Polynomial algorithms for Chromatic Index
and Graph Isomorphism on partial k-trees

Hans L. Bodla_.ender

RUU-CS-87-17
October 1987

Polynomial algorithms for Chromatic Index
and Graph Isomorphism on partial k-trees*

Hans L. Bodlaender
Dept. of Computer Science, University of Utrecht
P.O. Box 80.012, 3508 TA Utrecht, the Netherlands

Abstract

In this paper we show that the CHROMATIC INDEX and the GRAPH ISOMORPHISM
problems are solvable in polynomial time when restricted to the class of graphs with
treewidth < k (k a constant) (or equivalently, the class of partial k-trees).

Keywords: Chromatic Index, Graph Isomorphism, graphs with small treewidth,
partial k-trees, NP-complete problems, polynomial time algorithms.

1 Introduction

In {2,6,14] it has been shown that polynomial time algorithms and even linear time al-
gorithms exist for a large number of NP-complete problems when these problems are
restricted to the class of partial k-trees, for constant k. Presently, no polynomial time al-
gorithms were known for CHROMATIC INDEX and GRAPH ISOMORPHISM when restricted
to the partial k-trees (k constant). In this paper we show that such polynomial time
algorithms exist. This solves two open problems from [10].

The CHROMATIC INDEX problem asks whether for a given graph G = (V,E) and a
given integer K, one can color the edges of G with at most K colors, such that for each
vertex v all adjacent edges have a different color. The CHROMATIC INDEX problem is NP-
complete, even for cubic graphs [8]. In [6] and [14] it has been shown that the CHROMATIC
INDEX problem can be solved in polynomial and even linear time for partial k trees with
maximum vertex degree d, (k, d constants). In this paper, we do not restrict the degree
of the graphs. However, our algorithm has complexity (’)(nl‘*'zz(k“)), which indicates that
the algorithm is impractical, even for k as small as 2. Hence, it remains an open problem
to find algorithms for CHROMATIC INDEX on partial k-trees with a better running time,

The GRAPH ISOMORPHISM problem is a well-studied problem that is not known to be
solvable in polynomial time, but is also not known to be N P-complete. In [10], Johnson
conjectures that GRAPH ISOMORPHISM is solvable in polynomial time for partial k-trees.
In this paper we show that this is indeed the case. Previously, only a polynomial algorithm
was known for the case that k = 2. (This result follows from the fact that every partial
2-tree is planar. Hence we can use a GRAPH ISOMORPHISM algorithm for planar graphs.)

*This research was done while the author was visiting the Laboratory for Computer Science of the Mas-

sachusetts Institute of Technology, with a grant from the Netherlands Organization for the Advancement
of Pure Research Z.W.O.

There are various ways to characterize the class of partial k-trees. Robertson and
Seymour [12] introduced the notion of treewidth. It follows easily that each graph with
treewidth < k is a partial k-tree and vice versa. In [1] an overview of several different
characterizations is given. In this paper we use two different characterizations: in section
3 we use the representation as graphs with treewidth < k, and in section 4 we use the
representation as partial k-trees. This facilitates the presentation of the results.

The first step of both algorithms is to find a representation as partial k-tree (or tree-
decomposition). This can be done in polynomial time for fixed k. An O(n*+2?) algorithm
was designed by Arnborg, Corneil and Proskurowski [2]. Faster algorithms exist for k < 3
[3]. Recent results of Robertson and Seymour indicate the existence of asymptotically
faster algorithms (O(n?) or O(n3) but with a very large constant factor). For a discussion
of the latter results, see e.g. [11].

The class of partial k-trees has several important subclasses. Each of the following
classes of graphs has associated with it some constant k', such that each graph in the class
is a partial k'-tree: the series-parallel graphs, the outerplanar graphs, the k-outerplanar
graphs, graphs with bandwidth < k, graphs with cutwidth < k, Halin-graphs, chordal
graphs with maximum cliquesize k. An overview of results of this type can be found in [5].
Hence, it follows from the results in this paper that the CEROMATIC INDEX and GRAPH

IsoMORPHISM problems are solvable in polynomial time for each of these classes of graphs
too.

2 Definitions
In this section we give a number of basic definitions.

DEFINITION 2.1 The chromatic index of a graph G = (V, E) is the smallest integer K,

such that there exist a function col : E — {1,...,K }, such that for each pair of edges
e1,e2 € E, that have an endpoint in common, col(e;) # col(ey).

