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Abstract

We study the problem of routing affine permutations on a SIMD MESH-connected
network without wrap-around connections. For a v/N x+/N MESH affine permutations
can be described by an invertible log N x log N matrix A and a translation vector b.
Thus if the bit-row of the index of a processing-unit is # then the bit-row of its
destination is § = A-Z+b. Previously, [9], we performed the routing by a sequence of
invertible bit complementations. Those bit complementations were found by using an
LUL-decomposition of the matrix A. Refining this approach we found an algorithm
using 6 - /N — 6 routing steps at most and 4 - VNV + O(1) on the average. We will
improve on this result by using a TUL-decomposition of A where T consists of a
number of bit interchanges. We are able to intermix the permutations of T with those
of the UL-part. In this way we get an algorithm which needs 4-v/N —4 routing steps at
most. The permutation is performed by a sequence of selective bit complementations
but they are no longer invertible and we accept that two data-sets reside in the same
PU during the routing. Our algorithm is optimal for some affine permutations and on
the average the number of routing steps is only O(1) from a lower bound (cf. [9]).

1 Introduction

1.1 Machine model

We are working on a SIMD array processor consisting of N = 2" (n even) processing units
(PUs) organized in a square grid without wrap-around connections: The v/ N x+/N MESH.
PUs are numbered according to the shuffled-row-major scheme (this can be generalized,
cf. section 4). The PU numbers are thought of as binary n-vectors (denoted by an italic
lower case letter with a bar over it e.g. ).
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1.2 Context and results

One of the fundamental problems in parallel computation is the routing problem on an
N processor network: Data from PU; must be routed to the destination processor PUg(;)
and this should be done for all i (0 < i < N ) simultaneously. In many applications d
is a permutation. A trivial way of routing permutations is by sorting on an appended
destination field. Sorting algorithms for the MESH are well-known, [6, 10, 3], the most
efficient one requiring (8 - VN + O(N1/3 . 5)) routing steps (rss). Many recent articles
on routing and sorting on the MESH, [8, 2, 4], assume a MIMD machine and often have
average-case performance. Although these results cannot readily be compared to our
results for SIMD machines, they show a vivid interest in the subject. In case of special
permutations more efficient routing schemes are possible: For bit-oriented permutations
Nassimi & Sahni [5] gave an optimal algorithm needing 4 - /N — 4 rss at most. If the
permutation d is given by d(Z) = A-Z+5, where A is an invertible n x n 0-1 matrix and b is
an n-vector, then we call it affine. The class of affine permutations (aps) contains the class
of bit-oriented permutations. Aps will be denoted by their defining matrix-vector pair,
e.g. (A,b). In this paper we givea 4-v/N — 4 rss algorithm for aps. It is an improvement
of our previous work [9] which was based on the algorithm of Pease [7] for routing aps on
a hypercube network. There we needed 6 - VN — 4 rss at most and 4 - VN + O(1) rss on
the average for routing aps. Thus the main gain is the lower worst-case upper bound.

1.3 Approach

The basic routing operation we use is the (selective) bit-complementation (bc). The it
be, be;, is the permutation

be
F= (:c,,-l,...,m.-,...,a:o)»-—c-i (Zn-1,..rzi+1,...,70).

On a MESH bc; requires 2 - 21/2] rss (left/right shifts if ¢ even, up/down shifts if i odd).
In a selective be only part of the Z vectors participate in the mapping (for the remaining
we have Z + F). Generally a selective bc is not a permutation. If it is, we call it invertible.
Especially, this is the case if the selective bc is an ap itself and can be represented by (M, )
for some invertible matrix M and vector % which are trivial outside row; for some i. If
BC; performs the routing of b; and every PU has registers olddata and newdata (initially
the newdata are put to some dummy value), then selective bes can be implemented by

Proc BCRoute(i);
1. for all Z: Determine the value of selectedy;
2. for all Z: if selectedr then exchange olddataz and newdataz fi ;
3. for all 7: BC(i, newdatas).

Lemma 1 A selective bc of the ith bit can be routed with 2 - 2Li/2) rgs.

