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Abstract

Let S be a set of polygons in the plane. A translation ordering for $ (in
direction d) is an ordering of the polygons such that, if the polygons are moved
one by one to infinity in direction d according to this ordering, no collisions
occur between the polygons. We show that, after O(nlogn) preprocessing
using O(n) space, it is possible to determine, for any given d, in O(log ) time
whether such an ordering exists and, if so, to compute an ordering in O(n)
time.

Translation orderings correspond to valid orderings for hidden surface re-
moval schemes where objects that are closer to the viewpoint are displayed
later than objects that are farther away. Thus our technique can be used to
generate displaying orderings for polyhedral terrains. One of the advantages
of our approach is that it can easily be adapted to handle perspective views
within the same time and space bounds.

Keywords Computational geometry, separation problems, hidden surface re-
moval, relative convex hulls.

1 Introduction

In its most general form, the separability problem can be stated as follows. Given a
set of objects in some space, separate them by a sequence of motions. During the
motions, the objects should not collide with each other. (A collision between two
objects occurs when their interiors have a non-empty intersection.) These problems
come in many different flavors, depending on the objects that are considered, the
space they are in, and the type of motions that is allowed. Toussaint [19] gives an
extensive survey of such problems.
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lands. Supported by the Dutch Organisation for Scientific Research (N.W.Q.). Partially supported
by the ESPRIT II Basic Research Actions Program of the EC under contract No. 3075 (project
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We consider the following restricted version of the separability problem. Given a
set S = {Py,...,P,} of non-intersecting polygons in the plane, translate them in
some direction d to infinity, one at a time. Thus, every polygon has to be translated
in the same direction. The problem now is to determine whether the polygons can
be ordered such that, if the polygons are translated according to that ordering, no
collisions occur and, if so, to compute such a translation ordering.

This problem, which is called the translation problem, originated in 1980, when
Guibas and Yao [5] studied translation orderings for sets of convex polygons. They
showed that a translation ordering always exists for a set of convex polygons and
gave an O(n +mlogm) algorithm for computing an ordering. (Here, and in the rest
of this paper, m is the number of polygons and n = Y™, |P;| is the total number
of vertices of all polygons.). Since then, their work has been extended in several
ways. Ottman and Widmayer [16] simplified the method and Nurmi [9] adapted
the method to arbitrary polygons, achieving a time bound of O(nlogn). Recently,
Nussbaum and Sack [10] gave an optimal O(n+m log m) algorithm for this problem.
Sack and Toussaint [17] showed how to compute, in O(n logn) time, all directions of
separability (i.e., directions for which a translation ordering exists) for two arbitrary
polygons, which was improved to O(nloglogn) by Toussaint [20]. Finally, Dehne
and Sack [2] studied many of these problems when preprocessing is allowed: after
O(m?(Cs(p)+log m)) time and using O(m?) space, they are able to answer all kinds
of questions on translational orderings. (Here each polygon is assumed to have p
vertices and Cg(p) is the time needed to determine all directions of separability of
two p-vertex polygons, which varies between O(log p) and O(plog log p) depending
on the type of the polygons.) Although their method is efficient when the number of
polygons is small, it becomes very costly when there are many polygons. When all
polygons have constant size, for example, their preprocessing takes time O(n?logn)
and space O(n?) and computing an ordering for a given direction still takes O(n?)
time.

In this paper it is shown that a set of (arbitrary) polygons can be preprocessed
in time O(nlogn) and space O(n), such that it is possible to determine, for any
given direction d, in time O(logn) whether there exists a translation ordering and
to compute one (if it exists) in time O(n). We also show that all directions of sepa-
rability can be computed in O(nlogn) time. Hence, when the number of polygons
is large, this improves the results of Dehne and Sack [2] considerably.

