Assertional Verification of a
Termination Detection Algorithm

A.A. Schoone, G. Tel

RUU-CS-88-6
March 1988

Rijksuniversiteit Utrecht

s ¥ o
K S
& 32 Vakgroep informatica
SITONE
WAy Budapestiaan6 3584 CD Utrecht
Corr. adres: Postbus 80.012 3508 TA Utrecht

Telefoon 030-53 1 4
The Netherlands 1454

Assertional Verification of a Termination Detection Algorithm

A.A. Schoone, G. Tel

Technical Report RUU-CS—88—6
March 1988

Department of Computer Science
University of Utrecht
P.O. Box 80.012, 3508 TA Utrecht
The Netherlands

Assertional Verification of a Termination Detection Algorithm

Anneke A. Schoone, Gerard Tel

Department of Computer Science, University of Utrecht,
P.O. Box 80.012, 3508 TA Utrecht, The Netherlands.

Abstract: We present a protocol skeleton for Termination Detection and verify its
partial correctness by means of system-wide invariants (assertions). We also give two
algorithms based on this skeleton, and prove their total correctness.

1 Introduction

The problem of Termination Detection is one of the most intensively studied problems in the
field of distributed algorithms. Its practical interest asks for efficient solutions for different
models of computation. The problem is easily explained and non-trivial, yet it allows elegant
solutions. Thus the problem is suitable to compare the merits of design and verification tech-
niques for distributed algorithms. Hence the problem is very interesting from a theoretical
point of view, too. This paper is about ‘‘Assertional Verification’’ rather than about ‘‘A Ter-
mination Detection Algorithm*’,

The need for rigorous verification of Termination Detection algorithms is clearly illus-
trated by the recent publication of incorrect solutions [ARG86, TTL86, HZ87, TvL87]. Of
course this applies for algorithms for other purposes as well. It is still common practice that
the correctness of a distributed algorithm is motivated by reasoning about all (or some of the)
executions of the algorithm and its environment. However, due to the inherent non-
determinism of a distributed system (and, in the case of a Termination Detection algorithm, the
unpredictability of the ‘‘basic computation’’), the collection of all possible executions is large,
and hard, if not impossible, to identify. In one case confusion about the model of computation
led to an incorrect solution.

In the past we have advocated the use of assertional proofs for non-deterministic systems
and given examples of assertional proofs for several communication protocols [SvL85, Sc87,
Te87]. In these proofs the program as well as its environment are unambiguously described in

The work of the second author was supported by the Foundation for Computer Science (SION) of the Nether-
lands Organization for Scientific Research (NWO).
The authors UUCP addresses are ../mcvax!ruuinflanneke and ../mcvax!ruuinflgerard.

-2.

terms of a set of (atomic) actions. The partial correctness of this set of actions is expressed in
terms of invariants. The correctness of each invariant is established by showing that (1) the
invariant holds in the initial state of the system and (2) each atomic action preserves the invari-
ant.

The set of atomic actions is not considered as the complete program, but rather as a pro-
gram skeleton. As a next step in the design process, actions of the skeleton are scheduled in
some manner as to satisfy total correctness also. '

In this paper we apply this design and verification technique to a termination detection
algorithm due to Mattern [Ma87]. Its verification in [Ma87] is rather informal and relies
heavily on a graphical representation of an execution.

This paper is organized as follows. In the remainder of this section we introduce the
model of computation, define the problem to be solved, and give the protocol skeleton. In sec-
tion 2 we prove the partial correctness of the skeleton. In section 3 we give some complete
protocols and prove their total correctness. In section 4 we compare our work with other work
on assertional verification and on termination detection.

1.1 Termination Detection

In this paper we assume there is a set IP of processes. Processes in P do not share memory,
but communicate by exchanging messages only. Message delay is unpredictable and not
bounded, but every message is guaranteed to arrive eventually, and unaltered. We do not
assume that the links satisfy a FIFO (First-In-First-Ouf) discipline. The only assumption we
make about the network topology is that the underlying graph is strongly connected. It is not
essential for the correctness of the algorithms that the network is static, but for ease of presen-
tation we assume P is fixed.