We will find a permutation matrix B such that the matrix of A with respect to the
basis changed with B, B - A- B~1, can be written as

B-A-B'=T.U.L,

where U is upper triangular, L lower triangular and 7 a product of bit interchanges. In
[9] we gave an easy algorithm for routing the U - L part of this product with 4 - /N — 4
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1ss, by executing every bc at most once. Subsequently routing T with the algorithm of
Nassimi and Sahni [5] gives an algorithm which needs at most 8-v/N — 8 rss. However, we
can combine the routings of T with those of U - L. Thus we find an algorithm which routes
aps with 4 - /N — 4 rss in total. To route these combinations we need non-invertible bcs.
A consequence of this is that two data-sets may reside in one PU. We proved in [9] that
in case invertible bcs are the only allowed basic routing operations, at least 6-v/N — 6 are
needed for a specific example. In the remainder we will fix the sequence of the n bcs and
the values of selecteds.

1.4 Notation

& = (0...01;0...0), the i* basis-vector,
n X n identity matrix,

-
1l

z; = &7, the i*h element of 7,
Z; = T-§, the i" element vector of %,
Ai— = &-A,theih row of 4,
Aij = & -A-Ej, the element at position ij of A,
Eri9) = the matrix giving the interchange of bit; and bit;,

EC*) = pplkk+y) ., EA-1D the elementary cycle of bity to bit; (k < !).
The elementary cycle EC*Y) (k < l) can be represented by
EC*) = (n—1 0 n—1,.. ., l41 o 141, 0 by d=1 0 1y oo K o> kb1, k1 v k-1,...,0 — 0).
As convention (non-standard)'on the indices of vectors and matrices we use

Tp-1 Ap-1n-1 ... Anp_io
=1 i |ids= : :
zg Aon-1 ... Ago

Under this convention elementary cycles have the form

(. \

01 0 0 0
0 0 1 0
ECt) = E
0 1 0
0 0 01
1 0 0 0 o




2 Decomposition of the affine permutation

With the notation introduced in section 1.4 we can express more clearly what our decom-
position will be: We will find a basis-change given by B, such that we get

B-A-B'=EO. .E-Y.y[-D. . y[O), (1)

Here EI®) equals Ex(**+)) or I and VL) is invertible and trivial outside row;. The algo-
rithm proceeds as follows:

1. B:=1;
2. fori:=0ton-1do
a. if Aji=Aip1i=0
then select j > i+ 1 such that 4;; = 1;
B := Elit19) . p,
A= Ei+13) . 4. Eoi+13);
for k:=0to i—1do VLK) := Ezli+13) . yL(® . Bli+14) od § ;
b. if 4;;,=0
then EI) := pplii+1),
A= Egii+) . 4
else EM:=]4f;
c. VL) := I,VZ?_)_ = A _;
A:=A-VLU) od ;

The following invariant property holds at the end of pass i, -1 < i < n -1, of the loop:
B-A-B'=EIO. . .E[.A0.y[6). . yL[O (2)

with B a permutation matrix, EX¥), VL() as indicated above and A% invertible and trivial
in rouy, ..., row;, the A we find during the algorithm. For i = —1 (2) is satisfied. Assume
(2) holds at the end of pass i — 1. Because A1) is invertible there is a J 2 i such that

A;-';.' D=1 Ifitis necessary to make Af:ll,) = 1, then B is changed. This may induce
changes on the VLY as well, but their properties are preserved. Ez(+19) commutes with
EI®) for k < j. If at the start of step b. Ag'-"l) = 0, then this is corrected by exchanging

]
row; and row;y;. Because VI®)™' = VL() we have (AG-V . vL()) . VLO), Putting
AW = AG-D). VL) it is easy to check that AG) = &;. So (2) also holds at the end of pass i.
The algorithm as given is correct but very inefficient. E.g., Ez(i+14) . VL(®) . Ep(i+15) can
be calculated in O(1). Neither there is any need to store all trivial matrix rows occurring.
Performing this kind of optimalizations we get

Lemma 2 A decomposition as in (1) can be constructed in O(n3) time with O(n?) space.

The decomposition of (1) does not look like a TUL-decomposition. It is, however, closely
related to a TUL-decomposition. If we construct a TUL-decomposition of A analogously
to the algorithm given above, then T = EX% ..... EK"1) and, if we put V = U1, then
VLY = (I with row; replaced by V; _) - (I with row; replaced by I;,—). So (1) could also
be obtained from a TUL-decomposition.

