Connectability problems

Mark H. Overmars

RUU-CS-88-21
April 1988

Rijksuniversiteit Utrecht

%
& %
E b3 Vakgroep informatica
NS
27 Vs Padualaan 14 3584 CH Utrecht
Corr. adres: Postbus 80.089, 3508 TB Utrecht

Telefoon 030-531454
The Netherlands




Connectability problems

Mark H. Overmars

Technical Report RUU-CS-88-21
April 1988

Department of Computer Science
University of Utrecht
P.0.Box 80.089
3508 TB Utrecht
the Netherlands






Connectability problems

Mark H. Overmars

April 1988

Abstract

In this paper we define a general class of problems in computational ge-
ometry that we call connectability problems. Connectability problems involve
connecting objects by some kind of connections, avoiding obstacles. This
includes many different types of problems like intersection problems, visibil-
ity problems, etc. Studying these problems in a general framework might
lead to general solutions. Some solutions are presented. In particular, an
O(nlog nloglog n) solution is given for determining all pairs of points in a
set that can be connected with an axis-parallel rectangle, avoiding a set of
obstacle points.

1 Introduction.

A large class of problems in computational geometry can be formulated as con-
nectability problems. In these problems we ask whether objects can be connected in
some kind of way. For example, when we ask whether two points can see each other
among a set of obstacles we ask whether there is a line segment, not intersecting
any obstacle, that connects the two points.

We can generalize this in the following way: Let C, S, G and B be classes
of objects in some d-dimensional space. C is the collection of connections, S the
collection of sources, G the collection of goals and B the collection of barriers. Let

s€S,g€G and BCB.

Definition 1.1 We call s and g C-connectable with respect to B, denoted as s ~+¢ g,
iff
JecsNe#0,gNc#PandVeepbNcCsUg

In other words, there exists an object in C that intersects both s and ¢ and if it
intersects an obstacle, this intersection is contained in s U g. (It would have been
easier to state that 5N ¢ = @, but that would not allow for connections between e.g.
points that lie on the obstacles.)

Using the notion of connectability we can define two different types of problems:



All pairs problem Let S C S, G C G and B C B. The problem asks for all pairs
8,9 with s € S and ¢ € G such that s ~¢ g with respect to B. The complexity
of the problem will be dependent on:

e The collections C,S,G and B.

e The dimension d.

e The cardinality of the sets. For example |S|=1, |G| =1 and |B| =nis
quite different from |S| = n, |G| = n and |B| = 1.

e Whether some sets are equal, for example, there exist instances of the
problem in which § = G = B.

o Whether we want to enumerate the answers or just want their number.

Query problem Let G C G and B C B. Store G and B in a datastructure such
that for any object s € S we can efficiently determine those objects in G that
can be connected with s. Such a data structure can be static or dynamic. In
the dynamic case we can distinguish between three different cases: dynamic
with respect to G, dynamic with respect to B and dynamic with respect to
both. Again the complexity highly depends on the type of connectability, the
collections of objects, the cardinality of the sets G and B and whether they
are equal, etc.

Many well-known problems can be formulated as connectability problems. Let
us just mention two examples:

The wisthility problem asks for those objects in 2- or 3-dimensional space that
can be seen from a point. Seeing means that there is a line segment connecting
the point with the object that does not intersect any other object. Hence, C is the
collection of all line segments, S is the collection of points, and G and B are the
collection of objects. We get an all pairs problems with |S| = 1 and G = B. Other
types of visibility, like visibility from an edge, etc., can be formulated in terms of
connectability as well.

Intersection problems ask which pairs of objects in some set intersect. Intersec-
tion means: having some point in common. So if we take S and G the set of objects,
C the collection of all points, and B empty, we have formulated the intersection
problem as a connectability problem.

The notion of connectability gives rise to thousands of different problems. Rea-
sonable choices for S, G, C and B are: points, axis-parallel line segments, line seg-
ments, rectangles, squares, circles, polygons of fixed shape and arbitrary polygons,
etc. and their extensions to higher dimensional space. For each combination of
classes we get different problems that might need different solution methods.

Studying each of these individual problems is not very usefull (unless the problem
has an immediate application). It is much more interesting to try and find general
techniques that solve large classes of connectability problems. In this paper we will



solve some types of connectability problems. In particular, we look at connections
with axis-parallel rectangles and with homothetic objects. We will restrict ourselves
to the case in which all three sets S, G and B are collections of points in the plane.
Moreover, we will only look at the all pairs problem in the case S = G. So we are
given a set of points that we will call P and a set of barrier points B and we ask
for all pairs (p,q) € P x P such that p ~+¢ ¢ with respect to B. At some places it
is indicated how results can be generalized.