It is a well-known fact that the chromatic index of a graph either equals its maximum

vertex degree or its maximum vertex degree +1 (Vizing’s theorem). We will not use this
fact in this paper.

DEFINITION 2.2 Let G = (V, E) be a graph. A tree-decomposition of G isapair ({X;|i €
I}, T = (I, F)), with {X; | i € I} a family of subsets of V, and T a tree, with the following
properties:

e JUXxi=vV

el
o For every edge e = (v,w) € E, there is a subset X;, i € I, with v € X; and w € X;.
e Foralli, j, k € I, if j lies on the path in T from i to k, then X; N Xk C X;.

The tree-width of a tree-decomposition ({X; | i € I}, T) is n;lea.IJcIX.-I — 1. The tree-width

of G, denoted by tree-width(G) is the minimum tree-width of a tree-decomposition of G,
taken over all possible tree-decomposition of G.

DEFINITION 2.3 The class of the k-trees is defined recursively as follows.

1. A complete graph with k vertices is a k-tree.

2. If G=(V,E) is a k-tree, and w ¢ V, and vy,..., v} form a complete subgraph of G
with k vertices, then H=(V U {v},E U {(v;,v) | 1 <1 < k}) is a k-tree.

3. All k-trees can be formed with rules 1 and 2.

DEFINITION 2.4 A graph is a partial k-tree, if and only if it is the subgraph of a k-tree.

It can be shown that every graph with treewidth < k is a partial k-tree, and conversely,
that every partial k-tree has treewidth < k. We leave this as an easy exercise to the reader.
(For other equivalent characterizations, see e.g. [1].)

For different problems, different representations may be easier to use. We will use in
section 3 the tree-representations, and in section 4 the representation as partial k-trees.

3 Chromatic Index

In this section we show that for each k > 1 there exists a polynomial time algorithm to
determine the chromatic index of a given graph G = (V, E) with treewidth < k.

The first step of the algorithm is to find a tree-decomposition of G with treewidth
< k. Then an arbitrary node r € I is chosen, and T is considered as a rooted tree with
root r. We will use notions as: children, descendants, leaves, internal nodes, in their usual
meaning.

By using transformations of the tree as illustrated in figure 1 one can obtain a tree-

decomposition of G, with the same treewidth as the old tree-decomposition, that has the
following characteristics:

1. |I| = 0(%)

2. Each internal node i has exactly 2 children, say j and k. Furthermore, X; = X; or
X = Xi.

3. For each edge e = (v, w) € E, there is at least one leaf-node i € I, with v € X; and
w € X;.

Further, note that the total transformation can be done in polynomial time (and even
linear time). In the remainder of this section we suppose that we have a tree-decomposition
of G with T rooted at r of the form as described above.

We continue with a large number of definitions.

DEFINITION 3.1 For each edge e we chose arbitrarily one of the leaf-nodes i, such that X;
contains both endpoints of e. For each e this chosen node i is denoted as rep(e). For all

t€llet E;={e € E | rep(e) = i}.

Note that for internal nodes i € I one has E; = §.

DEFINITION 3.2 The set of colors, that can be used to color the edges is denoted by C =
{1,---,K }.

DEFINITION 3.3 The subtree of T, formed by i and all its descendants is denoted by T'(7).
We denote E(T(i)) = Ujery;) Ej-

Figure 1: Transformation of T

Note that if E(T(i)) n E(T(j)) # 0, then either i is a descendant of j or j is a
descendant of ¢, or i = j.

DEFINITION 3.4 1. A mapping f : E(T(i)) — C is called a partial coloring of G, rooted
at 1.

2. A mapping f : E — C is called a total coloring.

3. A (partial or total) coloring F — C (F C E) is correct iff for all verticesv € V no
two adjacent edges are colored with the same color.

4. A partial coloring is called feasible, iff it can be extended to a correct total coloring.

DEFINITION 3.5 Let f : E(T(i)) — C be a partial coloring rooted at i. The active set of
f is the pair (i, a : X; —» P(C)), with for all v € X;, a(v) denoting the set of colors of
edges in E(T(i)), adjacent to v. We denote the active set of f by act(f).

We will be a little imprecise, and denote the active set of f, act(f) = (4,a) only by a,
if the root of f, i is known. We also say that i is the root of a.

