Matrix techniques for faster routing of
affine permutations on a mesh
interconnection network

J.F. Sibeyn

RUU-CS-90-19
April 1990

Utrecht University

o Q .
;‘ <, Department of Computer Science
<
CE §’ Padualaan 14, P.O. Box 80.089,

3508 TB Utrecht, The Netherlands,
Tel. : ... 4+ 31-30- 531454

1S8N:0924-3275

Matrix Techniques for Faster Routing of Affine Permutations
on a Mesh Interconnection Network

Jop F. Sibeyn*
Department of Computer Science, University of Utrecht
P.O. Box 80.089, 3508 TB Utrecht , the Netherlands
Email: jopsi@ruuinf.cs.ruu.nl

February 28, 1991

Abstract

We study the problem of routing affine permutations on a SIMD MESH-connected
network without wrap-around connections. For a v/N x+/N MESH affine permutations
can be described by an invertible log N x log N matrix A and a translation vector b.
Thus if the bit-row of the index of a processing-unit is # then the bit-row of its
destination is § = A-Z+b. Previously, [9], we performed the routing by a sequence of
invertible bit complementations. Those bit complementations were found by using an
LUL-decomposition of the matrix A. Refining this approach we found an algorithm
using 6 - /N — 6 routing steps at most and 4 - VNV + O(1) on the average. We will
improve on this result by using a TUL-decomposition of A where T consists of a
number of bit interchanges. We are able to intermix the permutations of T with those
of the UL-part. In this way we get an algorithm which needs 4-v/N —4 routing steps at
most. The permutation is performed by a sequence of selective bit complementations
but they are no longer invertible and we accept that two data-sets reside in the same
PU during the routing. Our algorithm is optimal for some affine permutations and on
the average the number of routing steps is only O(1) from a lower bound (cf. [9]).

1 Introduction

1.1 Machine model

We are working on a SIMD array processor consisting of N = 2" (n even) processing units
(PUs) organized in a square grid without wrap-around connections: The v/ N x+/N MESH.
PUs are numbered according to the shuffled-row-major scheme (this can be generalized,
cf. section 4). The PU numbers are thought of as binary n-vectors (denoted by an italic
lower case letter with a bar over it e.g.).

*The work of the author was financially supported by the Foundation for Computer Science (SION)
of the Netherlands Organization for Scientific Research (NWO). This research was partially supported by
the ESPRIT I Basic Research Actions Project of the EC under contract No. 3075 (Project ALCOM).

1.2 Context and results

One of the fundamental problems in parallel computation is the routing problem on an
N processor network: Data from PU; must be routed to the destination processor PUg(;)
and this should be done for all i (0 < i < N) simultaneously. In many applications d
is a permutation. A trivial way of routing permutations is by sorting on an appended
destination field. Sorting algorithms for the MESH are well-known, [6, 10, 3], the most
efficient one requiring (8 - VN + O(N1/3 . 5)) routing steps (rss). Many recent articles
on routing and sorting on the MESH, [8, 2, 4], assume a MIMD machine and often have
average-case performance. Although these results cannot readily be compared to our
results for SIMD machines, they show a vivid interest in the subject. In case of special
permutations more efficient routing schemes are possible: For bit-oriented permutations
Nassimi & Sahni [5] gave an optimal algorithm needing 4 - /N — 4 rss at most. If the
permutation d is given by d(Z) = A-Z+5, where A is an invertible n x n 0-1 matrix and b is
an n-vector, then we call it affine. The class of affine permutations (aps) contains the class
of bit-oriented permutations. Aps will be denoted by their defining matrix-vector pair,
e.g. (A,b). In this paper we givea 4-v/N — 4 rss algorithm for aps. It is an improvement
of our previous work [9] which was based on the algorithm of Pease [7] for routing aps on
a hypercube network. There we needed 6 - VN — 4 rss at most and 4 - VN + O(1) rss on
the average for routing aps. Thus the main gain is the lower worst-case upper bound.