The processes in P cooperate to accomplish some task. For our purpose it is irrelevant
what this task is and what algorithm is used for it. We assume that the operation of the
processes is message driven. Only upon receipt of a message, belonging to the computation, a
process performs some computation and sends zero or more messages. This basic action is
atomic. It can be described by the following code (for a process p):

B,: { A message M arrives atp }
begin receive (M) ;
compute
forall x € X do send (M,, x)
end

Here receive (M) is a primitive to consume the message from the incoming message buffer.

-3-

The local computation is represented by the statement compute. X is a finite sequence of
processes, generated during this computation. Finally a message M, is sent to each process x
in this sequence, using the send primitive send (M,,x). In each invocation of B, a different X
can be generated. The process p may appear in the sequence, processes may appear more than
once, or the sequence may be empty. It is assumed that during the execution of the system no
messages are created or sent otherwise than during a B-action. The system as described here

will be referred to as the basic system or basic computation, and messages belonging to it as
basic messages.

To start the computation it is necessary that at least one basic message it created ‘‘spon-
taneously’’, i.e., otherwise than by being sent during the execution of some B-action. These
messages are created by some environment, E, but we do not assume, as in [DS80], that this
environment is itself a process. Because X in B, can be empty, it is possible that at some
moments there are no basic messages in transit in the system. We denote this situation by
TERM.

TERM = There are no basic messages underway.
When TERM holds, all basic actions are disabled, and thus no basic messages will be sent
anymore. So TERM is a stable predicate: once it holds, it remains true forever. The purpose
of a termination detection algorithm is to signify the processes eventually that TERM is true.
For this purpose the code of a termination detection algorithm is superimposed on the code of
the basic algorithm. The detection of TERM generally requires the exchange of extra mes-
sages, but these are of course not included in the definition of TERM.

For ease of presentation we assume the added code contains a special statement detect,

which is to be executed when termination is detected. To be correct, the termination detection
algorithm must satisfy the following three requirements:

(1) The correctness of the basic algorithm is not disrupted;
(2) (Partial correctness) If detect is executed TERM holds; and
(3) (Total correctness) If TERM holds, detect will eventually be executed.

1.2 Protocol Skeleton

In order to detect that there are no more messages in transit, processes must count messages
they send and receive. A token traverses (part of) the network and collects the counts. We
will show that termination can be decided on the value of the token only. The token Q is an
array, containing one entry for each p € IP. In the entry Q[p] messages are counted whose
destination is p. We assume that the environment that creates the messages also creates the
token, such that initially

Q[p] = the number of messages, created with destination p .

-4 -

Each process p maintains a local count array L,, also with one entry for each process in P.
Initially the value of these local arrays is 0. We add statements to B, to update the local
counters:

B,: { A message M arrives atp }

begin receive M) ; L,[p]l = L,[p]-1;
compute ;
forall x € X do
begin send (M,, x); Lplx] = L,[x]+1 end
end

Assuming that L is not a variable of the basic algorithm, adding these assignments to its code
does not disrupt the correctness of the algorithm. Of course we can make this assumption
without loss of generality, because variables in the basic algorithm (or in the superimposition
described here) can always be renamed.

We introduce two new actions, one to update the token, and one to (eventually) decide
termination.

T,: { Process p holds the token Q }
begin Q = Q +L, ;
L, =T
end

D,: { Processp holds the token Q }
begin if O < © then detect end

Here :=, +, and < work on vectors in a componentwise manner. Because these actions do not
operate on the state space of the basic algorithm they again do not disrupt its correctness.
According to action D, detect can be executed when all components of Q are non-negative.
It is the subject of section 2 to show that
—TERM =3p: Q[p]>0.

so that detect will be executed only when TERM holds. The token can be passed from one
process to another. We do not yet specify how movement of the token is determined, because
this is not essential for the partial correctness of the skeleton. It should be noted however, that
a move of the token from one process to another does not alter its value or the value of
another variable introduced so far.