Lemma 8.1 Let f, g be correct partial colorings, with the same active set, and rooted at
the same node i € I. Then f is feasible, if and only if g is feasible.

Proof. Consider an extension f of f, that is correct. Now one can extend g in the
same way to a correct total coloring: use the coloring g with g(e) = g(e), if e € E(T(3)),
and g(e) = f(e), if € ¢ E(T(i)). One easily checks that g also is correct. The reverse
implication can be obtained with the same argument, with switched roles of f and g.
Q.E.D.

(The same technique was used by Saxe [13] for recognition of graphs with small band-
width.)

DEFINITION 3.6 1. An active set is good, if it is the active set of a correct partial
coloring.

2. An active set is feasible, if it is the active set of feasible partial coloring.

We now remark that a polynomial algorithm for the case that |C} is bounded by a
constant, i.e. for graphs with constant degree, can be obtained by recursively computing
all good active sets (see e.g. [6]). However, if the degree of the graphs can be arbitrary large
(and hence |C| can be arbitrary large), then the number of active sets can be exponentially
in n. In order to overcome this problem, we introduce an extra equivalence relation.

DEFINITION 3.7 Two active sets (i,a), (4,b) (rooted at the same node i) are isomorphic
(denoted by (i,a) = (i,b), or, in short, a = b) if and only if 3 an isomorphism v : C — C,
such thatV c € C,v € X; : c € a(v) & 9(c) € b(v).

In other words, a = b, if b can be obtained from a by “renaming” all colors.
Lemma 8.2 Ifa = b, then a is good, iff b is good; and a is feasible, iff b is feasible.

Proof. Suppose a = b; a, b are both rooted at i. Suppose a is good. Let f be a partial

mapping with active set a. Then g, defined by g(e) = ¥(f(e)) is a good partial mapping
with active set b. The other cases are similar. Q.E.D.

DEFINITION 3.8 Let (i,a) be an active set. For all ¢ € C, we denote S(c,a) = {v €
Xi | ¢ € a(v)}, i.e., S(c,a) is the set of vertices in X;, adjacent to color ¢ in a partial
coloring corresponding to (i, a).

We can characterize the equivalence classes of good active sets by the following lemma.

Lemma 8.8 Let (i,a) and (i,b) be active sets. a = b, if and only ifV S C X; : |{c €
ClS=S5(c,a)}l={ceC|S=85(b)}

Proof. = Suppose a = b. Let 7 be the isomorphism C — C, with Ve € C,v €
Xi :c € a(v) & ¥(c) € b(v). Let S C X;. Now {c € C | § = S(c,a)}| = |{c €
CIVvEX,-:cEa(v)ﬁ'veS)}l:|{cECIVveX,-:zb(c)Ga(v)@veS)}I:
|{cEC|Vv€X,-:c€b(v)@vES)}| =|{ce C | S = S(c,b)}|
<+ Suppose that V S C Xi: |[{c € C | § = §(c,a)}| = H{c € C | § = S(c,b)}|. Hence,
there exists an isomorphism v : C — C, with Ve € C : S(c,a) = S(¥(c),b). Now, for all
c€C,ve X;:c€a(v) & veE S(c,a)= S(P(c),b) & Y(c) € b(v). Hencea = b. Q.E.D.

It follows that one can characterize equivalence-classes of active sets rooted at i, by
mappings nb : P(X;) — {0,1,...,|C|}.

DEFINITION 3.9 Let (i,a) be an active set. The active count of (i,a) is the pair (i,nb, :
P(Xi) = {0,1,---,[C]}), with ¥V S C X; : nba(S) = {c € C | § = S(c,a)}|.

Lemma 3.4 Let (i,a), (5,b) be active sets rooted at i. Then:
1.)" nbo(S) =|C).

SCX;

2. a=b& nby = nby.

We say that the active count (¢,nb) is rooted at i. Note that for each i € I, the total
number of active counts rooted at i, is bounded by (|C| + 1)2***.

DEFINITION 3.10 An active count (i,nb) is good, if there ezists a good active set (i,a),
with nb = nb,.

If (¢,nb) is the active count of the active set of a partial coloring f, we also say that
(#,nd) is the active count of f. In order to be able to compute all active counts rooted at
internal nodes ¢, we introduce the notion of active pair-counts.