Define for any vector Z, matrix A and invertible matrix B =’ = B - Z,A'=B-A-B-1,
For a PU with number Z we call z/ its index. A processor with index z’ will be denoted by

4



PU”. Of course PP = PU g-1.37- An ap (A,D) is routed by routing (A’, ) with respect
to the indices, i.e. by sending the data from PU*' to PUV with 5 = A’- 7’ +¥. The B in
(1) is bit-oriented. For this case we proved in [9] that routing with respect to the indices
is just as easy as routing with respect to the numbers (instead of calling b¢; one should
call bc;, with j such that B! - & = g;). Therefore, without loss of generality we assume

in the following that B = I. Now, taking together the consecutive EzU7+1) and using the
definition of EC*Y, (1) can be reduced to

A= ECk) . pclkb) . yrn-1) . L yp©), (3)

with 0 < ki < li < ki1 < liyn1 € n— 1. We are going to intermix the EC%%) with
the VLU, Let W0 = ([Tjocicopi<sy EC* ™) - VL; - (Tjocicolticsy EC* ), then we can
rewrite (3) as

A = (wh-D. | W)y, (ECksts) .wls) . cWwks)y.
(wke=1) . wlet)y. .
(wk=1) .. wlet)) . (BCtkolo) . yylo) . | . W ko)) .
(wko=1). . wO), (4)
It remains to find vectors & € {0,%;} such that § = b+ A - T satisfies
7 = (G+wh-D. . (G + wts+1) | (EC("-’-) (e + wl) . .. (cx, + wiks) .
(G + wiks-1), | (T + wlsm+1) ||
g+ Wk, (g 4+ W) (Bolkebo) | e+ W . (g + Wik .
1 ot 0 0
@+ Wk, (G+ WO .7)..). (5)

For invertible A we have 5+ A-Z = A - (A~! b + Z), furthermore W® ™" = W) and
W) .2 = &. These relations are used in the following algorithm which calculates the
vectors ¢;:

1. Construct a decomposition of A as in (4);

2. forj:=n-1to 0do
a. if j = I; for some s > i > 0 then b:= EC*) ™ .5 8 ;
b. b:= W .5 ¢;:=b;; b;:=00d ;

Step 1 can be carried out with aid of the algorithm of section 2 in O(n3) time (c.f.
lemma 2). During step 2 we always have b; = 0Vi > j. Step 2.a and step 2.b can be
implemented such that they only cost O(l; — k;) and O(j + 1) time, respectively. Thus
step 2 requires O(n?) time. Concluding

Lemma 8 In O(n3) time we can ezpressj = A-Z + b as in (5) with O(n?) space.

We illustrate the process of “bringing b into the permutation” with an example:

Example 1 In the following matrices empty places are zero; at the positions marked “”
both values may occur.

)
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3 Routing the permutation

In this section we will give procedures for routing the permutations which constitute (5):

D = g+wh. .. (e + w® g1y (6)
70 = ECkY. @G+wWO. .. (F+w® czlk-D)), (7)

Because the matrices W(*) and the 7; are non-trivial in row; only these are almost compo-
sitions of selective bcs. Permutations as in (6) can be routed using a worked-out form of
BCRoute of section 1.3:

Proc BCsRoute(k, I, W), ... W, 7);
fori:=ktoldo
1. for all Z: selecteds := (2; # c; + WO, _ - 7);
2. for all Z: if selecteds then exchange olddataz and newdataz fi ;
3. for all 7: BC(i, newdataz);
4. for all 7: if selecteds then exchange olddataz and newdatas fi od .

After step 4 of every pass every PU contains exactly one data-set residing in the olddata.
This is a direct consequence of the bcs being invertible in this this case, it can also be expressed

by selecteds = (z; # ¢; + W(') %) = (bei(Z)i # ¢i + W('),’_ bei(Z)) = selectedy, ),

where we used W,-(,.) =1. LFrom this relation it follows that the permutation consists of
pairwise exchanges of data-sets.