2 Proof of Partial Correctness

To prove the correctness of the skeleton in section 1.2 we introduce a more complex skeleton.
In this new skeleton messages are counted not only separatedly for each destination, but also
for each source. Thus the token Q is now a two dimensional matrix with an entry Q [p, ¢ Ifor
each p,q € IP. In this entry messages are counted that are sent from p to ¢. We will show
that TERM holds if the sum over each column in this matrix is non-positive. In the new
skeleton two matrices, S and R, take the place of the local arrays L, to register sent and
received messages locally. Of these matrices, the entries S[p,q] and R[p,q] are local to p,
and g, respectively.

In the proof we make use of auxiliary variables f,, O, and N. The ghost variable N is
matrix valued, and N[p,q] denotes at any instant the actual number of massages that is
currently in transit from p to ¢. Thus, the sending by p of a message to ¢ implicitly has the
same effect as N[p,q] = N[p,ql+1. The receipt of this message has the effect
Nip.q) = N[p.ql- 1, and this can happen only if N[p,q] > 0.

We maintain a sequence or total ordering O of ‘‘badges’’ b, and ¢,. Thus, the ‘“‘type”
of O is a permutation of 2« | P| elements. We need this variable to be able to say something
about what has happened in the past. Whenever process p updates the token, ¢, is replaced to
the end of the sequence. The same happens with b, when B, is executed for the first time or
the first time after a token update in p. On this occasion f, takes the value of the sender of

the message that is received by p. For badges x,y, by x <y we mean that x is further away
from the end of the queue than y.

The new protocol skeleton, with updates of ghost variables, now looks like this:

B,: { A message M, sent by ¢, arrives at ¢ }
{ie,N[q,p]1>0}
begin receive(M) ; (*ie., Nlq,p]l == Nlq,pl-1%)
Rlq.p} = Rlq.p]+1;
if f, = nil then
begin move b, totheend of O ; f, == q end ;
compute ;
forall x € X do
begin send M,,x) ; (*i.e, N[p,x] :
Slp,x]1= S(p,x]+1 end

Nlp,x]+1%)

end

» { Process p holds the token }
begin f, := nil ; move #, to the end of O ;
forall ¢ € PP do
begin O[p.q]1 = Qlp,q1+S[p.q]1; Slp,.ql=0;
Qlg.p]l = Qlq.p1-RIq.p]; Rlg,p]1:=0
end
end

D,: { Process p holds the token }
begin if V7,5 : Q[r,s1<0
then detect
end

We assume that initially for all p,q Q[p.q]l= N[p,q]120, Slp.ql=0, R[p,q]l= 0,
fp=nil, O is such that b, <t,. Note that we can now express TERM as
Vp,q:Nlp,q]l= 0.

We formulate and prove a series of invariants of the system. The first lemma gives some ele-
mentary relations between message counts. Note that by definition of N[p,q], N[p,q120
always.

Lemma 2.1: For all p and ¢q the following holds invariantly:

) R[p,q120,

1) Slp,q120, and

(iii) Q(p,q1+S[p.q1= Nlp.q1+R[p.q].
Proof: (i) Initially R[p,q]1= 0 so (i) holds. A B, action does not decrease R and hence
leaves (i) true. A Tq action resets R[p,q] to O and hence makes (i) true. Other actions do
not change R[p,q].
(i) Initially S[p,q]= 0 so (ii) holds. A B, action does not decrease S[p,q] and hence
leaves (ii) true. A T, action resets S[p,q] to 0 and hence makes (ii) true. Other actions do
not change S[p,q].
(iii) Initally Q[p.q1= N[p,q] and R[p,q]= S[p,q]= 0, so (iii) holds. Upon sending a
message from p to g (an action that implicitly increments N[p,q]), S[p,q] is incremented so
that (iii) is maintained. Upon receiving this message R[p,q] is decremented so that (iii) is
maintained. In action T, Q[p,q] is increased, and S[p,q] is decreased by the same amount
(possibly 0), so that (jii) is maintained. In T, Q[p,q] and R[p,q] are decreased by the same
amount so that (iii) is maintained. O

-7 .