2 Reducable connections.

We will first look at a very general technique for solving connectability problems.
To this end we look at some properties of collections of connections.

Definition 2.1 A collection of connections C is called reducable if for any pair of
points p, q there ezists one minimal connection ¢ € C such that ¢ connects p and ¢
and any ¢ € C that connects p and q does contain c.

A number of classes of connections are reducable. For example, when C is the
class of line segments, then the minimal connection between p and ¢ is pg. When C
is the class of axis-parallel rectangles, the minimal connection is the rectangle with
p and g as opposite vertices. But there are also many classes that are not reducable,
for example, the set of all circular disks is not reducable.

When the set of connections is reducable p and ¢ can be connected if and only
if they can be connected by the minimal connection. We assume that this minimal
connection can be computed in O(1) time. This immediately leads to the following
result:

Theorem 2.1 Let S, G and B be sets of points and let C be a reducable set of

connections. The pairs (p,q) € S X G with p ~+¢ q with respect to B can be computed
in time O(|S| * |G| * | B|).

Proof. Simply, for each pair (p,q) € S X G we compute the minimal connection
and test whether it intersects any point in B. O

Obviously, for many problems this result can be improved. For example, when
the connections are rectangles, we can use a scanline technique to remove the mini-
mal rectangles that contain a barrier point in time On?logn). (In the next section
it will be shown that the problem can be solved much more efficient.)

When the connections are line segments we could use the following method. For
each point p € S sort the points in G U B by angle around p. For each direction d
from p where there is a point ¢ € G check whether there is a point b € B in the same
direction that lies closer to p. If such a point b does not exist, report the pair (p, q)
as an answer. Otherwise ¢ can not be connected to p. After the sorting this takes
time O(|G|+ |B|) per point p. The sorting can be done for all points simultaneously



in time O(n?) where n = |S| + |G| + | B| using the techniques from [2,8]. This leads
to the following result:

Theorem 2.2 Let S, G and B be sets of points in the plane and let C be the
collection of line segments. The pairs (p,q) € S X G with p ~»¢ ¢ with respect
to B can be computed in time O(n?) where n = |S| + |G| + |B|.

This is optimal in the worst case as the number of reported pairs can be Q(n?).
But it might be possible to construct output sensitive algorithms that work faster
when the number of answers is small. When § = G = B the techniques of Ghosh
and Mount([5] or Overmars and Welzl[8] for computing a visibility graph can be used
to obtain an algorithm that runs in time O(nlogn + k) where k is the number of
reported pairs. No bounds are known when the sets are different.

3 Rectangular connections.

We will now concentrate on rectangular connections, i.e., C consists of all axis-
parallel rectangles. The notion of rectangular connectability has been studied before.
Overmars and Wood[9] call this rectangular visibility (see also [7]). Giiting Nurmi
and Ottmann[4] define the notion of direct dominance that is also (almost) equivalent
to rectangular connectability. In both papers an O(nlogn) algorithm is presented
to find all pairs in a set P of n points where B = P. We will concentrate on the case
in which B is a different set of points. The methods will only be described briefly.
See de Berg and Overmars[1] for more details (and more results).

First note that rectangular connections are reducable. Hence, we only have to
consider rectangles with points of P as opposite vertices. We will present a method
that only reports the connectable pairs (p, q) where p is the left bottom vertex and
q the top right vertex. The other pairs can be found in a similar way.

To this end we will develop a divide-and-conquer method. Let V be the set
of different z-coordinates of the points in P U B. Let n’ = |V|. If n’ = 1, the
problem becomes 1-dimensional and is easy to solve: we sort the points in P and B
according to y-coordinate and report all pairs of points in P that have no point of
B between them in this sorted list. In this way all connectable pairs are reported in
time O(nlogn + k).

When n' > 1, let ;4 € V be such that the number of values in V' that are
< Zmig and the number that is > z,,;4 differ by at most 1. Let [ be the vertical line
with z-coordinate &,,iq. ! divides the plane in two halves and, hence, splits P and B
in two halves. It is obvious that whether or not two points in one half of the plane
form a connectable pair cannot be influenced by a barrier point from the other half.
So we can recursively treat the two halves in the same way. After this it remains to
compute the connectable pairs between the points in different halves. This merge
step will be described below.