One of the main applications of the translation problem is in computer graphics.
To render a realistic picture of a scene, hidden surface removal has to be performed.
One way to do this is to display the objects in the scene in a ‘back to front’ (with
respect to the viewpoint) order. This way the objects in the front are painted over
the objects in the back, thereby achieving the desired overlaying effect. A moment’s
thought will make it clear that a valid displaying order for this so-called painter’s
algorithm corresponds to a translation ordering for the objects in the direction per-
pendicular to the viewing plane. However, computing translation orderings in three



dimensions efficiently is difficult. Fortunately, for an important class of three di-
mensional scenes, the so-called terrains (polyhedral scenes in which the projections
of the faces of the objects on the zy—plane do not intersect) solutions to the two
dimensional translation problem can be used.

The translation ordering for the set of polygonal faces of a scene corresponds to
a parallel view of the scene. This is often unwanted. One of the advantages of our
method is that it can easily be adapted to yield a valid displaying order for perspec-
tive views within the same bounds. Thus we can preprocess a terrain consisting of
convex polygonal faces with a total number of n vertices in time O(nlogn) using
O(n) space, such that for any viewpoint a displaying order for the faces can be found
in time O(n). Notice that this gives a better space bound than the O(n logn) space
that is needed in the binary partition scheme of Paterson and Yao [12].

The sequel of this paper is organised as follows.

We start in section 2 by presenting some preliminary results on relative convex
hulls.

In section 3 our solution to the translation problem is presented. First, we
consider sets of convex polygons to illustrate the main idea of our method, namely
triangulating the area in between the polygons and translating the set of polygons
augmented with the triangles of the triangulation. Then we show how to handle
arbitrary polygons, using the concept of relative convex hulls.

In section 4, we discuss the application to hidden surface removal. It is shown
how perspective views can be handled and how to treat viewpoints above the terrain.

We conclude with a brief summary of our results and by mentioning some open
problems in section 5.

2 Relative convex hulls

In this section we present some results on relative conver hulls, a generalisation
of convex hulls introduced by Toussaint [20]. Relative convex hulls are defined as

follows. Define a polygonal circuit to be a closed polygonal path without (proper)
self-crossings.

Definition 1 Let P be a polygon and V a set of polygons. The convex hull of
P relative to V, denoted CH(P|V), is the polygon whose boundary is the shortest
polygonal circuit that includes P but excludes V, i.e., int(P) C int(CH(P|V)) and
int(P') C ext(CH(P|V)) for each P' € V.

(Thus our polygons are a slight generalization of a simple polygons, where we allow
some edges and vertices to be used more than once.) Intuitively, if we release an
elastic band that is wrapped around P, then it tries to take the shape of the convex
hull of P but it can be stopped by the other polygons and it takes the shape of the
relative convex hull of P. An example is given in Figure 1. Relative convex hulls
exhibit the following useful properties:



Figure 1: The dashed line is the boundary of the convex hull of P, relative to
{P2, P3, P;}. Note that the relative convex hull is not a simple polygon, since there
is a vertex that is used twice.

Lemma 1 Let P be a polygon and V,W be sets of polygons. Then:
(i) Ifv is a convez vertex of CH(P|V), then v is a convez vertez of P.
(i) Ifv is a reflex vertez of CH(P|V), then v is a convez vertez of P or a
convez verter of some polygon P' € V.
(iix) IfV C W, then CH(P|V) D CH(P|W).

Proof: (i): Let v be a convex vertex of CH(P|V) and let e, ¢’ be the two edges
of CH(P|V) incident on v. If v is not a point of P (and clearly this point must
be a convex vertex) then there is a small area around v that does not contain any
point of P. More specifically, there are points z € e, z' € € (z,z’ # v) such that
the triangle determined by z, z’ and v does not contain any point of P. But this
contradicts v € CH(P|V), since replacing 7o U vz’ by zz’ would yield a polygonal
circuit still enclosing P (and excluding V') that is shorter.

(ii): Follows in the same way as (i). Note that if v is a convex vertex of P, then
this vertex is used twice by CH(P|V).