Informally speaking, we say that a message is registered (viz., in the token) when the informa-
tion about its sending has been copied into the token, but information about its receipt has not.
We must prove that if there are no registered messages (Q < U), then there are no unregistered

messages also (TERM). The following lemma says something about the value of the auxiliary
variables in case an unregistered message from p to ¢ exists.

Lemma 2.2: For all p and ¢ the following holds invariantly:

@) Slp,q1>0=f, #nil,

() fp # nil &1, < by,

(iii) f, # nil =>R[f,,p]1>0.
Proof: (i) Initially S[p,q]= 0 so (i) holds. After a T, action S[p,q]= 0 so (i) holds.
After a B, action f, # nil so (i) holds. Other actions do not change S[p,q]or f,.
(i) Initially f, = nil and b, <, so (ii) holds. After a T, action f, = nil and b, < ¢, so
(ii) bolds. Consider B,. If f, # nil prior to it, f, < b, already by (ii), and neither f, nor O
change in the execution of B,, so (ii) remains true. If f, = nil prior to it, f, is now set to
some g # nil, and b, is moved to the end of the queue so £, < b, becomes true. Again (ii)
holds. Other actions do not change f, or the relative ordering of ¢, and b,.
(iii) Initially f, = nil so (iii) holds. After T, f, = nmil so (iii) holds. Consider B,. If
fp # nil prior to it, f, does not change and R[f,,p] does not decrease, so (iii) remains true.
If f, = nil prior to it, f, is now set to some ¢ # nil and R[q,p] is incremented and hence
becomes positive, so (iii) holds after it. Other actions do not change f, or R[f,,p]l. O

The third lemma is particularly important. If a process has performed a basic action since its
recentmost token update, then either an entry of the token is positive, or there is yet another
process that has performed a basic action since its recentmost token update; moreover, in the
latter case this process is smaller in the ordering of b-badges. This implies of course that there
can be no such process if all fields of the token are non-positive.

Lemma 2.3: fp = nil v Q[fp,p] >0 v (S[fp,p] >0A tf’ < bfp < b,) holds invariantly.
Proof: Initially f, = nil.

After a T, action f, = nil so the statement holds.

Consider B,. If f,, # nil prior to its execution, the second or third disjunct holds. Neither of
these is violated by B, so the invariant remains true. If f, = nil prior to its execution, f, is
now set to ¢, the sender of the message, and R[q,p] is set to a positive value. By lemma
2.1iii Qlg,p1+Slq.p]> 0 follows, so we have Q[g,p]1>0 or Slg,p1>0. Slq.p1>0
implies ¢, < b, by lemma 2.2.ii, and ¢ # p by 2.2.i, so after appending b, to the end of O we
have t, < b, < b,.

If f, # nil we must consider actions Tfp and pr also.

After Ty, S[fp,p]1= 0 and hence, by 2.2.iii and 2.1.iii, Q[f,.p]1> 0.

-8-

Consider pr. It does not violate the second disjunct because it does not change Q. It does
not violate the second disjunct because pr does not decrease S[f,,p], and if t, < bfp then
(by 2.2.i) f £, #* nil, and pr does not change O.

All other actions do not change f,,, Q[f,,p], S[f,.p], or the relative ordering of t, bfp, and
b,. O

Lemma 2.4 is a technical ingredient for theorem 2.6. This theorem will allow us to transform
the skeleton in this section to the skeleton in section 1.2.

Lemma 2.4: For all p, ¢, Q[p.q120 Vv (1, < b, <,) holds invariantly.

Proof: Initially Q [p,q] 2 0.

After T, S[p,q1= 0so again Q[p,q] 2 0 follows.

Consider B,. B, does not violate the first disjunct because it does not change Q. It does not
violate the second disjunct because if ¢, < b,, f, # nil, so B, does not change O at all.
Consider T, (¢ #p). After T, we have ¢, <¢,, b, <t,, and R[p,q] = 0. By 2.liij,
Qlp.q120v S[p.q]> 0 follows, and S[p,q1 > O implies #, < b,.