The permutation of (7) can only be routed efficiently if we accept non-invertible bes
and accept that some PUs contain temporarily two data-sets. First we give an example:

Example 2 We consider a permutation of the form of (7) with a cycle of length 3 and
¢=0:

02) w2 w) w(o)

(0,4

10 1 % 1 1

01 . 1 . * 1 = . 1 S
0 0 1 1 * x 1

(2) is determined by W(0), :c( ) is determined by w1, z(z) is determined by W(2),

Define 3§~ = =7 + Wi-1. @+ ww . gy g 757" is the number of the PU a
data-set d coming from ?i:'(k 1) would have reached after executmg pass ¢ — 1 of a trivial

routing algorithm starting with BCsRoute. From example 2 we see that zt(,} 41 the final



value of z;4; for d, can be expressed in terms of yg"l): zf,‘} 1 =G+ W), _ -_7]5"_1). This

gives an algorithm analogous to BCsRoute for routing the permutation of (7):
Proc ECBCsRoute(k, I, Wk), ... W 7);
for i:= k to l do { Replace i+ 1 by kif i = . }
1. for all 7, data-sets d in F: calculate 79'1);
2. for all 7, data-sets d in Z: selectedy := (i1 # i + W;,_ -yg’l));
3. for all Z, data-sets d in F: if selected; then route d to bci1(z) fi od .

There are two questions that remain: Can ?79"1) be calculated from Z; can we guarantee
that there is never more than one data-set to be routed from any PU? Assume that at the
start of pass ¢ we find in a PU, %, two data-sets: olddata, data that remained at Z during

Pass ¢ — 1 and newdata, data that newly arrived. Generally we have y‘(,';..'l) = a:l(,';_l).
olddata was not selected during the routing of bc; or earlier this gives xsl;‘;iza". = x;

and thus yf,';d—}zm,i = ;. Furthermore, from step 2 and 3 of ECBCsRoute we see that
yf,}d_}},a,j = Z;41 for all i > j > k. With an analogous reasoning for newdata we get

i-1
ygldda)ta = (zn—l, v ooy Tigl, T, TiyTielys v oy Thtly Thaly- . 230),
—(i-1

Ynewdata = (xn—l’-"’zi+l’ z;+ 1, ziszi—la"-azk+lvmk—1’--°ax0)-

Thus 75.‘;,14)“¢ = bq(?fjgﬁzta). This gives., use W'.-(:) = 1, selectedyigiata = (zig1 # ci +
we), _ "175,',;;2“) # (Tigy1 # i+ W), _ -Iis::wld)a,a) = selected, y,dato- This means that either
olddata or newdata should be routed. Starting with data-sets in olddata and dummies in
newdata we thus always remain in a situation as required. Both questions have therefore

been settled positively. Now ECBCsRoute can be completed:

Proc ECBCsRoute(k, I, W), ... w0 7);
fori:=ktol-1do
for all z: ¥z = (wn-—la e oy Tigly zl‘a_ziii—ls SEEPE 7 5 P75 PR zO);
for all Z: selecteds := (z;41 # ¢; + W), _ -7z) { This is selected,igai, for Z. }s
for all 7: if selected; then exchange olddataz and newdataz fi
for all z: BC(i + 1, newdates) od ;
for all Z: Yz = (zn—ly ceey "':H-l’zbz_h Tl-1se ey 1y Tholye ooy ZO);
for all Z: selecteds := (zi # c1 + WO, _ - 73);
for all 7: if selected; then exchange olddataz and newdataz fi ;
for all z: BC(k, newdatag) od ;
for all Z: if olddataz = dummy then exchange olddataz and newdataz fi .

b

The last statement is to resolve the non-invertibility. BCsRoute and ECBCsRoute can be
combined to give a parallel algorithm for routing permutations as in (5) on a VN x VN
MESH. In this algorithm every bc is used exactly once. With lemma 1 and lemma 3 we
get

Theorem 1 After preprocessing with O(n3) time and O(n?) space aps can be routed with
4 -V N ~ 4 routing steps.