1.3 Approach

The basic routing operation we use is the (selective) bit-complementation (bc). The it
be, be;, is the permutation

be
F= (:c,,-l,...,m.-,...,a:o)»-—c-i (Zn-1,..rzi+1,...,70).

On a MESH bc; requires 2 - 21/2] rss (left/right shifts if ¢ even, up/down shifts if i odd).
In a selective be only part of the Z vectors participate in the mapping (for the remaining
we have Z + F). Generally a selective bc is not a permutation. If it is, we call it invertible.
Especially, this is the case if the selective bc is an ap itself and can be represented by (M,)
for some invertible matrix M and vector % which are trivial outside row; for some i. If
BC; performs the routing of b; and every PU has registers olddata and newdata (initially
the newdata are put to some dummy value), then selective bes can be implemented by

Proc BCRoute(i);
1. for all Z: Determine the value of selectedy;
2. for all Z: if selectedr then exchange olddataz and newdataz fi ;
3. for all 7: BC(i, newdatas).

Lemma 1 A selective bc of the ith bit can be routed with 2 - 2Li/2) rgs.

We will find a permutation matrix B such that the matrix of A with respect to the
basis changed with B, B - A- B~1, can be written as

B-A-B'=T.U.L,

where U is upper triangular, L lower triangular and 7 a product of bit interchanges. In
[9] we gave an easy algorithm for routing the U - L part of this product with 4 - /N — 4

2

1ss, by executing every bc at most once. Subsequently routing T with the algorithm of
Nassimi and Sahni [5] gives an algorithm which needs at most 8-v/N — 8 rss. However, we
can combine the routings of T with those of U - L. Thus we find an algorithm which routes
aps with 4 - /N — 4 rss in total. To route these combinations we need non-invertible bcs.
A consequence of this is that two data-sets may reside in one PU. We proved in [9] that
in case invertible bcs are the only allowed basic routing operations, at least 6-v/N — 6 are
needed for a specific example. In the remainder we will fix the sequence of the n bcs and
the values of selecteds.

1.4 Notation

& = (0...01;0...0), the i* basis-vector,
n X n identity matrix,

-
1l

z; = &7, the i*h element of 7,
Z; = T-§, the i" element vector of %,
Ai— = &-A,theih row of 4,
Aij = & -A-Ej, the element at position ij of A,
Eri9) = the matrix giving the interchange of bit; and bit;,

EC*) = pplkk+y) ., EA-1D the elementary cycle of bity to bit; (k < !).
The elementary cycle EC*Y) (k < l) can be represented by
EC*) = (n—1 0 n—1,.. ., l41 o 141, 0 by d=1 0 1y oo K o> kb1, k1 v k-1,...,0 — 0).
As convention (non-standard)'on the indices of vectors and matrices we use

Tp-1 Ap-1n-1 ... Anp_io
=1 i |ids= : :
zg Aon-1 ... Ago

Under this convention elementary cycles have the form

(. \

01 0 0 0
0 0 1 0
ECt) = E
0 1 0
0 0 01
1 0 0 0 o

2 Decomposition of the affine permutation

With the notation introduced in section 1.4 we can express more clearly what our decom-
position will be: We will find a basis-change given by B, such that we get

B-A-B'=EO. .E-Y.y[-D. . y[O), (1)

Here EI®) equals Ex(**+)) or I and VL) is invertible and trivial outside row;. The algo-
rithm proceeds as follows:

1. B:=1;
2. fori:=0ton-1do
a. if Aji=Aip1i=0
then select j > i+ 1 such that 4;; = 1;
B := Elit19) . p,
A= Ei+13) . 4. Eoi+13);
for k:=0to i—1do VLK) := Ezli+13) . yL(® . Bli+14) od § ;
b. if 4;;,=0
then EI) := pplii+1),
A= Egii+) . 4
else EM:=]4f;
c. VL) := I,VZ?_)_ = A _;
A:=A-VLU) od ;

