ON RANDOMIZING DECISION
PROBLEMS: A SURVEY OF THE THEORY
OF RANDOMIZED NP

P.M.W. Knijnenburg

RUU-CS-88-15
March 1988

Rijksuniversiteit Utrecht

s 2 g
W
CE ‘ 3 Vakgroep informatica
"’7, \eg Budapestiaan8 3584 CO Utrecht
Corr, adres: Postbus 80.012 3508 TA Utrecht

Telefoon 030-53
The Netherlands 1454

ON RANDOMIZING DECISION PROBLEMS: A
SURVEY OF THE THEORY OF RANDOMIZED NP

P.M.W. Knijnenburg

Technical Report RUU-CS-88-15
March 1988

Department of Computer Science
University of Utrecht
P.O.Box 80.012, 3508 TA Utrecht
The Netherlands

ON RANDOMIZING DECISION
PROBLEMS: A SURVEY OF THE THEORY
OF RANDOMIZED NP

P.M.W. Knijnenburg

RUU-CS-88-15
March 1988

Rijksuniversiteit Utrecht

SWwike
E%;%%E Vakgroep informatica
) 4
BN Budapestiaan 6 3584 CD Utrecht
Corr. adres: Postbus 80.012 3508 TA Utrecht

Telefoon 030-53 4
The Netherlands 145

ON RANDOMIZING DECISION PROBLEMS: A
SURVEY OF THE THEORY OF RANDOMIZED NP

P.M.W. Knijnenburg

Technical Report RUU-CS-88-15
March 1988

Department of Computer Science
University of Utrecht
P.0.Box 80.012, 3508 TA Utrecht
The Netherlands

Contents

1 Introduction
2 Preliminaries

3 Randomization
3.1 Randomizedproblems
32 Reductions i,
33 Standardization
3.4 Weak reducibility

4 Completeness
4.1 Randomized Bounded Halting
42 BoundedTiling...............
43 A non-standard reduction

............................

5 Odds and ends
51 logspacereducibility
5.2 Randomized PSPACE

.............................

6 Discussion

Bibliography

15
15
16
21

24
24

26

27

Chapter 1

Introduction

Cook’s theory of A"P-completeness (Cook [1], Garey and Johnson [3]) has shown that
many relevant combinatorial problems are computationally equivalent, in the sense that
one such problem can be polynomially reduced to another one. The theory has given
rise to the claim that A"P-complete problems are not solvable in polynomial time and
hence, are not tractable, unless it is proved that P = AP. Yet much effort has been spent
on proving the tractability of A’P-complete problems “in practice” or “on average”,
apart from circumventing their intractability by the use of approximation algorithms.
Several A’P-complete problems have been proved to be solvable in polynomial time
on average for given probability functions on their instances (see [6]).

It is natural to ask, whether there are N’P-complete problems which are not polynomi-
ally solvable on average, that is: is there an A'P-complete problem D and a probability
distribution y on its instances such that no algorithm that solves the problem, can run
in expected polynomial time?

To settle this question, it is likely that one would have to consider all possible algorithms

for N'P-problems and solve a question very similar to “P = A'P”. Therefore, the best
one can hope for is to show that certain problems are complete (with respect to an
appropriate concept of reduction) for this class of randomized problems.

In this paper we will present a theoretical framework proposed by Levin [8] (and
extended by Gurevich [4]) to deal with “Random A"P-problems”, and analyse a number
of arguments in detail.

In his original paper Levin defined a “randomized decision problem” as being a pair
(D, n) where D is a decision problem and 4 is a probability function on its instances.
He formulated the concept of “computability in polynomial on average time” and gave a
definition of reducibility between randomized decision problems. He also gave a terse
proof of the completeness of a randomized version of the Bounded Tiling problem (the
“cryptoanalytically inclined reader” is refered to [8] for details). Johnson [6] provided
some intuition for Levin’s ideas and corrected a minor flaw in the definition of “poly-
nomial on average”. Finally, Gurevich [4] formalized the theory in more detail and
proved some basic and more sophisticated results. In particular, he proved a theorem,
which we call the Coding Theorem, which lies at the core of the theory.

In this paper we will provide some insight into the theory of randomized decision
problems. Because it is needed for the theory, we will give a new proof of the N'P-

completeness of Bounded Tiling with respect to polynomial time reductions, which
differs slightly from earlier proofs as e.g. in [10].

This paper is essentially self-contained. In chapter 2 we give the necessary preliminaries
from complexity theory. In chapter 3 we give the definitions of randomized problems
and randomized AP (RA/P) and define a generalized notion of reduction between
these problems. We also prove some useful lemmas, due to Gurevich [4]. In chapter
4 we prove the completeness of Randomized Bounded Halting and a version of Ran-
domized Bounded Tiling with respect to Ptime reductions. Some basic extensions to
the theory are given in chapter 5; we briefly discuss a notion of logspace reducibility for
randomized problems and prove some results for a randomized version of PSPACE.

Chapter 2

Preliminaries

We assume familiarity with the basic concepts of formal language and automata theory;
see, for example, [10]. Our basic model of computation is the Turing machine, defined
by AM. Turing [11]. A Turing machine consists of a finite state control unit and a
one-way infinite tape which is used for input and as a “memory”. The tape is divided
into fape squares which each containing one symbol from the alphabet of the Turing
machine. The tape squares are accessed by a tape head which is able to read, write or

erase one symbol and move one square to the left or to the right at a time. Formally
we can define:

Definition 2.1 1. A Turing machine is a quintuple M = (K, X, A, s, h) where:

o K is a finite set of states, not containing h;

o % is an alphabet, containing the blank symbol #, but not containing the special
symbols L and R which denote the possible movements (left and right respectively)
of the tape head;

¢ s € K is the initial state;

o h is the halting state;

e ACK XX x(KU{h})x (Zu{L,R}) is the transition relation.