DEFINITION 3.11 Let i be an internal node with children j, k and suppose X; = X. The
active pair-count of @ partial coloring f : E(T(i)) — C is the pair (i, pey : P(Xy)*P(X;) —
{0,1,-+,|C|}), with ¥ S C X;, T C X;: pes(S,T) = {c € C | S = S(c,act(fHAT =
S(c,act(f")}|, where f' is obtained by restricting f to E(T(k)) and f" is obtained by
restricting f to E(T(j)).

In other words pc; maps each pair (S, T) to the number of colors ¢, with V v € X; :
(3e € E(T(k)), adjacent to v, with f(e) =¢c) & ve€ Sand Vv € X; : (3e € E(T(j)),
adjacent to v, with f(e) = ¢) ¢ v € T. Note that conversely we have for each color ¢ € C
a unique pair (5, T) such that § = S(c,act(f’)) and T = S(c, act(f")), f', f" as above.

DEFINITION 3.12 An active pair-count (i,pe) is good, iff there exists a correct partial
coloring f : E(T(4)) — C, with pcs = pe.

Lemma 3.5 Leti, j, k be as above. For each active pair-count (i, pcy) of a partial coloring

f, rooted at i:
> Y pes(S,T)=|Cl.
SCX; TCX;

It follows that the number of active pair-counts rooted at i, is bounded by O(|C|22(k+1)).

We now will show how to compute all good active counts and good active pair-counts.
After these have been computed, it is easy to decide on the chromatic index of G. First
we consider leaf-nodes i € I. We use the following lemmas:

Lemma 3.8 Leti € I be a leaf. Let C' C C, with |C'| > |E;|. For every partial coloring
f : E(T(3)) = C, with active set (i,a), there exists a partial coloring g: E(T()) — C,
with active set (i,b), such that a = b and V e € E; : g(e) € C'.

Proof. For every f, there exists a coloring g rooted at i, with for all e € E;:g(e) e C,
such that there exists an isomorphism ¢ : C — C, with g(e) = ¥»(f(e)). Let (4,b) be the
active set of g. It follows that « = b. Q.E.D.

Corollary 8.7 Leti € I be a leaf. The set of all good active counts rooted at i can be
computed in O(1) time.

Proof. Lemma 3.6 shows that we can use the following procedure: Fix a set of
min(|C|,|Ei|) < $k(k + 1) colors C! C C. Enumerate all partial colorings E; — C'.
Remove all partial colorings that are not correct. For each remaining partial coloring,
compute the corresponding active count. Some active counts may appear more than once.
Remove all second and later occurrences of the same active count. The remaining table
consists of all good active counts rooted at i.

As there are at most | E;|°'l = O(1) different partial colorings E; — C¥, it follows that
the described procedure takes O(1) time. Q.E.D.

Next we show how to compute all good active pair-counts rooted at some internal node
i, given tables consisting of all good active counts rooted at the children of i.

Lemma 3.8 Let i be an internal node. Let Js k be the children of i, and suppose X; = X.
Let (i, pc) be an active pair-count rooted at i. Then (3, pc) is good, if and only if there exist
an active count (j,nb1), and an active count (k, nby), such that

. (4,nb1) is good.

. (k,nbs) is good.

. for all S C X;: nby(S) = Yrcx, pe(S, T).

. Jor all T C X;: nby(T) = Yscx; pe(S,T).

VSCX, TCX;:ifS N T#0, then pe(S,T) = 0.

R N -

Proof. = Suppose (i, pc) is a good active count, rooted at ¢, and let f be a corre-
sponding correct partial coloring E(T(i)) — C. Let (4, nb1), (k,nbz) be the active counts,
defined by:

forall S C X;: nby(S)= Y pe(S,T),
TCX;

for all T C X;: nby(T) = Z pe(S, T).
SCX;

It easily follows that (j,nb) is the active count of f, restricted to E(T(k)), and (k,nb,) is
the active count of g, restricted to E(T(5)), hence (§,nby) and (k,nby) are good. Further,
suppose that there are § C X;, T C Xj, with § N T #0, and pe(S,T) # 0. It follows
that there are pe(S, T) (hence at least 1) different colors ¢, that are adjacent to all vertices
in § N T with an edge in E(T(k)) and another edge in E(T(j)). This contradicts the
fact that (¢, pe) is good.