Other actions do not change Q [p,q] or the relative ordering of ¢, b,, and ¢,. O

The next theorem says that the detect statement is not executed if there is no termination, thus
the partial correctness of the skeleton in this section in established.

Theorem 2.5: ~TERM =3p,q:Q[p,q]>0.

Proof: Suppose — TERM, i.e., there is a message underway from (say) » to s. N[r,s]1>0
implies (by lemma 2.1) that Q[r,s] >0 or S[r,s] > 0. In the first case we are ready (for
P.q take r,s). In the second case, let ¢ be the process with 3p:S[q,p] > 0 and minimal b,.
By lemma 2.2, f, # nil, so by lemma 2.3, Q[f,,q1>0 or S{f,,q1>0 A bf' <b,. The
latter contradicts with the choice of ¢, so Q(f,;,q] > 0 follows. [

The skeleton in section 1.2 used an array token instead of a matrix valued token. The ¢™

entry of this array represents ¥, Q[p,q]. The next theorem states that this array can be used
P
for detection purposes as well.

Theorem 2.6: Ju,v: Qf{u,v] >0 impliesdqg: Y, Qlp.q]>0.
r

Proof: Assume 3 u,v: Q[u,v] >0, now let ¢ be the process with 3p: Q[p.q] >0 and
minimal f,. We will prove Vp:Q[p,q]120, which together with the premise implies
2 Qlp.q1>0.

P

By choice of ¢, we have that for all p either ¢, <, or (Vs: Q[s,p1<0 A <) 1, 54,

-9.

implies Q[p,q] 2 0 by lemma 2.4.

Vs: Qls,p]1 <0 implies f, = nil or S[f,,p1>0 A i, < bfp <t, by lemma 2.3. Assume
(1) the latter, let r be the process with JIs5: S[r,s] >0 and minimal b,. Note that
t, <b < bfp <t, s0 b, <b,, and t, <t,. Since f, # nil, we have by 2.3 that Q[f,,r] >0
or S[f,,r1>0 At <bs <b,. The former contradicts with the choice of ¢, the latter with
the choice of . Thus (f) leads to a contradiction, f, = nil follows and hence (lemma 2.2.i)
S[p.q]= 0 and (by lemma 2.1) Q[p,q]120. O

We will now transform the skeleton in this section to the skeleton in section 1.2. First, remove
all assignments to the auxiliary variables f and O. Further, by theorem 2.6 we can weaken

the condition in the D-action to Vq: Y Q[p,q] < 0. But then we can replace each column of
2

Q by its sum, i.e., replace the matrix by a one-dimensional array, where Q[q] represents

2. 0lp.q]). In each process we can replace the variables S and R by one local array L, such
p

that L, [¢] represents the update p will make to Q[q], i.e.,
L,[p1=Slp.p1- L RIq,p]
q

L,[qg1= Slp.q] ifp 2q.
Now the actions of our skeleton transform to

B,: { A message M arrives atp }
begin receive (M) ; L,[p] = L,[pl-1;
compute ;
forall x e X do
begin send (M, x); L,[x]:= L,[x]+1end
end

T,: { Process p holds the token Q }
begin O = Q +L, ;
Lp =0
end

D,: { Process p holds the token Q }
begin if 0 < O then detect end

In this section we only considered messages that are sent from one process to another. To
handle the initialization messages of the system, we can conceptually treat the environment as a
process E. Thus, initially, for the matrix token, Q[p.q]1= 0 for all p # E, and Q[E,q]

-10 -

equals the number of messages, created by the environment with destination ¢. For the array
token this means that initially Q [¢] equals the number of messages, created by the environ-
ment with destination q. Because no messages are ever sent to the environment, we have
L,[E]= 0 for all p and Q[E] = 0 always. Thus these entries do not have to be imple-
mented.

3 Applications

In this section we will give some complete algorithms for termination detection, based upon
the skeleton of section 1.2. The partial correctness of this skeleton was proved in section 2.
We will prove the total correctness of the algorithms also. We use the following theorem:

Theorem 3.1: TERM A (Vp: L, = 0) implies Q = 0.