2. If for every p € K and a € X there are at most one q € K and b € Xt u{L,R}
such that (p,a,q,b) € A, then we call the Turing machine deterministic. It is called
non-deterministic otherwise.

Let M be a Turing machine. As usual we define a configuration of the Turing machine
as a pair (p,ogr) where p € K and 0,7 € £* and a € £. The underscore denotes the
position of the tape head, which is thus implicitly encoded in the configuration. The
transition relation A induces a relation + on configurations:

(p,oar)F (q,007") iff o=o',7=7"and (p,a,q,b) € A,
or oa=o',7=>br'and (p,a,q,R) € A,
or o0=0'b,7=ar'and (p,a,q,L) € A.

The relation F" is recursively defined by:

Cl |_0 Cg iff Cl - Cz,
CiHC; iff CiFCy,
Cy prtl Cy iff AC3.C; F C3 A C3 k" C,.

for configurations C,, C; and C5. We let * denote the reflexive, transitive closure of .

We use the following conventions:

Convention 22 1. On input w the initial tape contents of a Turing machine are #w#.
Thus the initial configuration is (s, #w#). We assume that inputs w do not contain any
occurrence of the blank symbol #.

2. L(M) = {w € T* | (s, #w#) F* (h,#)} is called the language recognized by M.
We say that a Turing machine M recognizes (or accepts) w if and only if w € L(M).

3. With every decision problem D we associate a Turing machine Mp, called the D-machine,
such that L(D) = L(Mp), where L(D) denotes the set of “yes—instances” of D.

Lemma 2.3 There exists a computable coding function p from Turing machines to binary
strings.

For a proof of lemma 2.3, see e.g. [10]. It is possible to choose p such that p~! is
computable and total as well.

In complexity theory one associates with every Turing machine M a function Tm(n)
such that M accepts in time Tis(n) if and only if for every n and w € L(M) with |w| = n
there is an m < Ta(n) such that (s, #w#) ™ (h, #). We can interpret this function as
(a bound on) the number of steps M takes to accept w as a function of the length of w.
For every decision problem D, we say that M decides D in time T if and only if Mp
accepts in time T'(n). Likewise, Sp(n) is defined as (a bound on) the number of tape
squares M uses to accept inputs of length n.

From the notion of decidability in time T, we can define the class of all languages, or
decision problems, decidable in time 7"
DTIME(T) = {D | there is a deterministic Turing machine M such that
M decides D in time T}
NTIME(T) = {D | there is a nondeterministic Turing machine M such that
M decides D in time T}

Note that if we replace T in the above definitions by O(T), the classes remain the same
(see e.g. [5]). We can now define the following classes:

Definition 24 1. P = |y DTIM E(n*)
2. NP = Upso NTIME(n)

One of the central problems in complexity theory is whether P is equal to AP or not.

The reader is referred to Garey and Johnson [3] for an exposition of the theory related
to this problem.

A key tool in complexity theory is the notion of a reduction. Given two languages A
and B, we say that A reduces to B via f (notation: A <; B) if there exists a function
f: X% — Tp, such that w € A if and only if f(w) € B for all w € £%. Here £, and
¥p denote the alphabets of A and B respectively. Usually the class of functions that
are allowed for reductions is further restraint to e.g. the polynomial time or logspace
computable functions. It can be shown that the classes of Ptime and logspace reductions
(denoted by <, and g, respectively) are closed under composition, hence < p and <,y
are transitive relations on languages. Let < be any reducibility relation.

Definition 2.5 Let B be a language and C a class of languages.

1. B is hard for C with respect to < iff A< B forall A €C.
2. B is complete for C with respect to < iff

(a) B is hard for C with respect to <;
(b) Bec.

Cook showed in [1] that the SATISFIABILITY problem is complete for AP with respect
to logspace reductions and hence that all problems in this class are solvable in poly-
nomial time if and only if SATISFIABILITY is. Or equivalently, that the complexity of

SATISFIABILITY is representative for the class NP. We end this section with a useful
lemma.

Lemma 2.6 Let A be a decision problem over the alphabet ©. Then there is a 1-1 logspace
reduction of A to a decision problem A’ over {0,1}.

Proof.

Without loss of generality, we may assume that |%| > 2. Order the strings over %,
first by length and then lexicographically. The required reduction assigns the nth string
over X to the n*® binary number. D

Chapter 3

Randomization

In [6] several NP-complete problems are given that are computable in polynomial
time on average for a given probability function on its instances. In this chapter we
give a formalization of the notion of randomization and define a reduction between
randomized problems as proposed by Levin [8].

3.1 Randomized problems

Definition 3.1 A randomized decision problem is a pair (D, 1), where D is a decision
problem and p is a probability function on the instances of D.

For any alphabet £, with an ordering on its elements, we can define a ordering on
strings over X: first by length, then lexicographically. The successor of a string z is
denoted by =*. A probability function x on a set A is any function x : A — [0, 1] such
that 37, 4 #(2) = 1. If p is a probability function on £*, then u*(z) = Yy<z #(y) is the
corresponding probability distribution. We say that is positive if every value of 4 is
positive. In the sequel we use the symbol “x” to stand for “ is proportional to”.