Finding the value 4 can be done in time O(n) if we have P, B and V sorted
by z-coordinate. Also the splitting in halves takes time O(n). After presorting on
z-coordinate, which requires time O(nlogn) these sets can be maintained sorted
during the recursive calls.

When the recursion stops (i.e., when V' contains one value) we have to sort the,
say, n; points that are in the sets by y-coordinate. This has to be done n’ times,
but, since we have "%, n; = n, the total time required for this will be bounded by
O(nlog n) plus O(1) time for every answer found.

Now let T'(n’,n) be the time needed for the algorithm, then we have:

T(n',n) = O(nlogn+k)+T'(n',n) (1)
T'(n',n) = T'([3n,n =)+ T'(130'],1) + O(n) + f(n)

where k is the number of connectable pairs, 0 <! < n and f(n) is the time needed

to perform the merge step. Assuming that f(n) is non-decreasing and at least linear
this leads to

T(n',n) = O(nlogn + k + logn'(n + f(n)) = O(f(n)logn + k) (2)

because n' = O(n).

It remains to be shown how the merge step can be performed efficiently. Let P,
be the set of points from P to the left of the splitting line and P, be the set to the
right of the line. Similar for B. We only have to consider pairs (p,q) € P, X P;.

The idea is as follows: We move a scanline downward over the plane, halting
at every point in P U B. When we encounter a point ¢ € P;, we will report all
pairs (p,q) € P, x P, with p ~»¢ ¢q. We know that p must lie above (or on)
the scanline. To find these points, for every point p € P; above the scanline we
keep track of a so-called connectability interval CI, at the current position y* of
the scanline. This connectability interval consists of all z-values < z,,;4 such that
z € CI, & p ~¢ (z,y*). In other words, when the z-coordinate of a point ¢ € P,
on the scanline lies in CI, then p ~+¢ q. Note that CI, is indeed always an interval,
which is of the form ]b,, Z,mia[ Where b, is either —oo or the z-coordinate of some
barrier point (or CI, is empty).

Let us assume that no two points have the same y-coordinate. (If points do have
the same y-coordinate we handle them from right to left. If a point p € P; coincides
with a point b € B then b is treated first. If a point ¢ € P, coincides with a point
b € B then q is treated first. The reader can easily verify that this will be the
correct order.) If we encounter a point p € P, we must initialize C I, :=]—00, Zmid|.
If we encounter a point ¢ € Py, for all p € P, with ¢, € CI, we report the pair
(p,q) as a connectable pair. Barrier points must be treated in the following way: A
barrier point b = (b, b,) blocks all the points to the left and below of it, so when
we encouter b we have to change the connectability intervals for all points p that
~+c b in the following way: if b € B, then for all p with b, € CI, we must set
CI, :=]bs, Tmid[ and if b € B, then for all p with b, < p, we must set CI, := @.



Observe that after we have handled a barrier point some of the connectability
intervals become identical. To avoid changing all these intervals again at some later
barrier point we from now on treat them simultaneously. To this end we store
identical C'I’s only once and associate a bag with it that contains all the points p for
which CI, = CI. This bag must allow for the following operations in constant time:
inserting an element, deleting an element when we have a pointer to it and joining
two bags. Moreover, all the elements should be enumerated in time the number of
elements. This can be implemented e.g. as a doubly linked list.

To be able to handle barrier points b € B, efficiently, we must be able to deter-
mine all points in P, above the scan line that lie to the right of b and remove them.
A priority queue on (the z—coordinates of) the points in P, above the scanline will
suffice for this purpose. Since we have to set CI, := & for a point p to the right of
b in this case (i.e. remove p from the bag it is in) we also store a cross pointer from
the place of p in the priority queue to the the place of p in the bag.

We now present the merge step in more detail:

5. Move a scanline downward over the set of points, halting at every point (z,y) €
P U B. (To do this we need a list of points € P U B, sorted according to
y-coordinate. This sorted list can be obtained from the sorted lists of P, U B,
and P,U B, by a simple merge. This means that we only have to sort explicitly
when the recursion halts. This sorting was already performed to compute the
answers.) While we move the scanline we maintain the following two data
structures:

e A sorted list L of the different left endpoints of the connectability in-
tervals of points in P, above the scanline. Every left endpoint has a bag
associated with it, that contains all the points in P, that have that left
endpoint as the left endpoint of their connectability interval.

e A priority queue @, containing the z-coordinates of the points in P, above
the scanline.