<= Suppose we have an active pair-count (4, pc), and active counts (7, nby), (k,nbz), such
that conditions (1)-(5) hold. Assign to each pair (5,T), (S € Xi, T C X;) pe(S,T)
different colors, such that each color is assigned to exactly one pair (5, T). Denote the set
of colors, assigned to (S, T) by ¢(S, T). Let c1(S) = Urcx,; ¢(S, T), c2(T) = Uscx; ¢(S,T).

Now note that there exists a partial coloring f : E(T(k) — C, that is correct, has
associated active count (j,nb;), and for all ¢ € C, v € X; : there is an edge in E(T(k)),
adjacent to v, that is colored with ¢, if and only if 35 C X;:vE S Ace c1(S). (Use that
for all § C X;: |ey(S)] = nby(S). Find a partial coloring f’, corresponding to nb;, and
then use an isomorphism on C.)

Similar, one can find a partial coloring g : E(T(k) — C, that is correct, has associated
active count (k,nbz), and for all ¢ € C, v € Xj : there is an edge in E(T(5)), adjacent to
v, that is colored with ¢, if and only if 37 C X;:v€ T Ace€ c2(D).

Now, consider the partial coloring k : E(T(i)) — C, defined by h(e) = f(e), if e €
E(T(k)), and h(e) = g(e), if e € E(T(j)). (Note that E(T(k)) U E(T(j)) = E(T(?))
and E(T(k)) n E(T(j)) = 8.) Now for each pair (5,T) € P(X;) * P(X;), and each
color ¢ € C: (Vv € X; : (3e € E(T(k)), adjacent to v, with f(e) = c) & v € S,
and Vv € X; : (3e € E(T(j)), adjacent to v, with f(e) = ¢) & v € T), if and only
if (¢ € e1(S) N co(T) = ¢(S,T)). It follows that the active pair-count, associated to
h, is (i, pc). We will now show that h is correct. Suppose & is not correct. Then Je €
E(T(k)),¢' € E(T(5)): h(e) = h(e'), and Fv € X; is adjacent to e and ¢’. Then the color
h(e) is associated with a pair (S, T), withv € S N T. Hence S N T # @ and pe(S,T) > 0.
Contradiction. It follows that & is correct, hence (¢,pc) is good. Q.E.D.

Corollary 8.9 Let i be an internal node with children j and k and suppose that X; = Xj.
Suppose tables, consisting of all good active counts rooted at J and rooted at k are given.
Then one can compute all good active pair-counts rooted at i in time o(lc|F*),

Proof. One can check for each function pe : P(X;) + P(X;) — {0,1,- -+,|C|} with
22SCX: 2TC x, pe(S, T) = |C|, whether (i, pc) is a good active pair-count, by first directly
checking condition 5 of lemma 3.8, then computing nb; and nb, as indicated by conditions
3 and 4, and then looking up in the tables whether (j,nb;) and (k,nbs) are good. This
costs O(1) time per active pair-count, so in total O(|C|22(k+1)). Q.E.D.

Next we show how to compute all good active counts rooted at an internal node 1,
given a table, consisting of all good active pair-counts rooted at i.

Lemma 3.10 Let i € I be an internal node. An active count (4, nbd) is good, if and only if
there ezists a good active pair-count (i, pc), such that for all S C X;, nb(S) = 3 pe(S', T,
where the sum is taken over all pairs (8',T"), with S’ C X;, T' C X;, §"uT=S5,
S'n T =0.

Proof. Let f be a correct partial coloring E(T(i)) — C. Note that a color ¢ is
adjacent to all vertices in § C X;, and to no vertex in X; — S, if and only if there are
subsets §' C X;, T C X;, with §' U T’ = S, such that ¢ is adjacent to all vertices in S’
with an edge in E(T(k)) (and to no other vertex in X; — S’ with an edge in E(T(k)),) and
to all vertices in 7" with an edge in E(T(5)) (and to no other vertex in X; — 7" with an
edge in E(7(j)).) Because f is correct, we have also that §' n T’ = §.

Let (i,nb) be the active count, corresponding to f (i.e. n»b = nby), and (i,pc) the
active pair-count, corresponding to f (i.e. pec = pcy). It follows that for all § C X;,
nb(S) = 3 pe(S’,T’), the sum taken over all pairs (8,T), with §' C X;, T' C X;,
$'"U T =8,58 N T = 0. Hence the result follows. Q.E.D.