(iii): Suppose V C W, but CH(P|V) 2 CH(P|W). Denote the boundaries of
CH(P|V) and CH(P|W) by B and @, respectively. If CH(P|V) 3 CH(P|W),
then there must be some area A4 enclosed by portions v of 8 and 4’ of 8’ such that
ACCH(P|W)and ANCH(P|V) = @. (The reader should convince himself that
both v and 4’ are connected portions of # and #’.) But 4 cannot have a vertex
that is convex with respect to A. Such a vertex would be reflex w.r.t. CH(P|V)
and thus, by (ii), be a vertex of P or of a polygon P’ € V. The first case cannot
occur since it contradicts the fact that CH(P|V) contains P. The second case is
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impossible since V. C W, A C CH(P|W) and CH(P|W) excludes W. Similarly, v/
cannot have a vertex that is convex w.r.t. A. Such a vertex would be convex w.r.t.
CH(P|W) and therefore be a convex vertex of P. This contradicts the fact that
CH(P|V) contains P. Of course, it is impossible that neither 4 nor 4’ contains a
convex vertex and, hence, area A cannot exists. O

Let S be a set of polygons. For a polygon P € S we define P* = CH(P|S—{P}) to
be the convex hull of P relative to the rest of S and we define S* = {P*|P € S} to
be the set of these relative convex hulls. In the remainder of this section it is shown
how S$* can be computed efficiently. Toussaint [20] has shown how to do this for a
set of two polygons. Using ideas similar to his, we show how this can be done for
larger sets of polygons.

The idea is to compute first an area around each polygon P, called the sleeve
of P, that contains the boundary of its relative convex hull. Then we determine a
point of which we know that it is on the boundary of the relative convex hull and
we compute a shortest circuit that starts at this point, goes ‘around’ P and returns
to this point. This last part is done using algorithms of Chazelle [1] or Lee and
Preparata [8]. They have shown that if the dual tree of the triangulation of a simple
polygon is a chain, then a shortest path between two points in such a polygon can
be computed in time linear in the number of vertices of the polygon. More precisely,
S* is computed by the following algorithm.

1. Let R be a large rectangle that contains S properly, i.e., S C int(R). Trian-
gulate R — S, the area inside R between the polygons.

2. For each P € S, compute P* = CH(P|S — {P}) as follows.

(1) Add as many triangles that are inside C H(P) to P as possible: while there
is a triangle T that shares two edges with P, add T to P. (This step is
to ensure that the sleeve that is constructed in the next step does not
contain any dead ends, i.e., its dual tree is indeed a chain.) Obviously
these triangles will lie completely in P*. Hence, adding them to P wil
not change P*.

(i) Compute sleeve(P) in the following way. Let vy be the leftmost vertex of
P and T the triangle sharing the edge Tgoy with P, where v, is the next
vertex of P in counterclockwise direction. Starting at v, walk along the
boundary of P, concatenating the triangles that share at least one vertex
with P in the natural order to each other, until T} is encountered again.
More formally, we initialize T := Ty as the triangle just added and v := v,
as and the vertex that is currently treated, and we advance as follows:
Let T1,...,T: be the counterclockwise enumeration of the triangles that
have v as a vertex. If T is the last triangle in this order, set v to the next
(in counterclockwise order) vertex along the boundary of P. (Observe

b)



Figure 2: The (non-dotted) triangles around P form the sleeve of P. Triangle T is

added in step 2(i) of the algorithm. Observe that triangle T! occurs two times in
sleeve(P).

that T' also has this vertex as one of its vertices.) Otherwise set T' to the
next triangle in this order and add T to sleeve(P).

(iii) Compute a shortest path from vg in T} to (the copy of) vp in Ty, the last

triangle added to sleeve(P), using the algorithm of [1] or [8]. This path
is the boundary of P*.

See Figure 2 for an illustration.

Lemma 2 The algorithm given above correctly computes S* in O(nlogn) time and
O(n) space.

Proof: First we prove the correctness of the algorithm and then we show that it
works within the stated bounds.