The following invariant property holds at the end of pass i, -1 < i < n -1, of the loop:
B-A-B'=EIO. . .E[.A0.y[6). . yL[O (2)

with B a permutation matrix, EX¥), VL() as indicated above and A% invertible and trivial
in rouy, ..., row;, the A we find during the algorithm. For i = —1 (2) is satisfied. Assume
(2) holds at the end of pass i — 1. Because A1) is invertible there is a J 2 i such that

A;-';.' D=1 Ifitis necessary to make Af:ll,) = 1, then B is changed. This may induce
changes on the VLY as well, but their properties are preserved. Ez(+19) commutes with
EI®) for k < j. If at the start of step b. Ag'-"l) = 0, then this is corrected by exchanging

]
row; and row;y;. Because VI®)™' = VL() we have (AG-V . vL()) . VLO), Putting
AW = AG-D). VL) it is easy to check that AG) = &;. So (2) also holds at the end of pass i.
The algorithm as given is correct but very inefficient. E.g., Ez(i+14) . VL(®) . Ep(i+15) can
be calculated in O(1). Neither there is any need to store all trivial matrix rows occurring.
Performing this kind of optimalizations we get

Lemma 2 A decomposition as in (1) can be constructed in O(n3) time with O(n?) space.

The decomposition of (1) does not look like a TUL-decomposition. It is, however, closely
related to a TUL-decomposition. If we construct a TUL-decomposition of A analogously
to the algorithm given above, then T = EX% EK"1) and, if we put V = U1, then
VLY = (I with row; replaced by V; _) - (I with row; replaced by I;,—). So (1) could also
be obtained from a TUL-decomposition.

Define for any vector Z, matrix A and invertible matrix B =’ = B - Z,A'=B-A-B-1,
For a PU with number Z we call z/ its index. A processor with index z’ will be denoted by

4

PU”. Of course PP = PU g-1.37- An ap (A,D) is routed by routing (A’,) with respect
to the indices, i.e. by sending the data from PU*' to PUV with 5 = A’- 7’ +¥. The B in
(1) is bit-oriented. For this case we proved in [9] that routing with respect to the indices
is just as easy as routing with respect to the numbers (instead of calling b¢; one should
call bc;, with j such that B! - & = g;). Therefore, without loss of generality we assume

in the following that B = I. Now, taking together the consecutive EzU7+1) and using the
definition of EC*Y, (1) can be reduced to

A= ECk) . pclkb) . yrn-1) . L yp©), (3)

with 0 < ki < li < ki1 < liyn1 € n— 1. We are going to intermix the EC%%) with
the VLU, Let W0 = ([Tjocicopi<sy EC* ™) - VL; - (Tjocicolticsy EC*), then we can
rewrite (3) as

A = (wh-D. | W)y, (ECksts) .wls) . cWwks)y.
(wke=1) . wlet)y. .
(wk=1) .. wlet)) . (BCtkolo) . yylo) . | . W ko)) .
(wko=1). . wO), (4)
It remains to find vectors & € {0,%;} such that § = b+ A - T satisfies
7 = (G+wh-D. . (G + wts+1) | (EC("-’-) (e + wl) . .. (cx, + wiks) .
(G + wiks-1), | (T + wlsm+1) ||
g+ Wk, (g 4+ W) (Bolkebo) | e+ W . (g + Wik .
1 ot 0 0
@+ Wk, (G+ WO .7)..). (5)

For invertible A we have 5+ A-Z = A - (A~! b + Z), furthermore W® ™" = W) and
W) .2 = &. These relations are used in the following algorithm which calculates the
vectors ¢;:

1. Construct a decomposition of A as in (4);

2. forj:=n-1to 0do
a. if j = I; for some s > i > 0 then b:= EC*) ™ .5 8 ;
b. b:= W .5 ¢;:=b;; b;:=00d ;

Step 1 can be carried out with aid of the algorithm of section 2 in O(n3) time (c.f.
lemma 2). During step 2 we always have b; = 0Vi > j. Step 2.a and step 2.b can be
implemented such that they only cost O(l; — k;) and O(j + 1) time, respectively. Thus
step 2 requires O(n?) time. Concluding

Lemma 8 In O(n3) time we can ezpressj = A-Z + b as in (5) with O(n?) space.

