Counting and reporting intersections in
arrangements of line segments

L.J. Guibas, M.H. Overmars, M. Sharir

RUU-CS-89-12
May 1989

S e Rijksuniversiteit Utrecht

& 9%
%g%%g Vakgroep informatica
RQpN Padusiaan 14 3584 CH Utrecht

Carr. adres: Postbus 80.089, 3508 TB Utrecht

Telefoon 030-531454
The Netherlands

Counting and Reporting Intersections in Arrangements of Line
‘ Segments

Leonidas J. Guibas(l'z), Mark H. Overmars(3) and Micha Sharir(4’s)

@ Computer Science Department, Stanford University
@ pec Systems Research Center, Palo Alto, CA.
&) Department of Computer Science, University of Utrecht
(9) Courant Institute of Mathematical Sciences, New York University
School of Mathematical Sciences, Tel Aviv University

ABSTRACT

We present efficient algorithms for counting and reporting all
intersections in an arrangement of n line segments in the plane.
Specifically, we have a randomized algorithm for finding all k inter-
sections in such an arrangement in expected time O(n*3*® + k), for
any 8>0, and linear working storage. A variant of the algorithm
counts the number of intersections in 0(n4’3+°) randomized expected
time, for any 8>0 and linear space. Our techniques are based on
recursive decomposition of the problem into subproblems of smaller
size, using plane partition methods that involve random sampling of
the given segments, akin to the techniques of [HW] and [C]].

1. Introduction

We begin with the following somewhat unusual opening remarks. The results
of this paper have been conceived and developed in the summer of 1987, but for
various reasons were left unpublished for almost two years. Meanwhile, there has -
been significant progress on the problems studied here. In particular, a recent work
by Agarwal [Ag] presents techniques that transform our algorithm into a determinis-
tic and slightly faster one, and also extend our algorithm to handle red-blue intersec-
tion problems, in which we want to count or report all intersections between two
collections of segments, while ignoring intersections between pairs of segments in
the same collection. (However, the working storage in [Ag] is no longer linear.)
Agarwal’s results are based on a decomposition technique that is different from the
one used in this paper. Still, many of Agarwal’s arguments are taken from this
paper. As a public service, to make our results somewhat more accessible, we have

decided to elevate our paper from the status of “unpublished manuscript” to that of
a technical report.

Work on this paper by the third author has been supported by Office of Naval Research Grant
NO00014-82-K-0381, by National Science Foundation Grant No. NSF-DCR-83-20085, by grants from the
Digital Equipment Corporation, and the IBM Corporation, and by a research grant from the NCRD -
the Isracli National Council for Research and Development.

-2.

2. Efficient Calculation of the Intersections of Line Segments

Let G = {e1, ... ,e,} be a collection of line segments in the plane. We derive
in this paper a randomized algorithm for counting all k intersections of the given
segments in expected time 0(n4’3"'°), for any 8>0, and O(n) space. Recently,
Chazelle and Edelsbrunner [CE] have obtained a time-optimal algorithm for report-
ing all k intersections; their algorithm runs in O(n logn + k) time and uses
O(n+k) space. If k is small, this algorithm is perhaps the method of choice for
counting intersections as well, but when & is large (k can be ©(n?) in the worst case)
it becomes quite inefficient. The best previous solution to the intersection counting
problem is due to Chazelle [Ch] and runs in time O(n 1"595). An improved
O(nl'slog n) algorithm is given in [MS] for the special case in which we want to
count the intersections between two collections of n segments each, where the seg-
ments in each collection are non-intersecting; however, this algorithm has been
superceded in a recent paper [CEGS], where an O (n log n) algorithm is presented.

Our algorithm can be extended to report all k intersections in randomized
expected time O(n*3*?), for any >0, using only linear working storage. When k
is small, this is much worse than the algorithm of [CE], but for large values of k our
algorithm becomes more attractive, because it uses only linear working storage.
However, Clarkson [CI2] has recently obtained a randomized algorithm that reports
all intersections in expected time O(n log n + k) and linear working storage, which
has made the extension of our algorithm somewhat obsolete. We describe it below
anyway, because it is relatively simple and the ideas that it employs may be useful
for other purposes (as indeed is the case in [Ag]).

Letpi,...,pm (m=2n) be the endpoints of the given segments. We construct
a partition-tree T for this set of points, with a predetermined set of query lines, con-
sisting of the lines Iy, ... ,l, containing the segments e3, ... ,e,. The tree T is
constructed top-down in a recursive manner. With each node v of T there is associ-
ated a convex polygonal region Q, (obtained from the plane partitionings done at
the ancestors of v), the subset P, of the endpoints p; which lie inside Q,, and the
subset L, of the query lines / j that intersect Q,. The recursive goal at v is to report
(or ctlaunlt) all intersections of the segments e; which lie within Q.. Weputn,=|P,|,
m,=|L,]. '

