-): DECLS — DECLS ident
empty_decls(): DECLS — EMPTY decls

use(,.): APPS — APPSident ENV

ENV := APPSp.env

ENV.param := ident.id

APPS).env := APPSy.env

APPSy.seq := APPS;.seq ++ [ENV .indez]
empty_use(): APPS — EMPTY_ apps
update(_,_,_): ENV ~ ident number ENV
empty_env(): ENV — EMPTY_env

Figure 4: The higher-order AG, only the attribution rules for use() are shown.

The following can be noted in Figure 4:

o The attribute ENV in use(_,.) is a non-terminal (higher-order) attribute. The
tree structure is built using the constructor functions update(_,_,_) and empty_env(),
which correspond to the respective productions for ENV. The attribute ENV is
instantiated (i.e. a copy of the tree is attributed) in the occurrence of the first
production of APPS, and takes the role of a semantic function.

o Note that there may exist many instantiations of the ENV -tree, some with different
attributes. There thus does not any longer exist an one-to-one correspondence
between attributes and abstract-syntax trees.

11

Figure 5.a shows the tree for the sentence let a,b,c in ¢,c,b,c ni which was attributed by
a call to

visit_ ROOT_1 (block(def(def(def(def empty_decls a) b) c))
(use(use(use(use(use empty_use c) c) b) c)))

Incremental reevaluation after removing the declaration of c is done by calling

visit_ ROOT_1 (block(def(def(def empty_decls a) b))
(use(use(use(use(use empty_apps c) c) b) c)))

The resulting tree is shown in Figure 5.5, note that only the APPS-tree will be totally
revisited, the first visits to the DECLS and ENV trees generate cache-hits and further
visits to them are skipped. Simulation shows that in this example 75% of all visit-function
calls and tree-build calls which have to be computed in 5.5 if there was no cache, are found
in the cache (built up by 5.a) when using caching. So 75% of the “work” was saved!

v [error 2,error.error]
ROOT

let DEC mm

"""
s,
',
e,
., 0

...........
............................

al EMPTY

Figure 5: The tree before (a) and after (b) removing ¢ from the declarations in let q,b,¢
in c,¢,b,c ni. The * indicate cache-hits looking up ¢. The dashed lines denote sharing.

7 Incremental evaluation performance

In this section the performance of the functional evaluator with respect to incremental
evaluation is discussed. We would like to prove that the derived incremental evaluator
recomputes at most O(|Affected|) attributes. Here Affected is the set of attribute instances
in the tree which contain a different value after a subtree modification, together with the
set of attribute instances newly created.

This desire can be only partly fulfilled; it will be shown that the worst case boundary
is given by O(|Affected| + |paths_to_roots|). Here paths_to_roots is the set of all nodes
on the path to the initial subtree modification and the nodes on the paths to the root

12

nodes of induced subtree modifications in trees derived from NTAs. The paths_to_roots
part cannot be omitted because the reevaluation starts at the root of the tree and ends
as soon as all replaced subtrees are either reevaluated or found in the cache.

Let VIS be the mapping from a HAG to visit functions as discussed in section 3. Let
T be a tree consistently attributed according to a HAG. Suppose T was attributed by
VIS(HAG)(T). Let T’be the tree after a subtree modification and suppose T’ was attri-
buted by VIS(HAG)(T").

Lemma 7.1 Let Affected_Visits be the set of visits that need to be computed and will

not be found in the cache when using VIS (HAG)(T’) with function caching for visits and
hash-consing for trees.

Then |Affected_Visits| is O (|Affected| + |paths_to_roots|).
Proof Define the set Affected_Nodes to be the set of nodes X in T such that X has an
attribute in Affected. Clearly, |Affected_Nodes| < |Affected].

Define Needed_Visits(T’) to be the set of visits needed to evaluate T". Let root(v) denote
the root of the subtree that is the first argument of visit function v.

Since the number of visits to a node is bounded by a constant based on the size of the
grammar, for all nodes rin T,

| {v|v € Needed Visits(T’) A root(v)=r} |

is bounded by a constant. The only visits which have to be computed are those that were
not computed previously. Therefore,

Affected_Visits C {v | v € Needed_Visits(T’)
A root(v) € (Affected_Nodes U paths_to_roots)}

Therefore,
Affected_Visits is O(|Affected_Nodes| + |paths_to_roots|)

which is
O(|Affected| + |paths_to_roots|)
O

Theorem 7.1 Let Affected_Applications be the set of function applications that need to
be computed and will not be found in the cache when using VIS (HAG)(T’) with function

caching for visit functions and hash consing for trees. Then, Affected_Applications is

O(|Affected| + |paths_to_roots|).