Furthermore we maintain cross pointers from the points in @ to the corre-
sponding points in (the bags in) L. When we halt at a point (z,y) we have the
following cases:

(z,y) € Pi: Walk with = along L as long as the left endpoint of the current
bag is < z and report (p,(z,y)) as a connectable pair for each point p in
these bags.

(z,y) € B;: Walk with « along L, joining all the bags with left endpoint < z
into a new bag with z as left endpoint.

(z,y) € Py: Insert (z,y) in Q and add it to the bag in L with —oo as left
endpoint (or, if necessary, create a new bag).



(z,y) € By: Remove all points with z—coordinate > = from @ and, using the
cross pointers, from the bags in L. (If a bag becomes empty, then remove
the bag and its corresponding CI from L.)

Lemma 3.1 The merge step can be performed in time O(nlogn + k).

Proof. Can be obtained by carefully charging costs to points. See [1] for details.
O
So we have f(n) = O(nlogn) in equation 2. This leads to the following result:

Theorem 3.2 All rectangular connectable pairs in a set of points P with respect to
a set of barriers B can be computed in time O(nlog?n + k), where n = |P| + |B|
and k is the number of answers.

When we take a closer look at the time analysis of the above algorithm, we see
that the operations on the priority queue @ form the bottleneck in the algorithm.
The question thus arises whether we can use another data structure that performs
these operations more efficiently.

The crucial observation here is that we can normalize the problem (see e.g.
[6]), i.e., convert it to the corresponding problem on a grid, without changing the
connectable pairs. So we add as a preliminary step to the algorithm:

¢ Replace every point (z,y) € P U B by (r(z),r(y)), where r(z) and r(y) are
the ranks of £ and y in the sorted order of the different z and y-coordinates,
respectively.

This normalization maintains the connectability relation. The normalization step
can be performed in time O(nlogn) by sorting the points by z- and y-coordinate.

Now that we have normalized the problem we can use data structures that work
on a grid. This means that we can use a VanEmdeBoas tree (see, e.g., [10],{11]) as
priority queue. In such a tree INSERT and EXTRACTMAX can be performed in
time O(log log U), where U is the size of the universe, in our case U = O(n). Thus
we can perform the merge step in O(nlog logn+ k) time and we obtain the following
improved result: ’

Theorem 3.3 All rectangular connectable pairs in a set of points P with respect to
a set of points B can be computed in time O(nlog nloglog n+k), where n = |P|+|B]|
and k is the number of answers.

The result can be extended in a number of ways. First of all, when the sets P and
B have different sizes, we can tune the method to work more efficiently. Secondly,
when P C B the use of a VanEmdeBoas tree can be avoided completely, resulting
in an optimal O(nlogn + k) time bound. Finally, when B consists of more general
obstacles than points, it can be shown that B can be reduced to a set of points,
maintaining the connectable pairs. See [1] for details and results.



4 Homothetic connections.

In this section we study the case in which the set of obstacles consists of homothetic
objects (i.e., the class consists of one object b and all object one can obtain by
translating and scaling b). We will only consider the case in which P = B. Let us
first consider circular connections, i.e., C is the collection of all disks.

Lemma 4.1 Given a set of points P, p € P can be connected to ¢ € P by a disk,
with respect to P, if and only if in the Voronoi diagram of P the regions of p and q
share an edge.

Proof. <= If the regions of p and ¢ share an edge, let m be a point on this edge
that is not a vertex of the Voronoi diagram. m has the same distance to p and ¢
and all other points lie further away from m. Hence, the disk with m as center and
|mp| as radius does only contain p and q.

== Hlf p and ¢ are connectable, let m be the center of the connecting disk. Clearly
m should be on a Voronoi edge between the regions of p and ¢ because no other
point can lie inside or on the boundary of the disk. O

The lemma immediately shows that the number of such pairs in P is bounded
by O(n). We can now solve the connectability problem by first constructing the
Voronoi diagram of the set of points P and next looking for each cell at it bordering
cells. This immediately leads to the following result:

Theorem 4.2 Given a set of points P, all pairs in P that can be connected with a
disk with respect to P can be computed in time O(nlogn).

The method can be used for other types of homothetic connections as well. For
example, when the connections are axis-parallel squares, one should use the Voronoi
diagram with respect to the L., metric. It is easy to show that the same result hold,
i.e., two points can be connected by a square if and only if their Voronoi regions
share an edge. This immediately leads to a O(nlog n) solution for the problem. See
[9] for more results on square connections.