Definition 3.2 1. A probability function p on a set A is called standard if

(a) Ais finite and p(a) < |A|~! for a € A;

(b) A=N* (=N)and p(n) x =2 (x (n+1)=2) for n € N* (€ N);
(c) A=73*and p(w) x (n+1)=2 x |Z|~" where w € £* and n = |w);
(d) p = X pg for two standard probability functions 11, and p..

2. A randomized decision problem (D, p) is called standard if u is.

Let (D, u) be a randomized decision problem. What does computability in polynomial
time on average exactly mean? The first intuition would say that there must exist an
algorithm of some time complexity T'(n) such that:

Y w(w)T(w) = O(n*)

weJ

for some k € N and all n. Here J denotes the set of all instances of size n and T(w)
is the running time of the algorithm on input w. Note however that this notion is not
machine independent: suppose the Turing machine M, computes an algorithm is time
T and machine Mp simulates M in time T2. Suppose further that the algorithm on
My runs in time n with probability 1 — 2-"/2 and in time 27/2 otherwise. Then the
algorithm is polynomial on average for machine M, but not for machine Mg.

We can revise our first definition somewhat by requiring that, for some k¥ > 0 and all

n:

Y u(w)T(w) % = O(n),

weJ
with J as before. Next we would like u to cover all instances of the problem, not just
those of size n for some n. In order to achieve this we must divide by |w|:

Definition 3.3 A function T from * to nonnegative reals is polynomial on average with
respect to p if there exists a positive integer k such that the expectation

3 Hw)T(w) ¥/] < 0o

wel
where I is the domain of T.

Notice that this definition is independent of the encoding of a decision problem in some
alphabet. The next definition extends definition 3.3 to functions and decision problems.

Definition 3.4 Let u be a probability function on some T*.

1. A decision problem D over ©* is expected Ptime decidable (EPtime decidable) with
respect to p if a Turing machine M decides D in time Tns and Ty is polynomial on
average with respect to y.

2. A function f : £* — A* for some alphabet A is EPtime computable with respect to p
if a Turing machine M computes f in time Tps and Tay is polynomial on average with
respect to u.

For the purpose of this paper we define a slightly different notion of Ptime computabil-
ity (cf. Gurevich [4]).

Definition 3.5 A function f from £* to reals is Ptime computable if there exists a Turing
machine M which, given a string w € T* and the unary notation for a natural number k,
computes the binary notation for an integer i with | f(z) — | < 7.

This definition states that f(z) can be approximated by a binary fraction with arbitrary
precision (which must be the case for computing machinery with finite precision arith-
metic). In fact, this definition is only a slight variation on the definition of a “computable
number”, given by Turing in [11].

Definition 3.6 RAP is the class of randomized decision problems (D, i) with D € N'P and
u* is Ptime computable.

Note that Ptime computability of u* implies Ptime computability of x but the converse
is not necessarily true.

3.2 Reductions

Now we have defined “randomized problems” and “expected polynomial time com-
putability”, we can define a suitable notion of reduction between two randomized prob-
lems. It is obvious that a reduction f : A — B should not only map an instance w of A
to an instance f(w) of B, but also should map a “likely” instance to a “likely” instance.
A reduction must ensure that whenever a problem A is EPtime decidable and another
problem B reduces to it, that then B is also EPtime decidable. For this purpose we
introduce the notion of domination (cf. Levin [8], Gurevich [4]).

Definition 3.7 Let uy and p; be probability functions on some 3 and 3 respectively.
p2 dominates u; if £y = I, and there is a polynomial p such that

p2(w) X p(|wl) 2 p(w)
for all w € 3.

If y1; dominates y; then the values of ;; may be arbitrarily larger but only polynomially
smaller than the values of u,.

Lemma 3.8 Let puy and p, be probability functions on some ©*. Let u, dominate p;. If a

problem D over T is Ptime decidable with respect to uy, then D is also Ptime decidable with
respect to p,.

Proof.
There exist integers k and { such that the following inequalities hold:
00 > Y7 pa(w)TVx(|wl)/w|

wel

2 sa(w) x p(lwl) x T (Jw])/|w|

wel

2 m(w) x TV (jw])/|w|

wel

v

v

O

Definition 3.9 Let uy and u, be probability functions on £} and %3 respectively, and f :
51— s

1. f transforms p, into u, if

pm(y)= Y m(=)

f(z)=y

2. f reduces yu; to u; if some probability function y dominates p, and f transforms p into
2.

3. f Ptime reduces a randomized decision problem (Dy,u,) to a randomized decision
problem (D3, ui2) (notation: (Dy, 1) <p (Da, p2)) if it reduces D, to D,, reduces p, to
2 and is Ptime computable.

We can define a notion of completeness with respect to the above defined reduction
<p' a randomized decision problem (D, i) is complete with respect to <, for a class of
languages C iff (D, u) € C and (D', u') <, (D, p) for each (D', ') € C. Note that in this
definition we do not restrain the probability function ' in any way. Next it is obvious
that this notion of completeness is a sound one: if (D, u) is complete for RAP with
respect to Ptime reductions then for any decision problem (D', 4') in RA'P, (D', ') is
Ptime decidable with respect to 4’ if and only if (D, u) is Ptime decidable with respect
to u. For the following lemma we assume that f is a function that is not a constant.