It is evident that the circuit that is computed in step 2(iii) of the algorithm
contains P and excludes § — {P}. We argue that (the boundary of) P* is confined
to sleeve(P). For suppose that it intersected some triangle T not in sleeve(P), then
T has a vertex inside P* that is not a vertex of P. But then it would be a vertex
of some other polygon P’ and P* would not exclude P’. Therefore the boundary
of P* must lie in the union of all triangles that share at least one vertex with P.
Finally, it is easily seen that (the interior of) the triangles that are added to P in
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step 2(i) cannot contain a part of the boundary of P*. Since v lies on CH (P) it
will certainly be a vertex of P* and it follows that P* is indeed the shortest path
from v in Tp to vg in T} inside sleeve(P).

By construction the dual of the triangulation of sleeve(P) is a polygonal chain,
so we can indeed use the algorithms of [1] or [8]. This is true although sleeve(P) is
not necessarily a simple polygon: some triangle could occur more than once in the
sleeve. However, Toussaint [20] observed that this is no real problem. If we embed
sleeve(P) onto a Riemann surface of several levels ([6]), so that if a triangle occurs
for the second (or third) time it lies ‘above’ its previous occurence, so to speak, the
algorithm that computes the shortest path won’t know any better than that it is
working with a simple polygon and returns the correct path.

To prove the time bound, we note that step 1 takes O(nlogn) time. To perform
step 2(i) efficiently, we first make for each polygon P a list of the triangles that share
two edges with P. This can easily be done in linear time in total. Then we add these
triangles to P and examine the triangles adjacent to them to see if they have to be
added too, etc. This way step 2(i) takes only O(n) time for all polygons in total.
Steps 2(ii) and 2(iii) take ¥ pes O(|sleeve(P)|) time. To estimate Ypes |sleeve( P,
we first note that any of the O(n) triangles is added to a sleeve if a vertex that it
shares with some polygon P is encountered during the traversal of the boundary of
P. Hence, any triangle can occur at most three times in a sleeve (i.e., once in three
sleeves, three times in one sleeve, etc.) and the total complexity of all sleeves is
O(n). The time bound follows, as well as the space bound. O

Remark: Notice that the time bound in the lemma above is determined by the
time needed to compute the triangulation of a polygon (R) with holes (the polygons
in S). Therefore, if the number of polygons in S is constant, the algorithm can be
implemented to work in O(n log log n) time: first remove the holes from the polygons

(in linear time per hole) and then triangulate the remaining simple polygon using
the algorithm of Tarjan and van Wyk [18].

3 Translating polygons

A translation ordering for a set S of polygons (in direction d) is defined as an
ordering such that if the polygons are moved one at a time (in direction d) to infinity
according to this ordering, no collisions occur. The computation of translation
orderings involves computing some sort of dominance relation between the polygons.
A polygon P dominates another polygon P’ if P’ collides with P when it is moved
before P is moved. Thus a translation ordering exists iff the dominance relation
between the polygons is free of cycles. It has been shown by Guibas and Yao [5]
that it is not necessary to compute all (possibly ©(m?)) dominances explicitly, but
that it suffices to compute the immediate dominances. (P immediately dominates
P' if, when P’ is moved, some portion of P’ intersects some portion of P before it
intersects some other polygon.)



Figure 3: @ is a d-neighbour of Q’.

This immediate dominance relation changes radically, however, when the direc-
tion of translation d changes. Hence, if we want to do preprocessing to speed up the
computation of a translational ordering for any given d, we have to take a different
approach. We will show that a triangulation of the area in between the polygons

gives us all the information we need to compute a translation ordering for any given
direction.

3.1 Translating convex polygons

Let S = {Py,..., Pu} be a set of convex polygons. The convex hull of S is denoted
by CH(S). Furthermore let T = {T3,...,Ti} be a triangulation of CH(S) — S,
the area in between the polygons of S. The idea is to translate the set S U 7.
Observe that this new set still contains only convex polygons and, hence, it can still
be translated. Surprisingly, translating S U 7 is an easier task than translating S,
as follows from the lemma given next. First we define d-neighbours, a concept that
is crucial in our method.

Definition 2 Let Q and Q' be two polygons. Q is a d-neighbour of Q' iff
(i) Q and Q' share an edge e
(i1) there is a ray in direction d that intersects int(Q’) just before it intersects e
and int(Q) just after it intersects e.