We illustrate the process of “bringing b into the permutation” with an example:

Example 1 In the following matrices empty places are zero; at the positions marked “”
both values may occur.

)

5

It
SN TN TN TN
N—
+
N
3
-
- *

occ8 o088 oco8
~——
+
NN
o
-
—d *

~——
+

N
-t
R 3
*

1

3 Routing the permutation

In this section we will give procedures for routing the permutations which constitute (5):

D = g+wh. .. (e + w® g1y (6)
70 = ECkY. @G+wWO. .. (F+w® czlk-D)), (7)

Because the matrices W(*) and the 7; are non-trivial in row; only these are almost compo-
sitions of selective bcs. Permutations as in (6) can be routed using a worked-out form of
BCRoute of section 1.3:

Proc BCsRoute(k, I, W), ... W, 7);
fori:=ktoldo
1. for all Z: selecteds := (2; # c; + WO, _ - 7);
2. for all Z: if selecteds then exchange olddataz and newdataz fi ;
3. for all 7: BC(i, newdataz);
4. for all 7: if selecteds then exchange olddataz and newdatas fi od .

After step 4 of every pass every PU contains exactly one data-set residing in the olddata.
This is a direct consequence of the bcs being invertible in this this case, it can also be expressed

by selecteds = (z; # ¢; + W(') %) = (bei(Z)i # ¢i + W('),’_ bei(Z)) = selectedy,),

where we used W,-(,.) =1. LFrom this relation it follows that the permutation consists of
pairwise exchanges of data-sets.

The permutation of (7) can only be routed efficiently if we accept non-invertible bes
and accept that some PUs contain temporarily two data-sets. First we give an example:

Example 2 We consider a permutation of the form of (7) with a cycle of length 3 and
¢=0:

02) w2 w) w(o)

(0,4

10 1 % 1 1

01 . 1 . * 1 = . 1 S
0 0 1 1 * x 1

(2) is determined by W(0), :c() is determined by w1, z(z) is determined by W(2),

Define 3§~ = =7 + Wi-1. @+ ww . gy g 757" is the number of the PU a
data-set d coming from ?i:'(k 1) would have reached after executmg pass ¢ — 1 of a trivial

routing algorithm starting with BCsRoute. From example 2 we see that zt(,} 41 the final

value of z;4; for d, can be expressed in terms of yg"l): zf,‘} 1 =G+ W), _ -_7]5"_1). This

gives an algorithm analogous to BCsRoute for routing the permutation of (7):
Proc ECBCsRoute(k, I, Wk), ... W 7);
for i:= k to l do { Replace i+ 1 by kif i = . }
1. for all 7, data-sets d in F: calculate 79'1);
2. for all 7, data-sets d in Z: selectedy := (i1 # i + W;,_ -yg’l));
3. for all Z, data-sets d in F: if selected; then route d to bci1(z) fi od .

There are two questions that remain: Can ?79"1) be calculated from Z; can we guarantee
that there is never more than one data-set to be routed from any PU? Assume that at the
start of pass ¢ we find in a PU, %, two data-sets: olddata, data that remained at Z during

Pass ¢ — 1 and newdata, data that newly arrived. Generally we have y‘(,';..'l) = a:l(,';_l).
olddata was not selected during the routing of bc; or earlier this gives xsl;‘;iza". = x;

and thus yf,';d—}zm,i = ;. Furthermore, from step 2 and 3 of ECBCsRoute we see that
yf,}d_}},a,j = Z;41 for all i > j > k. With an analogous reasoning for newdata we get

i-1
ygldda)ta = (zn—l, v ooy Tigl, T, TiyTielys v oy Thtly Thaly- . 230),
—(i-1

Ynewdata = (xn—l’-"’zi+l’ z;+ 1, ziszi—la"-azk+lvmk—1’--°ax0)-

Thus 75.‘;,14)“¢ = bq(?fjgﬁzta). This gives., use W'.-(:) = 1, selectedyigiata = (zig1 # ci +
we), _ "175,',;;2“) # (Tigy1 # i+ W), _ -Iis::wld)a,a) = selected, y,dato- This means that either
olddata or newdata should be routed. Starting with data-sets in olddata and dummies in
newdata we thus always remain in a situation as required. Both questions have therefore

been settled positively. Now ECBCsRoute can be completed:

Proc ECBCsRoute(k, I, W), ... w0 7);
fori:=ktol-1do
for all z: ¥z = (wn-—la e oy Tigly zl‘a_ziii—ls SEEPE 7 5 P75 PR zO);
for all Z: selecteds := (z;41 # ¢; + W), _ -7z) { This is selected,igai, for Z. }s
for all 7: if selected; then exchange olddataz and newdataz fi
for all z: BC(i + 1, newdates) od ;
for all Z: Yz = (zn—ly ceey "':H-l’zbz_h Tl-1se ey 1y Tholye ooy ZO);
for all Z: selecteds := (zi # c1 + WO, _ - 73);
for all 7: if selected; then exchange olddataz and newdataz fi ;
for all z: BC(k, newdatag) od ;
for all Z: if olddataz = dummy then exchange olddataz and newdataz fi .

b

The last statement is to resolve the non-invertibility. BCsRoute and ECBCsRoute can be
combined to give a parallel algorithm for routing permutations as in (5) on a VN x VN
MESH. In this algorithm every bc is used exactly once. With lemma 1 and lemma 3 we
get

Theorem 1 After preprocessing with O(n3) time and O(n?) space aps can be routed with
4 -V N ~ 4 routing steps.

We give an example of the data movement occurring in the course of the algorithm:

Example 8 We consider the permutation (EC(°?),0) on a network with eight PUs: PUggo, . . .
PUyy1. The decomposition is trivial in this case with W(®) = W) = W) = [; and & = 7,
without need for a change of basis. We just have to route T = EC®?), During the ezecu-
tion of the algorithm the PU registers take on the following values:

T 000 001 010 011 100 101 110 111
olddata dooo dOOl dOlO dou d100 d101 dl 10 dlll initial situation
newdata | 0 0 0 0 0 0 0 0
7 000 001 010 011 100 101 110 111 {|:=0
selected | F T T F F T T F
olddata | dgoy 0 0 doyn digo O 9@ dy11 | exchange
newdata @ dOOl d010 @ 0 lel duo w
newdata | dgjo 0 O domm dio O @ dyo1 | routing of bc;
7 000 000 011 011 100 100 111 111 |:z=1

selected | F F T T T T F F
olddata | dgee 0 O dooi dio O 0 di11 | exchange
newdata dOlO 0 @ dOll leO 0 0 lel
newdata | digo 0 0 din doo 9 @ doy1 | routing of be,
] 000 000 001 001 110 110 111 111]:i=2

selected | F F T T T T F F
olddata | doge 0 0 dior doio O ® di11 | exchange
newdata | dygo 9 O door dyo 9O ® donn
newdata | ® digo doo1 @ @ dio donn @ | routing of be

olddata | dooo dico door dior doro diio donn din | if test
newdata| 0)]) 0) 0) 0

4 Optimality, numbering schemes

An example shows that sometimes our algorithm is optimal and sometimes it is not:

Example 4 Let TT = (EZ®Y . Ez(?3). .., . Ezln=2n-1) 3). cC=(I,(1,...,1)), then
rno,1,...,0,1) = (1,9,...,1,0), T7(1,0,...,1,0) = (0,1,...,0,1),
cqo,...,0) = a,...,1), cai,...,1) = (0,...,0).

TT cannot be routed by a sequence of bes in less than 4-+/N — 4 rss: One has to carry out
every bc. However, TT can be routed in 2 - /N — 4 rss with the algorithm of Nassimi &
Sahni [5]. Thus our algorithm does not route TT optimally. On the other hand, a distance
argument shows that CC can never be routed with less than 4-/N — 4 rss on a VN x VN
SIMD MESH.