Corollary 3.11 Let i be an internal node. Suppose a table, consisting of all good active

pair-counts rooted at i, is given. Then one can compute a table, consisting of all good
active counts rooted at i, in time O(|C |22(k+1))

Proof. Use the following procedure: For each good active pair-count, compute the
corresponding active count, as indicated by lemma 3.10. If an active count appears more

than once, remove all multiple copies from the table. Clearly this procedure uses at most
o(IC|?***V) time. Q.E.D.

Finally, we note that one easily determines the answer to the CHROMATIC INDEX
problem, given a table of all good active counts, rooted at root r.

Lemma 8.12 There ezists a correct total coloring, if and only if there exists a good active
count rooted at r.

Proof. If there exists a good active count rooted at r, then there exists a good active
set rooted at r, hence there exists a correct partial coloring f : E(T(r)) — C. But f is
also a total coloring, because E(T(r)) = E. Q.E.D.

Theorem 8.18 For each k > 1, there exists an algorithm that solves the CHROMATIC
INDEX problem in O(n1+22**)) time.

Proof. We can use the following algorithm: first find the desired tree-decomposition
of G, and then recursively calculate all good active counts and good active pair-counts,
as indicated in corollary 3.7, 3.9 and 3.11. Finally check in O(1) time, whether the

table, consisting of all good active counts, rooted at r is not empty. This algorithm uses
2(k 1g 8 2(k+1
o(I| - |C|F**Y) = O(n1+22**Y) time. Q.E.D.

4 Graph Isomorphism

In this section we show that for each k¥ > 1, there exists a polynomial algorithm that
decides whether two partial k-trees are isomorphic or not.

We let G = (Vg, Eg) and H = (Vy, Exr) be partial k-trees, with Va| = |Vh| = n, for
which it must be determined whether G and H are isomorphic.

Consider the collection of k-element vertex sets which are separators of G. We number
these k-vertex separators and denote them C1,Cy,.... For each C;, consider the set of
connected components of the graph, obtained by removing C; form G. We denote the sets
of vertices in these connected components by C},C?,..

Similarly, we number the k-element vertex separators of H, and denote them by

Dy, D,,.... The sets of vertices in the connected components of the graph obtained by
removing D; from H, are denoted by D}, D?,....

For graphs G’ = (V, E), and W C V, we denote the subgraph of G', induced by W by
G'[W].

[Tllle subgraph of G, induced by all vertices in C; and C,j , together with a complete set
of vertices in Cj, is denoted by G(C;, C,j), or in short G(4,5). (Le. (v,w) is an edge in
G(i,5), if and only if v,w € C; U C{ and ((v,w)€ E orv,w € Ci).)

Similarly, H(D;, D{), or in short H(i, j), denotes the subgraph of H, induced by all
vertices in D; U D{ , together with a complete set of vertices in D;.

The algorithm to recognize partial k-trees of [2] relies heavily on two lemmas. We use
the first of these lemmas, and a small modification of the second one.

Lemma 4.1 (Arnborg et. al. [2]) Suppose n > k+2. G is a partial k-tree, if and only
if there ezists a k-vertez separator C,, such that all subgraphs G(r, j) are partial k-trees.

Lemma 4.2 A graph G(i,j) with at least k + 2 vertices is a partial k-tree, if and only
if there ezists a vertez v € C! , such that for each connected component A of the graph,
obtained by removing v from CJ, there is a k-vertez separator C,,, C C; U {v}, such that

1. No vertez in A is adjacent to the (unique) vertez in C; U {v} — C,,.
2. G(Cm, A) is a partial k-tree.

The proof is similar to the proof in [2]. Also one can show, that each component A,
appearing in the lemma can be written as C!,, (with the corresponding value of m).

DEFINITION 4.1 Let f be a bijection C; — Dy. We say that the pair (C;,Cf) is f-
isomorphic to (D;:,Df,'), denoted by (C;,C}) =/ (D,-:,D;-’,'), if and only if there exists
a function ¢ : C; U C,j — Dy U Df;l, such that

1. Vv eC;:¢p(w) = f(v).
2.Vo,weC; U C!:(v,w)€ Eg & (¥(v), ¥(w)) € Eg.

The first step in our algorithm is to run the recognition algorithm of Arnborg, Corneil
and Proskurowski [2] on G, with some extra bookkeeping. In this way one can not only
determine that G is a partial k-tree, but one can also obtain the information, indicated in
lemma 4.1 and lemma 4.2. In other words, we obtain

1. A k-vertex separator C,, such that all subgraphs G(r,) are partial k-trees.

2. For all G(4, j), arising in this collection of information, one has a vertex v € C,-j and
we write each component A of G[C] — {v}] as some C},, with

(a) No vertex in A = C!, is adjacent to the (unique) vertex in C; U {v} - Cp.