The root of T corresponds to the entire plane. Let v be a node of T. If mv2n3
we do not continue the construction of T below v (so v is a leaf of T), and instead
apply the procedure described below to obtain all intersections within Q,. Other-
wise we partition Q, into a collection of subregions, using a technique akin to the e-
net approach of Haussler and Welzl [HW] or the random sampling technique of
Clarkson [CI1]). Thus we fix some integer r, draw a random sample of r of the lines
in L,, clip each sample line to obtain its portion within Q,, construct the arrange-
ment of these clipped portions, and triangulate each face of this arrangement. By
the e-net theory, with high probability, each of the resulting M = 0 (r?) triangles

. cmy .
will be cut by at most 0(—r— log r) lines of L,, for some constant ¢>0. We then

create M children wy, . .. ,wy of v; each w; is assigned one of the triangles Q,,, of
this “sample arrangement”, the corresponding subset P,, of the points of P, within
Qw,;, and the subset L,, of the lines in L, which cut Qw,. In addition, we also record

-3.-

the (at most two) intersection points of each line /; in L,, with Q,,,; if the portion
of l; within Q,,, is disjoint from e; we exclude /; from L,,. The overall cost of this
expansion step at v is O(m,+n,) (randomized) time.

To achieve space efficiency, the tree T is constructed in a depth-first manner.
Thus at any given time we maintain only a single path within T. Moreover, in pass-
ing from a node v to one of its children w, the lines in L,, are taken away from L,,
and are placed back there upon returning from w. It is easy to see that in this way
only linear space is needed to maintain T.

The heart of our procedure is the processing of nodes v of T that lie at the bot-
tom of the recursion. Let v be such a node. There are n, endpoints of segments
within Q,, so Q, contains (portions of) at most n, segments having an endpoint
within it. On the other hand m,=n? lines [; go through Q,, so for the majority of
these lines, the corresponding segment e; has no endpoint within Q,, and thus it cuts
all the way through that face. Let A, denote the set of such segments, and B, the
complementary set of segments having an endpoint within Q,. Thus |B,|=n,,
|Ay |=m,.

The intersection-reporting procedure at v consists of three substeps. Finding
intersections (within Q,) among the segments in A,, finding intersections (within

Q,) among the segments in B,, and finding intersections (within Q,) between seg-
ments in A, and segments in B,.

Intersections within A,.

We have m, segments g1, ... ,8m,, each of which starts and ends on the cir-
cumference of the convex region Q,. Let a;,b; denote the endpoints of g;,
i=1,...,m,. Note that any intersection between a pair of these segments must lie
within the convex hull C of the points a;,b;. Our first step is thus to calculate C, in
time O(m, log m,)=0(m, log n,), from which we also obtain the circular sequence
€1,€2, . . . ,C2m, Of the points a;,b; in their clockwise order along 8C (note that
each of these points actually appears along 4C).

Note that two segments g;,g; in A, intersect within C if and only if their four
endpoints appear in interleaving order along dC (i.e. on each portion of 3C between
a; and b; there is one endpoint of g;). This suggests the following simple approach.

Process the points ¢y, .. .,c2y, in order. We maintain a stack S of segments
of A,, which initially is empty. For each point ¢, if it is the first endpoint of some
segment g;, we push g; on the stack S. If ¢, is the second endpoint of gj, we scan S
backwards from its top, and report the intersection of g; with each segment g; on §,
until we encounter g;, which is then deleted from the stack. This procedure runs in
time O(m,+¢t), where ¢ is the number of intersections of segments in A, within C.
(Note that if all we need is to count the number of these intersections, we can store
S as a balanced search tree and modify the above procedure so that it only counts
how many segments lie in S between gj and the top of S. This yields an
O(m, log m,)=0(m, log n,) counting procedure.)

Intersections within B, .

-4.

This is a very simple task to achieve. We simply check every pair of segments
in B, for intersection, and report (or count) the resulting intersections. This takes
only O(n2)=0(m,) time.

Intersections between A, and B,

It is clear that a segment g €A, intersects a segment e €B, if and only if the line
I containing g intersects e. We can therefore regard A, as a set of lines rather than
of segments. It is well known that a line [intersects a segment e =ab if and only if
the dual point /* of / lies in the double wedge (not containing any.vertical line)
formed between the two dual lines a*,b* of the endpoints of e.

Passing to the dual plane, the problem can then be re-formulated as follows.
Given a collection of n, double wedges W1, ... ,W, , formed by 2n, lines, and m,
points qi,....,4qm,, report for each g; the subset of wedges W; containing it.

Again, since we can afford quadratic complexity (in n,), this task is not difficult,
and can be accomplished by the following line sweeping procedure.

Sweep a vertical line L through the plane from left to right, and maintain a
sorted list H of the 2n,+1 vertical intervals along L delimited by its intersections
with the 2n, wedge boundaries. With each interval I of H we associate a list V; of
all the wedges containing 7. If we reach during the sweep a point g;, we locate it in
H and report all the wedges in V;, where T€H is the interval containing p;.