Notice that if two polygons Q and Q' share an edge e, then either Q is a d-neighbour
of @', or Q' is a d-neighbour of Q, or e is parallel to d. See Figure 3 for an illustration
of this definition.

Lemma 3 A polygon Q € SUT (possibly a triangle) can be translated to infinity
in direction d without collisions if and only if all its d-neighbours already have been
translated without collisions.

Proof: The "only if”—part is trivial. To prove the "if"-part, suppose that all
d-neighbours of Q have been translated without collisions, but that Q still collides
with some polygon Q'. Consider the moment that Q and Q' first intersect during



the translation. This intersection involves an edge e of Q. But then the d-neighbour
of @ that shares e (which must exist since the area in between Q and Q' has been
triangulated) would also collide with @, which contradicts the assumptions. O

Lemma 3 immediately leads to the following simple scheme.

The preprocessing just consists of computing a triangulation 7 of CH(S) — §
and the dual graph G(SUT) of SUT. (The nodes in this graph correspond to
the polygons in S U T and there is an arc between two nodes iff the corresponding
polygons share an edge.)

Now, given a query direction d, we proceed as follows. First we turn G(SUT ) into
a directed graph G4. Let a be an arc in G(S U T) connecting nodes corresponding
to polygons Q and Q'. If Q is a d-neighbour of Q’ then the arc in Gy corresponding
to a, denoted agq, is directed from @ to Q’. If Q' is a d-neighbour of Q then a4 is
directed from @’ to Q. Otherwise (the edge shared by Q and Q' is parallel to d)a
has no corresponding arc in G4. Thus (a node corresponding to) some polygon has
incoming arcs from all its d-neighbours and outgoing arcs to all polygons for which
it is a d-neighbour.

From Lemma 3 and the definition of Gy it easily follows that a topological or-
dering of the nodes in G, corresponds to a translation ordering in direction d for
the polygons in SU7T. (Note that the fact that SU7 can be translated guarantees
that Gy is acyclic.) Clearly, if the triangles of 7 are omitted from of this ordering,
we get the desired translation ordering for S. This leads to:

Lemma 4 A set S of convezr polygons can be preprocessed in O(nlogn) time and
O(n) space such that, given a direction d, a translation ordering for S in direction
d can be computed in time O(n).

Proof: The convex hull of S as well as the triangulation (and its dual graph) can
be computed in time O(n log n) and O(n) space ([13]). (Note that the total number
of edges in SUT (and therefore the number of nodes and arcs in G(SUT) as well)
is O(n)).

Since we can decide in constant time for an arc a in G(SUT) what the direction
of its corresponding arc ay4 in G4 will be, the construction of G, takes only linear
time. Topologically sorting a directed (acyclic) graph can also easily be done in
linear time (see, e.g., Knuth [7]). O

3.2 Translating arbitrary polygons

To apply the same idea to a set of arbitrary polygons, some extra preprocessing
has to be done. The problem is that if there are non-convex polygons, the triangles
of the triangulation might prevent the existence of a translation ordering, i.e., it
is possible that a translation ordering for S exists, but not for S U 7. Consider
for example the case where S consist of one U-shaped polygon P. The triangles of
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Figure 4: {P} can be translated, but {P,T\,T;} cannot be translated.

the triangulation of CH(P) — P will prevent a translation ordering (which trivially
exists for P alone) in a horizontal direction. See Figure 4. This problem can be
overcome by using the concept of relative convex hulls (see section 2).

In the remainder we shall need the following lemma, proved by Toussaint in [19].

Lemma 5 ([19]) A translation ordering for a set of polygons ezists if and only if
there exists a translation ordering for every pair of polygons in the set.