Proof: We refer here to the notations of lemma 2.1. TERM means that for all ¢,
Y Nip.ql=0, and Vp: L, = G means that for all ¢, 3 S[p,q] + X R[p,q]= 0. It fol-
p p p

lows that for all ¢, Y, Q[p,q1=0. O
P

Furthermore, suppose TERM holds and p updates the token. After the update L, is set to (i
and, since all basic actions are disabled, L, will remain G forever. Thus, we only need to
make sure that after TERM has become true, every p with L, # G will do a token update, and
subsequently a D,, action will be done.

3.1 A Ring of Processes

Assume the processes know a logical ring in the network. That is, each processor knows of a
neighbor process Sy, the successor of p, such that a path, starting at some process / and step-
ping from each process to its successor, passes through every process and retums to /. If the
token circulates around this ring, it will visit every process in 1P| steps. Thus, if every pro-
cess updates the token, after at most |/P| steps after TERM has become true we have Q = [i
This leads to the following termination detection algorithm:

-11 -

when p receives the token Q do
begin Q = Q+L,; L, =0;
ifQ < T then detect
else send (Q,S,)
end

It is allowed in the skeleton that some processes are visited by the token more often than oth-
ers. Therefore this algorithm is easily generalized for use in any network in combination with
a (serial) traversal scheme for this network. If the token traverses the network in K steps, ter-
mination will always be detected at most K steps after its occurrence. A collection of serial
traversal algorithms for several classes of networks can be found in [KKM87].

3.2 Complete Networks

In the algorithm in the previous section the route of the token is fixed. It is possible to adapt
the route of the token dynamically to the execution of the basic algorithm. The idea is to send

the token to a process ¢ such that Q[g] > 0. (If no such process exists, termination is con-
cluded.)

when p receives the token @ do
begin Q = Q +L, ; L, :=6;
ifQ < O then detect
else begin take g s.t. Q[q]>0;

send (Q,q)
end
end

Lemma 3.2: For ¢ # p, L,[q] = 0 holds invariantly.

Proof: Forq #p,L,[q]l= S[p,q], use lemma 2.1. O

Lemma 3.3: TERM implies Q[q1+L,[q] < 0.

Proof: TERM implies Q[g]+3 L,[q] = 0, with 3.2 Qlql+L,[q] < O follows. O
P

Theorem 3.4: In the algorithm above, after TERM has become true, the token is sent only to a

process ¢ if L, # [i
Proof: From Q[g] > 0 and lemma 3.3 follows L,[q1<0. O

Thus, after TERM has become true, processes can be visited at most once, and exactly those

-12 -

processes are visited whose L was non-zero at the time TERM became true. Note that we can
view the network as ‘‘logically complete’” if a routing mechanism allows any process p to sent
messages to any other process ¢, even if no direct link pg exists. An interesting property of
this algorithm is, that only those processes take part in it, that took part in the basic algorithm
also. The algorithm of Mattern [Ma87] does not have this property. As far as we know the
Dijkstra and Scholten algorithm [DS80] is the only published algorithm so far that has this pro-
perty. It makes the algorithm particularly efficient for ‘‘small’’ computations on *‘large’’ net-
works, i.e., computations that use only a few processes of the network. For these applications
Q can be coded in such a way that only its non-zero elements are transmitted. Extension to
dynamic networks now becomes trivial.

3.3 An Optimization

To prove total correctness, it suffices to show that the algorithm behaves well after TERM has
become true. From the viewpoint of efficiency however, it is desirable to minimize operations
of the token before TERM has become true. We add statements of the form wait until
Qlg1+L,;[q]1 <0 to the text of the termination detection algorithm. From lemma 3.3 we
know that this change in the algorithm does not affect the operation of the algorithm when
TERM holds. Thus, the termination detection algorithm can be suspended only when there is
no termination. During the wait, basic actions can be performed. When TERM becomes true
operation of the termination detection will resume. This argument applies irrespective of
where in the code the statement is added. It is most efficient to do it before the token update.
For example the program in section 3.2 becomes

when p receives the token Q do

begin wait until Q[p]+Lp[p] <0;

Q =0+L, ; L, :=f)';

ifQ < T then detect

else begin take g s.t. Q[q]1>0;
send (Q,q)
end

end

-13 -

4 Conclusions
4.1 Comparison with related work on assertional verification

We gave a protocol skeleton (for termination detection) and a proof of its total correctness.
The protocol skeleton consists of a set of atomic actions. A rather similar approach to pro-

grams and their verification was recently proposed by Shankar and Lam [SL87] and Chandy
and Misra [CMS88].