In [9] we showed that routing over large distances is very common. We proved that on the
average an ap needs more than 4 - v/N — 16 rss. This means that our algorithm is o(1)
from optimal on the average. It is possible to save rss if VL) = 0 for some i. This can
be very useful but on the average the improvement is neglectable (if testing time is taken
into account it is even a deterioration). Although for many permutations (e.g. TT) our
algorithm is not optimal, it is easy to see that, after the “improvement” sketched above,

8

no algorithm using only one-bit operations (selective bes, invertible or not) uses less rss.
Just as we knew at the start of this paper that we needed non-invertible bes to reach
the upper bound of 4 - v/N — 4 rss, we know now that if we want to reach an optimal ap
routing algorithm the least we need are two-bit operations. Correct two-bit manipulations
are easy to give, the problem is to find a decomposition of the permutation such that every
bit is manipulated at most once. Further study is necessary to point out whether and how
this generalization of the work of Nassimi & Sahni can be achieved.

If the numbering of the PUs differs from the shuffled-row-major (srm) numbering
scheme by some ap (C,d), then it is easy to express an ap (A’,¥), that should be routed
with respect to this numbering, as (A,Dd), given with respect to the srm numbering: An
T given with respect to the srm numbering has modified number 7/ = C - T+d T
should be routed to y' = A'- 27+ ¥ = A’ (C-Z +d) + ¥. This ¥ has srm number
7=C1(J-=C (4 (C-Z+D+F-q)=C1-4.C.74C- - (434 F - 3J),
so we can take A = C~1-A'.C and b = C~'.(A’-d + ¥ — d). This observation allows
us to use rather general numbering-schemes. The row-major numbering-scheme is among
them, the snake-like numbering-scheme, however, is not.

5 Conclusion

We studied the problem of routing affine permutations on a MESH. We used a decompo-
sition algorithm to rewrite the affine permutation as a composition of affine permutations
which where non-trivial in one row only, preceded by some elementary cycles. The rout-
ing could be performed now by a sequence of invertible and non-invertible selective bit-

complementations. Because every bit-complementation was used at most once a routing
time of 4 vV N — 4 followed.

References

[1] Aho, V. A,, J. E. Hopcroft and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley PC. 1974.

[2] Krizanc, D., S. Rajasekaran, T. Tsantilas, Optimal algorithms for MESH-connected
processor arrays, Proc. $th AWOC, Lecture Notes in Comp. Sc. 319, 1988, pp. 411-
422.

[3] Kumar, M. and D.S. Hirschberg. An efficient implementation of Batcher’s odd-even
merge algorithm and its application in parallel sorting schemes, IEEE Trans. Comp.
C-32 (1983), pp. 254-264.

[4] Kunde, M., Routing and sorting on MESH-connected arrays, Proc. 3th AWOC, Lec-
ture Notes in Comp. Sc. 319, 1988, pp. 423-433.

[5] Nassimi, D. and S. Sahni. An optimal routing algorithm for MESH-connected parallel
computers, Jrnl ACM 27 (1980), pp. 6-29.

[6] -, Bitonic sort on a MESH-connected parallel computer, IEEE Trans. Computers,
C-27 (1979), pp. 2-7.

[7] Pease, M.C. The indirect binary n-cube microprocessor array, IEEE Trans. Comput.,
C-26 (1977), pp. 458-473.

[8] Schnorr, C. P., A. Shamir, An optimal sorting algorithm for MESH-connected com-
puters, Proc. 18th ACM Symp. on Th. of Comp., 1986, pp 255-263.

[9] Sibeyn, J.F. Routing affine permutations on a MESH interconnection network by a

sequence of bit complementations. Techn. Rep. Dep. of Comp. Sc. Univ. of Utrecht,
to appear.

(10] Thompson, C.D. and H.T. Kung. Sorting on a MESH-connected parallel computer,
Commun. ACM 20 (1977), pp. 263-271.

10