If we sweep through an intersection of two wedge boundaries /,I' we update
the list structures along L as follows. Generally, one interval 7 of H has to be
replaced by another interval I'. If I and !’ are boundaries of the same wedge, Vp=V;
and no further changes are needed. If 1,/ bound distinct wedges W, W', the value of
Vr depends on the nature of I,I’, according to the following cases (where [is
assumed to lie above !’ to the left of their intersection).

(i) land!' are top boundaries of W,W'. Then Vir=(Vi—-{Whu{w'}.
(ii) !and !’ are bottom boundaries. Vi =(Vi—{W'Hu{w}. ’
(iii) /is a top boundary and /' is a bottom boundary. Vp=V;—{W,Ww'}.
(iv) lis a bottom boundary and [’ is a top boundary. Vp=V,U{W,W'}.

Thus each intersection between wedge boundaries can be ?rocessed in
O(log n,) time, and thus the entire procedure runs in time O((m,+n2) logn, +1)
= O(m, log n, + t), where ¢ is the number of desired intersections, and in space
0(n3)=0(mv). Combining all three subprocedures, we conclude that we can report
all k intersections within Q, in time O(my log ny + k) and space Oo(m,).

We can now analyze the time performance of the entire algorithm. Arguing as
in [EGS], it follows that the time T(m,,n,) needed to process recursively a node v

of the tree obeys the following recurrence relationship (where k, is the number of
intersections within the corresponding region Q,).

T'(my,n,) = O(m, log n,+k,), if m,=n?

| 2

M .
T(my,n,) = > T(mmsnw;) + O(my+n,), ifmv<n3 ’

i=1

.5.-

M

where M = 0(r2), my, = O(-'L:-V- log r) for all i, and Y n,, = n,. One can then
i=1

show, as in [EGS], that the solution of this recurrence satisfies

T(m,,n,) = O(m237% n23+2 & (m,+n,) log n, + k)
for any 8>0. Substituting the root of the tree in this formula, we obtain

Theorem 2.1. One can report all k intersections between n given segments in ran-
domized expected time O(n*3*% + k), for any >0, using O(n) working storage.

Next suppose we want just to count how many intersections occur between the
n given segments. It is easily checked that each of our three procedures at the bot-
tom of the recursion can be appropriately modified so as to yield the number of
corresponding intersections, rather than report all of them, in time O(m, log n,).
We have already noted this for the first and second procedures (intersections within
Ay and within B,). As to the third procedure, every time we sweep through one of
the given m, points we can simply add the cardinality of the corresponding list V; to
the running total sum, rather than report that list (in this case it suffices just to
maintain the size of each such list, rather than the list itself). We thus obtain

Theorem 2.2. The number of intersections between n given line segments can be
calculated in randomized expected time O (n4/3*?%), for any >0, and in O(n) space,

We also note that the term O(n*3*%) in the above algorithms may in practice
be a gross over-estimation of the actual complexity. This is because we avoid pro-
pagating down the tree lines /; for which the corresponding segment e; does not
contain the face Q, of the current node v. Thus, if the segments e; do not intersect
in too many points, we can expect each line /; to reach far fewer nodes of T than is
implied by this bound. (Of course, if the number of intersections k exceeds this
bound, then the reporting algorithm actually run in O (k) time.)

References

[Ag] P.K. Agarwal, A deterministic algorithm for partitioning arrangements of lines and
its applications, Proc. 5th ACM Symp. on Computational Geometry, 1989, to appear.

[Ch] B. Chazelle, Reporting and counting segment intersections, J. Computer Systems Sci-
ences 32 (1986) pp. 156-182.

[CE] B. Chazelle and H. Edelsbrunner, An optimal algorithm for intersecting line seg-
ments in the plane, Proc. 29tk IEEE Symp. on Foundations of Computer Science,
1988, pp. 590-600.

[CEGS] B. Chazelle, H. Edelsbrunner, L. Guibas and M. Sharir, Algorithms for bichromatic
line segment problems and polyhedral terrains, in preparation.

[C]] K. Clarkson, New applications of random sampling in computational geometry,
Discrete Comput. Geom. 2 (1987) pp. 195-222.

[C12] K. Clarkson, Applications of random sampling in computational geometry, II, Proc.
4th ACM Symp. on Computational Geometry, 1988.

[EGS] H. Edelsbrunner, L. Guibas and M. Sharir, The complexity of many faces in
arrangements of lines and of segments, Proc. 4th ACM Symp. on Computational

Geometry, 1988, pp. 44-55.

[HW] D. Haussler and E. Welzl, Epsilon nets and simplex range queries, Discrete Comput.
Geom. 2 (1987) pp. 127-151.

[MS] H. Mairson and J. Stolfi, Reporting and counting intersections between two sets of
line segments, Theoretical Foundations of Computer Graphics and CAD, (R.

Earnshaw, Ed.), NATO ASI Series, Vol. F-40, Springer Verlag, Berlin 1988, PP.
307-325.