Proof Since the number of function calls in a visit is bound by a constant based on the
size of the grammar,

Affected_Applications is O(|Affected_Visits|)

Using the previous lemma the theorem holds. o

13

8 Conclusions and future work

A new algorithm for the incremental evaluation of HAGs was presented. Two new ap-
proaches are succesfully combined. First, the results of visit functions are cached instead
of results of semantic functions. Second, bindings are used containing attribute values
computed in earlier visit functions and used by subsequent visit functions visiting the
same tree.

Several space-optimizations for bindings are possible. Sharing and efficient caching is
achieved by hash consing for trees and bindings.

The resulting algorithm runs in O(|Affected| + |paths_to_roots|) steps after subtree mod-
ifications, where |paths_to_roots| is the sum of the lengths of all paths from the root to
all subtree modifications, which is almost as good as an optimal algorithm for first-order
AGs (which runs in O(|Affected|)).

There are several other ways to improve the performance of which we will mention two
here. First, it is possible to split the visit subsequences into independent parts. Then,
several independent visit functions for one visit subsequence can be generated. As a
consequence only those parts of the attributes will be recomputed of which the input has
changed. Second, instead of explicitly representing the tree and calling visit functions
to attribute it, the tree is represented through one large visit function which is built by
pasting together the visit functions of each treenode.

This technique has two major advantages. Firstly, a visit function may be made to depend
on precisely that part of the tree that will be visited by it. This increases the number
of cache hits. Secondly, copyrules may be removed during the construction phase. This
results in shortcircuiting copychains and in minimizing the number of recomputed visit
functions.

Acknowledgements

The authors wish to thank Maarten Pennings for carefully reading this document.

References

[Deransart and Jourdan 90] Deransart, P., M. Jourdan (Eds.). Attribute Grammars and their
Applications. Proceedings of the International Workshop on Attribute Grammars and their
Applications (WAGA), LNCS 461, Paris, September 19-21, 1990.

[Deransart, Jourdan and Lorho 88] Deransart, P., M. Jourdan and B. Lorho. Attribute Gram-
mars: Definitions, Systems and Bibliography. LNCS 323, Springer Verlag, Aug. 1988.

[Hughes 82) Hughes, R.J.M. Super-combinators: A New Implementation Method for Applicative
Languages. In Proc. ACM Symp. on Lisp and Functional Progr., Pittsburgh, 1982.

14

[Kastens 80] Kastens, U. Ordered Attributed Grammars. Acta Informatica, 13, pages 229-256,
1980.

[Pugh 88] Pugh, W.W. Incremental Computation and the Incremental Evaluation of Functional
Programs. Tech. Rep. 88-936 and Ph.D. Thesis, Dept. of Computer Science, Cornell Univ.,
Ithaca, N.Y., Aug. 1988.

[Reps and Teitelbaum 88] Reps, T. and T. Teitelbaum. The Synthesizer Generator: A System
for Constructing Language-Based Editors. Springer-Verlag, NY, 1988.

[Swierstra and Vogt 91] Swierstra, S.D. and H.H. Vogt. Higher Order Attribute Grammars. In
the proceedings of the International Summer School on Attribute Grammars, Applications
and Systems, (To Appear), Prague, June 4-13, 1991.

[Teitelbaum and Chapman 90} Teitelbaum, T. and R. Chapman. Higher-Order Attribute Gram-
mars and Editing Environments. ACM SIGPLAN ’90 Conference on Programming Lan-
guage Design and Implementation, White Plains, New York, pages 197-208, June, 1990.

[Turner 1985] Turner, D.A. Miranda: A non-strict functional language with polymorphic types.
In J. Jouannaud, editor, Funct. Progr. Lang. and Comp. Arch., pages 1-16, Springer, 1985.

[Vogt, Swierstra and Kuiper 89] Vogt, H.H., S.D. Swierstra and M.F. Kuiper. Higher Order
Attribute Grammars. ACM SIGPLAN ’89 Conference on Programming Language Design
and Implementation, Portland, Oregon, pages 131-145, June, 1989.

[Vogt, v.d. Berg and Freije 90] Vogt, H.H., A. van den Berg and A. Freije. Rapid development
of a program transformation system with attribute grammars and dynamic transformations.
In the proceedings of the International Workshop on Attribute Grammars and their Ap-
plications (WAGA), LNCS 461, Paris, pages 101-115, September 19-21, 1990.

[Yeh 83] Yeh, D. On incremental evaluation of ordered attributed grammars. BIT, 23:308-320,
1983.

15