We give an example of the data movement occurring in the course of the algorithm:

Example 8 We consider the permutation (EC(°?),0) on a network with eight PUs: PUggo, . . .
PUyy1. The decomposition is trivial in this case with W(®) = W) = W) = [; and & = 7,
without need for a change of basis. We just have to route T = EC®?), During the ezecu-
tion of the algorithm the PU registers take on the following values:

T 000 001 010 011 100 101 110 111
olddata dooo dOOl dOlO dou d100 d101 dl 10 dlll initial situation
newdata | 0 0 0 0 0 0 0 0
7 000 001 010 011 100 101 110 111 {|:=0
selected | F T T F F T T F
olddata | dgoy 0 0 doyn digo O 9@  dy11 | exchange
newdata @ dOOl d010 @ 0 lel duo w
newdata | dgjo 0 O domm dio O @  dyo1 | routing of bc;
7 000 000 011 011 100 100 111 111 |:z=1

selected | F F T T T T F F
olddata | dgee 0 O dooi dio O 0  di11 | exchange
newdata dOlO 0 @ dOll leO 0 0 lel
newdata | digo 0 0 din doo 9 @  doy1 | routing of be,
] 000 000 001 001 110 110 111 111 ]:i=2

selected | F F T T T T F F
olddata | doge 0 0 dior doio O ® di11 | exchange
newdata | dygo 9 O door dyo 9O ® donn
newdata | ® digo doo1 @ @ dio donn @ | routing of be

olddata | dooo dico door dior doro diio donn din | if test
newdata| 0 )] ) 0 ) 0 ) 0

4 Optimality, numbering schemes

An example shows that sometimes our algorithm is optimal and sometimes it is not:

Example 4 Let TT = (EZ®Y . Ez(?3). .., . Ezln=2n-1) 3). cC=(I,(1,...,1)), then
rno,1,...,0,1) = (1,9,...,1,0), T7(1,0,...,1,0) = (0,1,...,0,1),
cqo,...,0) = a,...,1), cai,...,1) = (0,...,0).

TT cannot be routed by a sequence of bes in less than 4-+/N — 4 rss: One has to carry out
every bc. However, TT can be routed in 2 - /N — 4 rss with the algorithm of Nassimi &
Sahni [5]. Thus our algorithm does not route TT optimally. On the other hand, a distance
argument shows that CC can never be routed with less than 4-/N — 4 rss on a VN x VN
SIMD MESH.

In [9] we showed that routing over large distances is very common. We proved that on the
average an ap needs more than 4 - v/N — 16 rss. This means that our algorithm is o(1)
from optimal on the average. It is possible to save rss if VL) = 0 for some i. This can
be very useful but on the average the improvement is neglectable (if testing time is taken
into account it is even a deterioration). Although for many permutations (e.g. TT) our
algorithm is not optimal, it is easy to see that, after the “improvement” sketched above,
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no algorithm using only one-bit operations (selective bes, invertible or not) uses less rss.
Just as we knew at the start of this paper that we needed non-invertible bes to reach
the upper bound of 4 - v/N — 4 rss, we know now that if we want to reach an optimal ap
routing algorithm the least we need are two-bit operations. Correct two-bit manipulations
are easy to give, the problem is to find a decomposition of the permutation such that every
bit is manipulated at most once. Further study is necessary to point out whether and how
this generalization of the work of Nassimi & Sahni can be achieved.

If the numbering of the PUs differs from the shuffled-row-major (srm) numbering
scheme by some ap (C,d), then it is easy to express an ap (A’,¥), that should be routed
with respect to this numbering, as (A,Dd), given with respect to the srm numbering: An
T given with respect to the srm numbering has modified number 7/ = C - T+d T
should be routed to y' = A'- 27+ ¥ = A’ (C-Z +d) + ¥. This ¥ has srm number
7=C1(J-=C (4 (C-Z+D+F-q)=C1-4.C.74C- - (434 F - 3J),
so we can take A = C~1-A'.C and b = C~'.(A’-d + ¥ — d). This observation allows
us to use rather general numbering-schemes. The row-major numbering-scheme is among
them, the snake-like numbering-scheme, however, is not.

5 Conclusion

We studied the problem of routing affine permutations on a MESH. We used a decompo-
sition algorithm to rewrite the affine permutation as a composition of affine permutations
which where non-trivial in one row only, preceded by some elementary cycles. The rout-
ing could be performed now by a sequence of invertible and non-invertible selective bit-

complementations. Because every bit-complementation was used at most once a routing
time of 4 vV N — 4 followed.
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