(b) G(m,1) is a partial k-tree, and either G(m,I) has < k + 1 vertices, or we have,
recursively, similar information for G(m,).

This collection of information will be called a “representation of G as partial k-tree”.
From now on we will consider only G(3, 5), and C], appearing in the representation of
G as partial k-tree. Note that there are O(n) such G(i, 7)’s and C{’s.

The next step of the algorithm is to find all D; and D}, as defined before. This can be
done in O(n*+1) time.

The following two lemma’s give the essential steps of our algorithm.

Lemma 4.3 Suppose G has a k-vertezr separator C,, such that all graphs G(r,j) are
partial k-trees. Suppose the number of C is m.

Then G is isomorphic to H, if and only if H has a k-vertex separator D,, such that
there ezists a bijection f : C, — D,, such that

1. Vv,w € G, : (v,w) € Eg 4 (f(v), f(w)) € En.

10

2. Let D}, D2 ..., D™ be the connected components of the graph, obtained by removing
D, from H, i.e. of H[Vyg — D,]. Then m = m/, and there exists a bijection ¢ :
{1,...,m} = {1,...,m"}, such that for all 1, 1 <1< m, (C,,Ct) =f (D,, D).

Proof. (<) Suppose G is isomorphic to H. Let ¢ be an isomorphism of G to H. Let
D, = ¢(C,). It follows that D, is a k-vertex separator of H. Let f be 9, restricted to C,.

f is a bijection C, — D,. Each C{ is mapped to a unique D! by 1, say D). Now ¢ is
a bijection {1,...,m} — {1,...,m}, and forall /,1 < I < m, (C,,C!) =f (D.,Df'(')).
(=>) Define 9 : Vg — Vj as follows:

1. If v € C,, then 9(v) = f(v).

2. fv € C, for some I, 1 < I < m, then there exists a function ¢! : C, U c! -
D, U D?(I), such that

(a) Vv eC,: f(v) = ¢}(v).
(b) Vv,we C, U Cl:(v,w) € Eg & (Y!(v), ¢! (w)) € Ex.
We now claim that 4 is an isomorphism from G to H. Let v,w € Vg.
Case 1: v,w € C,. Now (v,w) € Eg & (f(v), f(w)) € Eg & (¥(v),%(w)) € Eg.
Case 2: v,w € C}. Then (v,w) € Eg & (¢!(v), ¥} (w)) € Eg & (¥(v),%(w)) € Eg.
Case8: v € Ch,w € C2,l; # l;. It follows that (v,w) ¢ Eg, and ¢(v) € Df’(h),
$(w) € DI, §(11) # ¢(1z). Hence ((v), ¥(w)) & En.

Case 4: ve C, w € C!. Now (v,w) € Eg & (¥'(v), ¥'(w)) € Ex © (f(v), ¥ (w)) € Eg
 (P(v),¥(w)) € En.

Case 5: v € C!, w € C,. Similar to case 4.

It follows that % is an isomorphism from G to H. Q.E.D.

Lemma 4.4 Let G(3, j) be a partial k-tree, and let v € Cf . Let for each connected compo-
nent A, of the graph, obtained by removing v from C! a k-verter separator Cm, CC; U {v}
be given, such that

1. No vertez in A, is adjacent to the vertez in C; U {v}-Cn,.

2. G(Cp,, Ap) is a partial k-tree.

Let the number of connected components of the graph, obtained by removing v from C,-j be

m. Let Dy be a k-vertex separator of H, and D{,' a connected component of H[Vy — D).
Let f be a bijection C; — D;.

Then (C;, C,’) =l (Dy, D{,’), if and only if the following conditions hold:
1. Vv,we€ C;:(v,w) € Eg & (f(v), f(w)) € Ey.