The three methods differ in the way atomic actions are expressed. In the work of Shan-
kar and Lam an atomic action (event) is not expressed algorithmically, but in terms of its
input-output-predicate. This is a boolean formula in the variables before and after the
occurrence of the event, which is supposed to be satisfied whenever the event occurs. In the
work of Chandy and Misra an action is always a multiple conditional assignment. We chose
to express actions algorithmically to make the gap between the skeleton and its actual imple-
mentation as small as possible. This choice also allows for an easier and more natural way of
modeling real-time and channel errors, see [Te87]. We feel, however, that this difference is
not fundamental: the same theory, inference rules, etc., applies in all cases.

A fundamental difference lies in the attitude towards partial versus total correctness.
Both [SL87] and [CM88] identify the set of actions with the final program. This set must
satisfy total correctness criteria under some reasonable faimness assumption. We take a radi-
cally different point of view here. In our view the set of atomic actions is no more than a
skeleton on which a complete program can be based. Only this complete program should
satisfy total correctness. The advantage of this approach over the others is threefold:

(1) Our design technique separates concems about partial correctness from concerns about
total correctness. Partial correctness is proven for one object (viz., the skeleton), and
total correctness for another object (viz., the complete program). It should of course be
noted that the relation between the two objects is such that essential properties of the first
are shared by the second. In both other approaches it is necessary to find one object,
satisfying both requirements. This is often a difficult task.

(2) Based upon one skeleton, several complete programs can be constructed, with varying
properties. This is illustrated, for example, in this paper, [SvL85], and [Sc87]. Thus, the
proof of partial correctness is "shared" by different programs.

(3) A skeleton can be designed with a lot of internal non-determinism or with parameters in
it. The execution of the skeleton is always non-deterministic, because any scheduling of
atomic actions is admissible. In a later design stage this non-determinism can be
resolved, certain sequences of actions can be prescribed, and parameters can be specified.
Thus, the algorithm can be tuned to high efficiency or to satisfy some desirable extra pro-
perties. See section 3 and for example [SvL85] and [Te87].

-14 -

4.2 Comparison with Work on Termination Detection

This research was started as an attempt to verify the vector-counter termination detection algo-
rithm of Mattern [Ma87] by means of invariants. It was felt that the (partial) correctness of the
algorithm relied in no way on the circular arrangement of the processes, or on the fact that
every process should be visited by the token at least once. Note that our correctness argument
is independent of the circular arrangements of processes, and that in our algorithm it is not
necessary that every process is visited at least once.

It is interesting to compare our work with the algorithm of Plouzeau [P187]. This algo-
rithm is matrix based and sent and received messages are counted separately, as in section 2.
Also in the ‘‘token’’ they are counted separately, so that the test Q <0 is replaced by
Total S < Total R. A more interesting difference is, that the ‘‘token’’ does not move, but the
value of the local counters is transmitted repeatedly to the place where it resides. Updates of
one process are guaranteed to be received in correct order.

The algorithm of Hélary et al. [He87] uses a similar approach. Here, however, the local
counters are not reset after sending an update. New values, received by the token, overwrite
old values rather than being added to it. Thus the algorithm is easily adapted to be resilient
against loss, duplication, or resequencing of messages. The algorithm can detect deadlock also.
Two things are important to note.

(1) The algorithms differ in the way information is collected, but in all algorithms the same
information is collected and it is used in the same way. The differences result in different
robustness against process or communication failure. If we abstract away these
differences, the three algorithms are the same. With some changes our correctness proof
applies to the other algorithms as well.

(2) The use of alternative ways of information gathering to achieve fault tolerance is not lim-
ited to this particular application (termination detection). It can be used to make other
token based algorithms fault tolerant as well.