Now we are ready to show that the method of the previous section can be used
if we first replace every polygon by its convex hull relative to the other polygons.
Let S = {P,,...,P,} be a set of polygons. For a polygon P € S we define P* =
CH(P|S — {P}) and we define $* = {P*|P € S}. Any ordering on S naturally
corresponds to a unique ordering on S* (and vice versa) and this correspondence

is also preserved when restricted to translation orderings, as the following lemma
shows:

Lemma 6 An ordering on S is a translation ordering (in direction d) for S if and

only if the corresponding ordering on S* is a translation ordering (in direction d)
for S*.

Proof: Toussaint has proved in (20] that two polygons P; and P; collide if and
only if CH(P,|P;) and CH(P;|P,) collide. Since, by definition of relative convex
hulls and by Lemma 1 (jii), P, C P* C CH(FP;|P;) and P; C P; C CH(P;|P,), this
implies that P; and P; collide if and only if P? and P; collide. 0O
Once we have replaced the polygons in S by their relative convex hulls, it is safe to

triangulate the region between the polygons and add the triangles to the set to be
translated. Let T be a triangulation of CH (S*) — S*, then we have:

Lemma 7 There ezists a translation ordering in direction d for S* if and only if
there ezists a translation ordering in direction d for S*UT.

Proof: The "if"-part is trivial. The proof of the "only if’~part makes use of
Lemma 5. Since there exists (by assumption) a translation ordering for every pair
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Figure 5: Illustration of the proof of Lemma 6.

of polygons in S*, and there exists a translation ordering for every pair of triangles
(they are convex), it remains to prove that there exists a translation ordering for
every pair P*€ S*, T e T.

Suppose for a contradiction that some pair P*, T' cannot be ordered and assume
w.l.o.g. that d is vertically upward. Let ! and r be the two vertical lines tangent
to T and denote the area between ! and r and above T by Above(T) and the area
below T by Below(T) (see Figure 5). If there is no ordering for P* and T then
Above(T)NP* # & and Below(T)NP* # @. Let a be a point in the first intersection
and b a point in the second intersection and let I, and I, denote the vertical lines
through @ and b. At least one of I, and I, say l,, must intersect P* above T as
well as below T. Consider z, the first intersection of I, with P* above T, and z',
the first intersection point below T. Now zz’ cuts off some portion of ext(P*) (that
has a non-empty intersection with T). Clearly, the part of the boundary of P* that
borders this portion is longer than zz’. But this means that there must be (a part
of) a polygon P’ € S — {P} lying in this portion of ext(P"), contradicting the fact
that P* and (P')* can be ordered. O

We thus arrive at the following scheme for translating a set S of arbitrary polygons.
As a preprocessing step, S* and a triangulation 7 of CH(S") — §* (together with
its dual graph G(S* U T)) are computed in O(nlogn) time and O(n) space. (See
section 2 for the details of the computation of S*.) Then, given a direction d, we
construct Gy as in the previous section. (Note that there might be more than one
arc between two nodes in G4, because two polygons can share more than one edge.)
If S* can be translated in direction d, then G, does not contain a cycle and we
can compute a topological ordering of the nodes in G4. This ordering corresponds
to a translation ordering for S* (omitting the triangles of the triangulation) which,
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by Lemma 6, corresponds to a translation ordering for S. (Note that Lemma 3 is
true for non-convex polygons t0o.) If G4 contains a cycle, then S* U7 cannot be
translated. By Lemma’s 6 and 7 we can then conclude that no translation ordering
for S exists either.

Lemma 8 A4 set S of arbitrary polygons can be preprocessed in O(nlogn) time and
O(n) space such that, given a direction d, a translation ordering for S in direction
d can be computed in time O(n) (if it ezists).

3.3 Computing all directions of separability

In this section it is shown that all directions of separability (i.e., all directions for
which a translation ordering exists) can be computed in O(nlogn) time. If this is
done as a preprocessing step, then whether or not a translation ordering exists in a
given direction can be decided in O(log n) time.

Toussaint has shown in [20] that there exists a translation ordering for two polygons
in direction d if and only if their relative convex hulls are monotonic in direction
d+ %r. He uses this result to compute all directions of separability of two polygons.
Lemma 5 implies that the fact stated above for two polygons also holds for larger
sets of polygons:

Lemma 9 There ezists a translation ordering in direction d for a set of polygons

if and only if the relative convez hulls of the polygons are monotonic in direction
d+ %7r.