Lemma 3.10 p; dominates the result of the f-transformation of u, if and only if f reduces
p1 to pa.

Proof.
(=>): Let u; dominate the f-transformation of ;. By definition we have, for some
polynomial p,
pa(y) X plyl) = Y (=)
f(=)=y
hence

pa(z)
w2 X @D

Now, | f(z)| < r(|z|) for some polynomial r, since f is Ptime computable; let p(r(]z|)) =
q(|z]) for an appropriate polynomial g.
Define:
w(f(@)
[f-1(f(=))]
(Note that f need not be a injection, so f~1(f(z)) may consist of several values.)

Then p3(y) = Xg(s)=y #(2) and since |f-1(f(z))| is polynomial in |z|,
u(z) x s(|z]) > m ()
for some polynomial s. So f reduces y; to uj.

(<=): Let f reduce u, to ;. Then there exist a probability function x and a polynomial
P’ such that

w(z) =

p(z) x p'(Jz]) 2 pi(z)
and

@)= Y, uz).
=)=y
Hence

p(z)
pa(y) > f(x;q 7(2)

and there exists a polynomial p such that

) x p(lyl) > D (=)

J(z)=y

10

So u; dominates the result of the f-transformation of ;. o
The following lemma states that Ptime reductions are transitive relations on languages.

Lemma 3.11 Ptime reductions are closed under composition.

Proof.

Let f Ptime reduce (Dy, p1) to (D3, p2) and g Ptime reduce (D3, u3) to (D3, p3).
Then, by lemma 3.10,

S xp(lyl) 2 Y pa(x)
9(z)=y
and, by definition,

m(=)
p2(y) 2 f(%::y D)

for suitable polynomials p and ¢. So

w@)xpeh)> Y A

9(f(=))=y a(l=)

or

() xs(lyl) > D (=)
9o(F(z))=y

for some polynomial s and g o f reduces u; to ps. By ordinary reduction, g o f reduces
D, to D3 and is Ptime computable. So g o f Ptime reduces (D1, p1) to (Ds, p3). |

Lemma 3.12 Every RN'P-problem (D, u) reduces to an RA"P-problem (D', u') over {0,1}.
Proof.

1. By lemma 2.6, there is a problem D’ over {0,1} and a function f that reduces D
to D' and is Ptime computable. D’ is obviously in RAP.

2. Define u' to be: y/(z) = p(f~*(z)). Clearly, f is injective, hence y' is well-defined.

O

Lemma 3.13 Every RN'P-problem (D,) over {0,1} reduces to a RNP-problem (D, u')
where ' is a positive probability function and every value of ' is a finite binary fraction.

Proof.

#' is constructed as follows. Let z and y be binary strings and dz = 2-2I%l for z # e
and de = 1/2, where e denotes the empty string. Without loss of generality, u*(z) < 1
for every z. Since u* is Ptime computable, there is a Ptime computable function N
that assigns a binary fraction N(z) = 0.y with precision 2|z| to each binary string z. So
ly| < 2|z| and |p*(z) — N(z)| < d=.
Define p’ such that:

44'(z) = N(z*) — N(z) + 2dz

11

Then: 44'(e) = N(e*) + 1 since N(e) = 0. Now, 44'(z) = N(z+) — N(z) + 2dz >
(u*(zt) — dz) — (u*(zt) - dz) + 2dz = p(z). So 4’ dominates p.
We now must check that u’ is well-defined.

w(z) = 43 u(y)

y<z

= Y (N(y*) - N(y) + 2dy)
y<z

= Y (N@*)-N(y)+2dy)+ N(e*) +1
e<y<z

= N(2)+) 2dy+1iforz#e

ely<lze

and
}h‘n 4p(z)=142) 27 x2"+1=4.
n=|r|-+00 "21
So Y .esi'(z) = 1 where J is the set of all instances of the problem, and u’' is a
legitimate probability function. o

By virtue of lemmas 3.12 and 3.13, we may assume that every decision problem has
T = {0,1} and that every value of its probability function is a finite binary fraction.

3.3 Standardization

The Randomized Bounded Halting Problem, RH(M), for a nondeterministic Turing ma-
chine M with binary input alphabet is defined as follows: given a string w and the

unary notation of an integer n > |w|, does M halt on input w within n steps? The
language recognized is:

L(RH(M)) = {w01" | M halts on w within n steps}

Its associated probability function up,, is defined by:
ny __ 6 - -k
Bhm (w01)—-ﬁxn 3x2

where k = |w|. This probability function is standard: choose n with probability n-2;
choose k < n with probability 1/n; choose a binary string of length k with probability
2-*. The following result due to Gurevich [4] is important.

Theorem 3.14 (Coding Theorem) For every RNP-problem (D,pu) there is a nondeter-
ministic Turing machine Mp which depends on D such that (D,pu) is Ptime reducible to
(RH(MD), pshem)-

Proof.

Let z be an instance of (D, u). Note that 4 may be an arbitrary probability function,
and is not necessarily standard. We must first define an encoding e that maps = onto

12

an equally likely e(z) with respect to a standard probability function. Let 2’ be the
shortest binary string such that

pr(z) < 0.z'1 < p*(z™).

Claim 0.2'1 — 2-1="1 < p*(z).