4.3 Models for the Distributed Termination Detection Problem

The problem of termination detection has been studied under several models of computation for
the basic algorithms. In this paper we used the atomic model. We now discuss the transac-
tional and the synchronous model also. The transactional model is the most general one. It is
assumed that processes can be either active or passive, that only active processes send mes-
sages, and that a state change from passive to active takes place only upon receipt of a mes-
sage. This informal description is made precise in the following three basic actions.

-15-

S,: { state, = active }
begin send (M) end
R,: { A message M arrives atp }

begin receive M) ; state, = active end

I,: begin state, := passive end

In the transactional model termination is characterized by
TERM,,,p,, = There are no messages underway and Vp: state, = passive.
When TERM,,,,, holds, all S, and R, actions are disabled and I, actions have no effect.
Hence TERM,,,, is stable.
In the synchronous model it is assumed that communication is synchronous, i.e., a send

action and the corresponding receive action are considered as onec communication action. Thus
the actions in the system above are replaced by

Coq: { state, = active }
begin state, = active end

I,: begin state, := passive end

Because the new action C,,q is a combination of actions from the transactional model (viz., S,
and R,), TERM,,,, is stable in the synchronous model also. In the synchronous model there
are never messages in transit, so TERM,,,,,, reduces to
TERM,yn, = Vp: state, = passive.
In the atomic model it is assumed that send actions and internal computation are triggered

by receive actions only. After receiving a message, a process sends zero or more messages,
and becomes passive. The three actions are replaced by

B,: { A message M arrives atp }
begin receive (M) ;
compute ;
forall x € X do send (M, x)
end

Again, because the new action is a combination of actions from the transactional model,
TERMryy, is stable in this model also. In the atomic model state, = passive always (outside

-16 -

the actions), so this variable is not implemented and TERM,,,, reduces to
TERM,,,, = There are no messages underway.

We can say that the synchronous model ignores communication, the atomic model
ignores computation. It is felt that the essential difficulties of the problem of termination detec-
tion lie in communication. Indeed, solutions for the synchronous model are simpler than solu-
tions for the transactional model, see Tel [Te86]. On the other hand, ignoring computation
does not hide essential difficulties of the problem, because the state of a process is always
locally visible. As Mattern [Ma87] argues, in most existing termination detectien algorithms
for the transactional model it is assumed that the detection algorithm is suspended in active
processes. Thus the detection algorithm treats the computation as atomic anyhow. In fact any
solution for the atomic model is easily adapted to the transactional model by suspending the
detection algorithm in active processes. In this paper we adopted the atomic model because of
its simplicity.

S References
[ARG86] Arora, RK., SP. Rana, M.N. Gupta, A distributed termination detection algo-
rithm for distributed computations, Inf. Proc. Lett. 22 (1986) 311-314.

[CM88] Chandy, K.M., J. Misra, A foundation of parallel program design, Addison Wes-
ley, 1988.

[DS80] Dijkstra, E'W., C.S. Scholten, Termination detection for diffusing computations,
Inf. Proc. Lett. 4 (1980) 1-4.

[He87] Hélary, J.-M., C. Jard, N. Plouzeau, M. Raynal, Detection of stable properties
in distributed systems, Proceedings 6th PoDC, Vancouver, Canada, 1987.

[HZ87] Hazari, C., H. Zedan, A distributed algorithm for termination detection, Inf. Proc.
Lett. 24 (1987) 293-297.

[KKM87] Korach, E., S. Kutten, S. Moran, A modular technique for the design of efficient
distributed leader finding algorithms, Technical Report, Department of Computer
Science, The Technion, Haifa, Israel, 1987.

[Ma87] Mattem, F., Algorithms for distributed termination detection, Distributed Comput-
ing 2 (1987) 161-175.

[P187] Plouzeau, N., Détection de la terminaison: un algorithme fondé sur une approche
observationelle, Rapport No 610, INRIA, Rocquencourt, France, 1987.

[Sc87] Schoone, A.A., Verification of connection management protocols, Techn. Rep.