The proof is not difficult (although some care has to be taken because the relative
convex hulls are different if we consider pairs of polygons in isolation) and therefore
omitted. Monotonicity of a polygon can be characterized as follows:

Observation 1 A polygon is monotonic in direction d if and only if it has no reflex
verter v such that the two edges incident to v lie on the same side of the line through
v with slope d.

For a reflex vertex v of some P* € S*, let I, C [0 : 27] be the interval such that
the two edges incident to v lie on the same side of a line through v with slope d if
and only if d € I, (in fact, I, can consist of two disjoint intervals, one starting at 0,
the other ending at 27). Given the two edges incident to v, I, is easily computed in
constant time. Thus, in O(n) time, we can compute I(S*) = {I,|v is a reflex vertex
of a P € §*}. By Lemma 9 and Observation 1, a translation ordering for S in
direction d exists iff d ¢ {JI(S*). In other words, the set D of directions for which
a translation ordering exists is the set [0 : 27] — (J I(S*). This leads to:

Theorem 1 All directions for which a translation ordering exists for a given set S
of polygons with a total number of n vertices can be determined in time O(nlogn).
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Proof: 5" can be computed in time O(nlogn) (see section 2) and, as we have
seen, I(S*) in linear time. By sorting the endpoints of the intervals in I (5*) and
performing a line sweep keeping track of the number of intervals currently intersected

by the sweep point, the set D = [0 : 27] — |J(5*) can be found in time O(nlogn).
a

Observe that D consists of O(n) disjoint intervals. Hence, D can be stored in a
search tree which can be built in O(nlogn) time and uses O(n) space. With this
tree it can be decided, for a given direction d, in time O(log n) if d € D and thus if
there exists a translation ordering in direction d.

We now state our main theorem, which summarizes the results of this section.

Theorem 2 A set S of polygons, with a total number of n vertices, can be prepro-
cessed in O(nlogn) time and O(n) space, such that, given any direction d, it can
be decided in time O(logn) if there exists a translation ordering for S in direction
d and, if so, an ordering can be computed in time O(n).

4 Application to hidden surface removal

One of the most important applications of translation orderings is in computer
graphics when performing hidden surface removal. When an object of a scene is dis-
played onto a screen, it is painted over the objects that already have been displayed.
Therefore, the objects must be displayed in a ‘back to front’ order. This order cor-
responds to a translation order perpendicular to the projection plane. Translation
orderings for polygons in the plane can be used to obtain displaying orders for so-
called (polyhedral) terrains. A terrain is a set of polygonal faces in 3-space that do
not intersect when projected onto the zy—plane'. Observe that this is a very general
definition of a terrain: we do not require the scene to be ‘connected’ (as, e.g., is
necessary for the hidden surface removal algorithm of Reif and Sen [15]).

We will now show how our translation algorithm can be used to generate dis-
playing orders for the most general type of views for terrains consisting of convex
faces: a perspective view from an arbitrary point. Let F = {fy,..., fm} be a set of
convex polygons in 3-space, the faces of the terrain, and let F = {fj,...,f.} be
the (non-intersecting) set of projections of these faces onto the zy—plane. Let h be
the viewing plane and let X be the viewpoint. Thus we want to project the faces
of F onto h as seen by an observer at position X. Again, we permit ourselves a
preprocessing of O(n log n) to compute a triangulation 7 of CH(F)—F and its dual
graph G(F U T). After this, given a viewpoint X and a viewing plane h, a correct
displaying order can be calculated in linear time, as is shown in the remainder of
this section.

Let us assume that X, the projection of X onto the zy-plane, does not lie in (the

1Here and in the sequel, all projections onto the zy~plane are orthogonal.
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interior of) the convex hull of F. (This can easily be accomplished by splitting FUT
into two sets with a line through X.)

To find a valid displaying ordering for the faces of F' that corresponds to a
perspective view all that we have to change in the algorithms of the previous section
is the concept of neighbourhood.