Proof of claim Assume 0.2'1 — 2-1*'1l > y*(z). Surely: 0.z'1 — 2-=1 < p*(z+). So
pH(z) < 0.2'1 — 2711l < p*(z+). But 0.2'1 — 2-I'1l is (at least one digit) shorter
than z’. Contradiction.

Similarly, 0.2'1 + 2~ > y*(z+).

Now, p*(z) — p*(z%) = p(z) < 2 x 2-1'11,

Define the encoding:

e(z) := if 2=l > u(z) then 0z else 1z'.

e(z) is tagged by a binary digit to signal whether ¢(z) is a “disguise” for z or not.
The desired nondeterministic Turing machine Mp is defined as follows:
on input bw, where b is a binary digit:

1. if b = 0 then if 2-1*| < u(w) then loop {wrong input} else z := w ; goto (4).

2. Find the unique z with u*(z) < 0.wl < p*(zt). Recompute the unique shortest
z’ such that p* < 0.2'1 < p*(z*).

3. if 2-1=1 > u(z) or 2’ # w then loop {wrong input}.
4. Simulate the D-machine on z.

There exists a polynomial ¢ such that Mp has a halting computation on e(z) within at
most ¢(|z|) steps if and only if Mp has a halting computation if and only if z € L(D).

The desired Ptime reduction f is defined as:
f(@) = e(z)o19(D

which is indeed Ptime computable. The probability function us, of RH(Mp) domi-
nates the result of the f-transformation of u, because:

X U@ X (@) > 2 x 2HE) > ()

hence f reduces u to pa, by lemma 3.10. O

The main purpose of the Coding Theorem is to establish the fact that every RA’P-
problem (D, u), however special 1 might be, Ptime reduces to an equivalent problem
with a standard probability function. This fact is crucial in the next chapter.

13

3.4 Weak reducibility

As Levin [8] remarked in his original paper, we can modify definitions 3.7 and 3.9
somewhat to get a notion of weak or expected polynomial time reducibility. We give here
- a definition due to Gurevich [4].

Definition 3.15 Let u, and u, be probability functions on £*, Dy and D, decision problems
over £* and f : T* — L*,

1. 1 weakly dominates p, if there is a function p such that
H2(w) X p(|w|) > p(w)
for all w € X* and p is EPtime computable with respect to ;.
2. f EP-reduces u; to p, if some p weakly dominates p, and f transforms p into p,.

3. f EPtime reduces a randomized decision problem (D,,u,) to a randomized decision
problem (D3, p2) if it reduces Dy to D, EP-reduces p, to p; and is EPtime computable
with respect to p,.

It is easy to see that whenever a problem (D,) is EPtime decidable and a problem
(E,v) EPtime reduces to it, that (E, v) is also EPtime decidable.

In [4] several interesting theorems are proved concerning EPtime reducibility.

14

Chapter 4

Completeness

In this chapter we prove the existence of two complete problems with respect to Ptime
reductions in the class RAP. The first problem is rather basic: it is the random-
ized version of bounded halting, a problem which, in some formulation or another, is
complete for every class of decision problems. The second problem is the random-
ized version of bounded tiling. This problem was first claimed to be A"P-complete by
Levin in [7] and was treated more thoroughly by Lewis in [9]. As Van Emde Boas has
pointed out in [2], this problem could well serve as a “master reduction” in the theory
of A'P-completeness, instead of e.g. SATISFIABILITY, which was first proved to be
NP-complete by Cook in [1].

4.1 Randomized Bounded Halting

Bounded Halting, BH, is defined as: given the encoding of a nondeterministic Turing
machine M, a binary string w and the unary notation for an integer n > |w|, does M
halt on input w within n steps? The language formulation is:

L(BH) = {p(M)000w001" | M halts on w within n steps}

where p is the encoding function for Turing machines defined in lemma 2.3.

Randomized Bounded Halting, RBH, is the problem BH together with a probability
function uj, on its instances defined by:

pr(p(M)000w001™) o urar(M) x n~3 x 2%

where k = |w|. ury denotes a (standard) probability function with Ptime computable
distribution for choosing a Turing machine. One possibility for uzas could be:

prm(M) = m~% x (28(m2+m)) -1

where m = | K|: choose a number of states m; choose for the transition relation A any
subset of K x {0,1} x (K U {h}) x {0,1, L, R} with equal probability.

Theorem 4.1 (RBH, uy) is Ptime complete for RNP.

15

Proof,

Let (D, p) be any RA'P decision problem. (D, 1) Ptime reduces to (RH(Mp), ipm) for
the machine Mp defined in the Coding Theorem. We now reduce (RH(Mp), phm) to
(RBH, py) via the following function f:

F(w001™) = p(Mp)000w001™,

As p(Mp) is a constant for each problem D, this reduction is trivially Ptime computable.
w € D if and only if p(Mp)000w001#(«) ¢ RBH for some polynomial p and the
probability function of RBH, u;, dominates the result of the transformation via f of
Urm- It is evident that RBH € RNP. O

4.2 Bounded Tiling

As we have defined a computation by a Turing machine by the transitive, reflexive
closure of the relation - on configurations, we can picture a computation by enumer-
ating all steps. As is wellknown, a Turing machine which runs in time T can at most
reach, or look at, T tape squares. So a T x T square, each row containing the contents
of the tape at a given point in time, gives a clear visual description of a computation
of a particular machine. We can generalize this observation and define a tiling problem
which can be solved if and only if the Turing machine has a halting computation, by
coding each configuration of that machine as an unambiguous row in the T x T square

to be tiled. This gives a direct correspondence between the Bounded Halting and the
Bounded Tiling problem.