To give a general result, let b be a convex object and let C consist of all object
that are homothetic with b. In the terminology of Chew and Drysdale[3] b defines
a convex distance function. In [3] it is shown that one can construct a Voronoi
diagram based on a convex distance function in time O(nlogn). It is easy to show
that two points p and ¢ can be connected by an object from C if and only if their
regions in this Voronoi diagram share an edge. This leads to the following result.

Theorem 4.3 Let C consist of all homothets of a convex object b in the plane. Let

P be a set of points in the plane. All pairs (p,q) € P x P such that p ~»¢ q with
respect to P can be determined in time O(nlogn).



5 More problems.

The notion of connectability studied so far can be generalized in a couple of ways.
Definition 5.1 We call s and g completely C-connectable with respect to B iff
Voesgegdcec P € ¢, g€ cand ViegbNc CsUg
In other words, for any pair of points in s and ¢ there exists a connection.
Definition 5.2 We call s and g fully C-connectable with respect to B iff
JeecsNe=38,gNec=gandVpegbNecCsUyg

In other words, there exists a connection that covers both s and g. Both def-
initions are equal to the normal notion of connectability when & and G are sets of
points only.

We can also define some other types of problems.

e When s and g are connectable but not completely connectable we might ask
which parts of s and g are connectable. For example, in the hidden surface
removal problem we have s being a point, G = B a set of polyhedra and we
ask which parts we can see from s, i.e., with what parts of the polyhedra can
s be connected with a line segment.

e We could define a measure on the objects in C. For example, when C contains
line segments we could take their length. Now we can ask for such things as
the smallest connection from a source to some goal or to all goals, for the

largest connection, etc. In this way all kinds of shortest path problems fit in
the scheme.

e You can of course extent the notion to connections between more than two
objects. For example, which triples of points in a planar set can be covered
by a triangle that does not contain any other point in the set.

We will not even make an attempt in solving all these various problems.

6 Conclusions.

In this paper we have given a large number of open problems. We have tried to
define these problems in a general way, introducing the notion of connectability,
that might lead to general solution that cover large classes of problems.

By means of example we have given a number of solutions that solve instances of
the connectability problem. In particular the notions of rectangular connectability
and connections with homothetic objects were studied.

We think it is worth studying connectability problems further and encourage
people to do so.



References

[1] de Berg, M.T., and M.H. Overmars, Dominance in the presence of obstacles,
Techn. Rep. RUU-CS-88-10, Dept of Computer Science, University of Utrecht,
1988.

[2] Edelsbrunner, H., and L. Guibas, Topological sweeping in an arrangement,
Proc. 18th Symp. Theory of Computing, 1986, pp. 389-403.

[3] Chew, L.P., and R.L. Drysdale, III, Voronoi diagrams based on convex distance
functions, Proc. 1st ACM Symp. Computational Geometry, 1985, pp. 235-244.

[4] Giiting, R.H., O. Nurmi and T. Ottmann, The direct dominance problem, Proc.
1st ACM Symp. Computational Geometry, 1985, pp. 81-88.

[5] Ghosh, S.K., and D.M. Mount, An output sensitive algorithm for computing
visibility graphs, Proc. 28th Symp. on Foundations of Computer Science, 1987,
pp. 11-19.

[6] Karlsson, R.G., and M.H. Overmars, Normalized divide-and-conquer: A scal-

ing technique for solving multi-dimensional problems, Inform. Proc. Lett. 26
(1987/88) pp. 307-312.

[7] Munro, J.I., M.H. Overmars and D. Wood, Variations on visibility, Proc. 3rd
ACM Symp. Computational Geometry, 1987, pp. 291-299.

[8] Overmars, M.H., and E. Welzl, New methods for computing visibility graphs,
Proc. 4th ACM Symp. Computational Geometry, 1988, to appear.

[9] Overmars, M.H., and D. Wood, On rectangular visibility, J. Algorithms (1988),
to appear.

[10] van Emde Boas, P., Preserving order in a forest in less than logarithmic time
and lineair space, Inform. Proc. Lett. 6 (1977) pp. 80-82.

[11] van Emde Boas, P., R. Kaas and E. Zijlstra, Design and implementation of an
efficient priority queue, Math. Systems Theory 10 (1977) pp. 99-127.

10