Definition 3 Let Q and Q' be two polygons and X be a point in the plane. Q is an
X-neighbour of Q' iff
(i) @ and Q' share an edge e
(i) There is a ray starting at X and intersecting e that intersects int(Q') just
before intersecting e and int(Q) just after intersecting e.

The analogon of Lemma 5 is as follows.

Lemma 10 A face f € F can be safely displayed (onto h, perspective w.r.t. X) if
all the faces corresponding to X -neighbours of F in FUT already have been displayed
safely.

Proof: Denote the (perspective) projection of a face f onto A by proj(f) and let
fi, f; be two faces such that proj(f;) Nproj(f;) # @. Thus, there is a ray r starting
at X that intersects both f; and f;. We argue that f; and f; are displayed in the
correct order, i.e., the face that is intersect closest to X is displayed last. To see
this, consider the projections f;, f;, X and ¥ on the zy-plane. Clearly, 7 intersects
fi and F; in the same order as r intersects f; and f;. Suppose ¥ intersects fi first,
then either f; is an X-neighbour of fi, in which case fj is (correctly) displayed first,
or there is some X-neighbour of f; that is intersected by 7. But then this neighbour
must have been displayed (safely!) before f; which implies that also f; must have
been displayed before f;. O

Of course, there are no real faces corresponding to the triangles that were added
when CH(F) — F was triangulated, and displaying a face corresponding to such a
triangle is just a dummy statement. Also (the parts of) the faces that lie on the
same side of h as X should not be displayed. Note that, since all faces are convex,
we always find an ordering. We conclude:

Theorem 3 A terrain F consisting of convez polygonal faces with a total number
of n vertices can be preprocessed in O(nlogn) time and O(n) space such that, given
a viewpoint X and a projection plane h, a valid displaying order for the faces of F
to obtain a perspective view can be determined in O(n) time.

Remark: If the terrain contains non-convex faces, we can always cut up these faces
into convex parts without changing the complexity of the scene. The restriction to
convex faces is necessary because if there are non-convex faces it is possible that
there is a valid displaying order for the faces of the terrain, but no translation order
for the corresponding 2-dimensional problem. Consider, e.g., the case where the
terrain is completely contained in the zy-plane and the faces are such that they
cannot be translated. In spite of this, a valid displaying order exists for viewpoints
above the terrain. (In fact, any ordering is valid.)
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5 Concluding remarks

In this paper, we have presented an efficient solution to the translation problem.
It was shown that, after O(nlogn) preprocessing using O(n) space, a translation
ordering for a set of polygons in the plane can be determined in linear time (if it
exists). One of the advantages of our method is that it can easily be adapted to
yield a valid displaying order for perspective views of a terrain (consisting of convex
polygonal faces) to be used in hidden surface removal. It should be stressed that the
preprocessing of the terrain as well as the algorithm that yields the displaying order
are conceptually very simple and a good candidate for efficient implementations.

The main open questions concern dynamization and, more importantly, translation
orderings in 3 dimensions.

Using the the methods of [4], edges (or polygons of constant size) can be inserted
and deleted in linear time in our structure. A method might exist with better update
times. (Note that it takes linear time to compute a translation ordering anyway, so
a linear update time is in fact not that bad.)

As yet, little work has been done on the 3-dimensional problem. Nurmi [9]
has considered 3-dimensional translation orderings, but his results are theoretically
not very strong, since the time complexity of his algorithm depends of the number
of intersections in the viewing plane. Nussbaum and Sack [10] have considered
the problem of determining all directions of separability for two polyhedra. Egyed
[3] has tried to find efficient ways to cut up a scene such that the 2-dimensional
translation algorithms can be used. As for the method of this paper, it seems that
this method is doomed to fail in 3 dimensions. First of all, there is no efficient way
(yet?) to tetrahedralize the space in between a set of polyhedra, let alone to find a
tetrahedralization that does not prevent an ordering of the polyhedra. Even worse
is the fact the size of such a tetrahedralization may be Q(n?).
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