Definition 4.2 1. A legal tile set is a triple (D, H,V) where:

e D is a finite set of legal tiles;
e HV CDxD.

2. A initial tiling for a legal tile set is a pair (A, d) where:

e ACNXN;
ed:A—D.

3. A tiling system D = (D, H,V, A, d) is a legal tile set together with an initial tiling.
4. An s x s tiling by D subject to an initial tiling, is a function
f:{0,1,--.,s—1} x {0,1,---,8— 1} = D
such that

f(8) = d(6) forallé e And{o,...,s-1}x{0,...,s—1};
(f(m,n),f(m+1,n))€H forall0 K m,n<s;
(f(m,n),f(m,n+1))€V forallOSm,n<s.

16

b
Figure 4.1: a tile

That is, an s x s tiling by D is just a tiling of the square of size s in the lower left corner
of the first quadrant, obeying all the required constraints on the layout of the tiles. As
usual, we picture tiles as squares with markings on their sides (see figure 4.1). H and
V are just an abstraction of these markings denoting which tiles can border each other
in the horizontal and vertical direction, respectively. For convenience we omit these
relations and think of them as embodied in the specification of D.

Lemma 4.3 There exists an injective logspace computable coding o of tiling systems to binary
strings. |o(D)| is polynomial in the size of the tiling system D.

Bounded Tiling, BT, is defined as: given (the encoding of) a tiling system D (i.e. a set
of legal tiles and an initial (s x s) tiling) and the unary notation of an integer s, does
there exist a s x s tiling by D subject to the initial tiling? The language recognized is:

L(BT) = {o(D)001* | there exists a s x s tiling by D}.
Theorem 4.4 BT is <p-complete for N'P.

Proof.

The proof presented here is slightly different from the proof given in e.g. [10]. The
main difference is the way in which we “code” the step counting function into the
tiling system. The idea behind the proof is that we let the tiled square represent the
space/time history of a computation by a Turing machine M. Each row of the square
represents a configuration of M. If we device a neat mapping from configurations
to the tiled rows, we can tile an s x s square if and only if M has a computation,
consisting of s steps and using s tape squares. Next we must ensure that M has a
halting computation within s steps and using at most s tape squares, by forcing that
the last row to be tiled corresponds with the halted configuration.

The first thing to do is to construct a tiling system for a given Turing machine M. Let
M = (K,Z,A,s,h). According to lemma 3.12 we may assume £ = {0,1,#} where #
denotes the blank symbol. Then Dy = (Dp, H,V,Aps,d) is the tiling system corre-
sponding to M containing the following tiles:

1. For each b € %, the tile of figure 4.2 is in Djs. The tile simply communicates any
unchanged symbol upwards from configuration to configuration.

17

b
Figure 4.2: unchanged tape contents

(¢,b)

(p,a)
Figure 4.3: tape head and states

. For each a € ¥ and p € K such that (p,a,q,b) € A, for some a € T, p € k, the tile
of figure 4.3 is in Dps. This tile correspond to the position of the tape head and
the state associated with a configuration.

. For each p € K and a € X such that (p,a,q,R) € A for some ¢ € K, the tiles of
figure 4.4 are in Dy. These tiles corresponds to the movement of the tape head
one position from left to right.

. Tiles similar to those of (3) for the case in which (p,a,q,L) € A, as illustrated in
figure 4.5.

- The above tiles do the bulk of the simulation of M by Djs. Here we give the tiles

that correspond to the initial configuration of M. For the starting state s and for
each b € {0,1}, D contains the tiles shown in figure 4.6.

a (q’ b)

(R,q) (R,q)

(p,a) b
Figure 4.4: right movement

18

a (q7 b)

(L,q) (L,q)

(p,a) b
Figure 4.5: left movement

(s, #) b

Figure 4.6: initial configuration

19

(h, #)

(h, #) (h, #)
Figure 4.7: halting configuration

6. Next we need the two tiles for the halting configuration as shown in figure 4.7.

Any input w for M can be coded by the tiles of figure 4.6 in an obvious way, that is,
we define the initial tiling to contain (the encoding of) the configuration (s, #w#): let
w=>b;...b,. Then:

d(0,0) = the first tile of figure 4.6
- d(i,0) = the second tile of figure 4.6 corresponding to b; for 1 < i < n
d(n,0) = the third tile of figure 4.6 corresponding to b,,.

Next we have to keep track of the number of steps M has taken. In [10] this is done by
equiping each tile with natural numbers (“colors”) k and & + 1 which signal that these
tiles are used in the k' step of the computation. This results in an abundance of tiles.
We give here a more restricted means to enforce that the computation halts within s
steps.

In order to enforce that the last row will be tiled with a tiling corresponding to the

halted configuration, we simply define the initial tile in the left upper square to be the
second tile given in figure 4.7, that is:

d(0, s) = the second tile of figure 4.7

So the last row can only be tiled if the Turing machine has reached a halting configu-
ration at this point.

The following facts can easily be proved by induction:

1. Each row of the tiled square contains exactly one tile with an encoding of the
tape head and a state;

" 2. Each row of the tiled plane corresponds to a configuration of the Turing machine
M;

3. If o and 3 are the k*® and (k + 1)*® row of the square, then for the corresponding
configurations C, and Cg: Cq tpr Cp.

4. There exists a s x s tiling of the square if and only if M accepts w in time s.

20

To complete the proof of theorem 4.4, let D € AP be any decision problem with its
associated D-machine Mp. For any binary string w, w € L(D) if and only if Mp has a
halting computation on w within p(|w|) steps for some polynomial p if and only if there
exists a tiling of the (p(|w|) x p(|w|) square by the tiling system D)y, defined above.
The required reduction f is given by:

f(w) = a(Dpg,)001P0wD)

which is Ptime computable. O

We now give an interesting corollary to theorem 4.4 which proves a claim from Levin

[71.

Corollary 4.5 There exists a set of legal tiles (D', H,V) such that the problem: “given an
initigl tiling and the unary notation of an integer s, does there exists a s x s tiling by the
corresponding tiling system D'” is N'P-complete.

Proof.

BH is Ptime complete for N'P. Consider the machine for BH, Mpy. We can construct
a tiling system D’ that mimics the steps of Mpy. So, for any decision problem D in
NP, w € D if and only if Mp halts on w within p(|w|) steps if and only if Mpy halts
on p(Mp)000w001”(I*!) within g(|w|) steps for some appropriate polynomial g, if and
only if there exists a tiling by D’ of the g(|w|) x ¢(|w]) square with an initial tiling that
corresponds to

p(Mp)000w001P(eD,

It is easy to see that this implies a Ptime reduction. a

4.3 A non-standard reduction

In the preceding sections we have defined a probability function on instances of a
decision problem which we may assume to be over {0,1}. We called this probability
function standard if the probability of a binary string w was proportional to (|w|+1)~2x
2-Ivl. We further acted as if the Turing machine M associated with the problem had the
same probability function on its inputs as the problem on its instances. Yet the input
alphabet of M is {0,1,#}. We don’t randomly generate strings of a certain length over
this alphabet, but over {0,1}. In a sense, we assume that M has the magical capability
to reject garbage as input. For a given Turing machine M we can easily construct
a new Turing machine M’ that inspects its input explicitly in order to discriminate
against wrongly formatted input and then simulates M. The inspection only requires
O(n) time. It is clear that M’ runs in polynomial on average time if and only if M
does. Formally we can say:

Theorem 4.6 For any decision problem (D, p) over {0,1} in RN'P, there exists a Turing
machine M with alphabet {0,1,#} and a function f which is Ptime computable such that

1. z € L(D) < f(z) € L(M);

21

2. the probability function upp for the inputs for M is standard with respect to the tape
alphabet of M, that is, the probability of an input w is proportional to (|w|+1)=2 x 2-Ivl;

3. D is EPtime decidable if and only if Ty is polynomial on average.

Notice however that f is not a Ptime reduction in the sense of definition 3.9: the
probability function ups is exponentially smaller than the probability function .

4.4 Randomized Bounded Tiling

Randomized Bounded Tiling (RBT) is the problem BT together with a probability dis-
tribution y: on its instances. We define u; to be the following standard probability
function:

pe(o(D)001%) = pur(D) x s~2

where p7 is a standard probability function for choosing a tiling system. We can define
ut to be:

ur(D) = k2 x ()7 x pa(d).

pr is indeed standard: choose a number of “colors” k and a subset of all possible
tiles using k colors for the set of legal tiles D; uq denotes the probability of choosing
an initial tiling: we want to choose a subset A C N x N and a function d : A — D.
But alas, this construction goes awry as the probability of choosing a subset A is

(at least) proportional to (2’2).1 rendering the joint probability of choosing a tiling
system exponentially smaller than the probability of choosing an input for the problem
we want reduce to it. We therefore define A to be exactly the squares we need in the
reduction: s + 1 squares on the lefthand part of the first row and one square in the
upperleft corner. Note that x4 becomes zero if, at some point, we can’t choose a next
tile. The following result was originally proved by Levin [8].

Theorem 4.7 RBT is Ptime complete for RA'P.
Proof.

1. BT is <p-complete for N'P;

2. Let (D,u) be any decision problem in RAP. Then, by theorem 4.6, (D, u) is
EPtime decidable if and only if the Turing machine Mp runs in polynomial on
average time. We reduce the halting problem of this machine to RBT. Let f
be the reduction defined in theorem 4.4. Then ur dominates the result of the
f-transformation of u: the probability of choosing a set of legal tiles is a constant;
the probability of choosing an initial tiling is proportional to the probability of
choosing the “input” of length k over (the representations for) {0,1,#}. O

From corollary 4.5 we immediately get the following corollary.

Corollary 4.8 There exists a legal tile set (D,H,V) and a probability function p on initial
tilings such that the problem “given an initial tiling I with probability u(I) and the unary
notation of an integer s, does there exist a s x s tiling by the corresponding tiling system D”
is RA'P-complete.

Chapter 5

Odds and ends

In this chapter we discuss some further observations and results. In particular, we
investigate logspace reducibility and a randomized version of PSPACE. For this we
extend definition 2.4 to classes which are computable within a certain amount of space.

Definition 5.1 1. DLOG = DSPAC E(log(n))
2. PSPACE = Uyso DSPACE(n*).

5.1 logspace reducibility

The definition of DLOG immediately gives rise to a notion of logspace reducibility be-
tween randomized decision problems: f logspace reduces (D;, u1) to (D2, siz) (notation:
(D1, 1) Siog (D2, p2)) if it reduces Dy to Dy, reduces p; to w2 and f € DLOG.

As N'P has <jop-complete problems (the original proof by Cook [1] of the A"P-com-
pleteness of SATISFIABILITY used logspace reducibility), it is a natural question to ask
whether RAV'P has logspace complete problems. The answer seems to be “no”, unless
we severely restrict the definition of RA"P. Recall that in the proof of the Coding
Theorem, which is at the basis of the theory, we must explicitly compute y* for a given
problem (D, u). Unless u* is logspace computable, this reduction can’t be logspace
computable. At the same time, it seems highly unlikely that we can prove a problem
complete for RAP without consulting u* for every problem (D, u) € RAP.

Therefore, the best result we can formulate, is:

Corollary 5.2 For any problem (D, u) € RN'P, if u* is logspace computable, then (D, 1) <iog
(RH, “h) and (Ds l‘l') glog (RBT’ Il't)'

Proof.

Immediate from the proofs of theorems 4.1 and 4.7. a

This result isn’t quite as bad as it seems: it simply states that logspace reducibility
doesn’t seem to be an appropriate notion of reducibility among randomized problems.

24

As we are studying expected Ptime computability, Ptime reducibility is good enough
for us.

5.2 Randomized PSPACEFE

Another question raised in complexity theory is “P L PSPACE”. Albeit not as “prac-
tical” as RA/P, a randomized version of PSPACE therefore is a natural extension of
the theory of the previous chapters.

Definition 5.3 A randomized decision problem (D,) is in RPSPACE if D € PSPACE
and u* is Ptime computable.

We let RH2 be the randomized version of the bounded halting problem for PSPACE,
defined as: given the encoding of a Turing machine M, a binary string w and the unary
notation for an integer n > |w|, does M halt on w within n space?

Theorem 54 1. Every RPSPACE problem is Ptime reducible to a standard RPSPACE
problem.

2. RH?2 is Ptime complete for RPSPACE.

Proof.
Immediate from the Coding Theorem and theorem 4.1: just replace “in ¢(|w|) steps”
by “within ¢(|w|) space”. O

Define RT2 as the PSPACE equivalent of RT": given a finite set of legal tiles, and two
tiled rows U and V of length N, does there exists an integer M such that it is possible
to tile an M x N rectangle with U (V) serving as the top (bottom) row and with “white”
left and right borders?

Theorem 5.5 RT2 is Ptime complete for RPSPACE.
Proof.

1. RT2 is Ptime complete for PSPACE (see [2]).
For any problem (D, u) € PSPACE, define the reduction f:

f(w) = p(Dp,)00I00F001"

where:
I~ (s, wgrlvl-1)
F ~ (b ##™ 1)
and D is the set of tiles defined in the proof of theorem 4.4. |
2. This reduction works. a

Chapter 6

Discussion

In this paper we have given an overview of the theory of decision problems with a
probability function on their instances, called “randomized problems”as developed by
Levin [8] and Gurevich [4]. We have defined a notion of reducibility between these
problems and proved the existence of complete problems in the class “randomized
N'P” with respect to this reduction. We also gave some extensions to the basic theory.

The theory of RN Pis a “practical” approach to the complexity of decision problems;

it is concerned with “average case”, not “worst case” behavior. The latter results, as is
often argued, in true A/P.

A question could be where to locate this new class in the complexity hierarchy. It
is obvious that a randomized problem (D,) is EPtime decidable for every proba-
bility function p if D € P. It is known that for certain problems with an associated
probability function u, (D, x) is EPtime decidable if D € AP. Even if P # NP, the
problems in RA/P could be EPtime decidable. This would give quite a relief to system
programmers, but adds little insight to the P versus NP question.

On the other hand, as Gurevich has shown in [4] the notion of EPtime reductions leads
to some interesting results in “ordinary” complexity theory.

Acknowledgements

The author wishes to thank Jan van Leeuwen for helpful discussions.

26

Bibliography

[1] S.A. Cook, The complexity of theorem-proving procedures, Proc. ACM STOC 3
(1971), 151-158.

[2] P. van Emde Boas, Dominoes are forever, Techn. rep. 83-04, Dept. of Mathematics,
University of Amsterdam (1983).

[3] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-completeness (W.H. Freeman & Co., New York, 1979).

[4] Y. Gurevich, Complete and incomplete randomized NP problems, Proc. IEEE FOCS
28 (1987), 111-117.

[5] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages and Com-
putation (Addison Wesley, Reading, MA, 1979).

[6] DS. Johnson, The NP-Completeness Column: An Ongoing Guide, J. Algorithms 5
(1984), 284-299.

[7] L.L. Levin, Universal sequential search problems, Problems of Information Transmis-
sion 9 (1973), 265-266.

[8] L.L. Levin, Average case complete problems, SIAM]. Comput., 15 (1986), 285-286.

[9]1 H.R. Lewis, Complexity of solvable cases of the decision problem for the predicate
calculus, Proc. IEEE FOCS 19 (1978), 35-47.

[10] H.R. Lewis and C.H. Papadimitriou, Elements of the theory of computation (Prentice-
Hall Inc., Englewood Cliffs, New Jersey, 1981).

[11] AM. Turing, On computable numbers, with an application to the Entschei-
dungsproblem, Proc. London Math. Soc., 2 42 (1936), 230-265 and 43 (1936), 544-546.

27