2. 3w e Df;', such that the number of connected components of the graph, obtained by

removing w from Df;' is m, and for each of these components By, we can find a
k-vertez separator D,,, C Dy U {w}, such that

11

(a) no vertex in B, is adjacent to the vertez in D} U {w} — Dy, .

(b) there ezists a bijection ¢ : {1,...,m} — {1,...,m}, such that for all 1,1 <1 <
m: (Cyy A1) =/ (Dm¢(1)’B¢(l))’ with f'(z) = f(z), for z € C;, and fl(v) = w.

Also, for each such By, there is an 1, such that B, = Dﬁnq, and |By| < IDf;' .

The proof is similar to the proof of lemma 4.3. We now proceed with the description
of the algorithm.

The algorithm must now determine for all (C;, C,j), appearing in the representation
of G as partial k-tree and for all (D;/,Df;l), and all bijections f : C; — D;, whether
(¢;,ci) =f (D;, D?), storing the answers to these questions in some data structure. This
is done in the following manner.

We first sort all (D;, Df) to increasing size; and now deal with them one by one as
they appear in the sorted order; beginning with the smallest ones.

For pairs (D, Df;'), with IDf,II < 1, we can determine, for each (C;,C?), and f:C; —
D;:, whether (C;,C}) =f (D;, Dj), in O(1) time per triple. Hence the total time for all
these pairs is bounded by O(nF+! .1.n) = O(nk+2),

Suppose now we are dealing with some (D;:,Df','), with |Df,l > 1. For each (C;,C?)
in the collection of information of G, and each bijection f : C; —» D; we follow the same
procedure. Suppose (C.-,C{) and f are given.

Let v € Cf be given, as indicated in lemmas 4.2 and 4.4. Let for each connected
component A, of the graph, obtained by removing v from Cf a k-vertex separator Cy,, C
C; U {v} be given, such that

1. No vertex in A, is adjacent to the vertex in C; U {v} - Com,.

2. G(Cp,, Ap) is a partial k-tree.

Let the number of connected components of the graph, obtained by removing v from C.-j
be m.

First one tests whether V v,w € C; : (v,w) € Eg & (f(v), f(w)) € Ejy.

If this test does not fail, then we perform the following actions for each w € Df,':

Calculate all connected components B, of the graph, obtained by removing w from Df,'.
Now there are at most k + 1 different k-vertex separators C D; U {w}. For each of
these, say D’, one must test, whether no vertex in B, is adjacent to the (unique) vertex
in (Dir U {w}) — D'. For each D', passing this test, one must now determine, for which
(Cmy, Ap) one has (Cp,, Ap) = (D', B,), with f'(z) = f(z) for z € C;, and f'(v) = w.
Since |By| < |D{,l|, we have computed this information earlier in the algorithm, and hence
the information can be “looked up”.

The problem of finding the bijection, as indicated in lemma 4.4 can now be translated
to the problem of finding a perfect matching in a bipartite graph. The nodes in this graph
represent the Ap’s and the By’s, there is an edge between the nodes representing Ap and
By, if and only if there is a D' C Dy U {w}, with (Cmyps Ap) =" (D', By). Tt follows
from lemma 4.4, that if we have such a perfect matching, then we can conclude that
C;i,C}) =/ (D;,D?). As finding a perfect matching in a bipartite graph with n vertices
can be done in O(n??) time (see e.g. [9]), it follows that this last step takes o(|DF|25)
time.

12

Hence, the total time needed to deal with one triple (C;, C7), (D,-,,Df,'), f is bounded
by O(| D% [35).

It follows that the total time over all such triples is bounded by O(n*+45),

Finally, testing whether G and H are isomorphic is done with help of all computed
information, and lemma 4.3. One must test for all k-vertex separators D,, whether it
fulfills the conditions of lemma 4.3. (Note that C, is given.) This can be done with a
similar perfect-matching procedure as before. The total time of this step is bounded by
O(nk+3'5).

This completes the description of our algorithm. The following theorem follows.

Theorem 4.5 There ezists an algorithm that decides whether two given partial k-trees
G = (Vg, Eg) and H = (Vy, Ex) are isomorphic in time O(nt5).

5 Final remarks

In this paper we proved that the CHROMATIC INDEX and the GRAPH ISOMORPHISM
problems are solvable in polynomial time for graphs with a constant upper bound on the
treewidth. In [5] it is shown, that each of the following classes of graphs has a constant
upper bound on the treewidth of graphs in the class: almost trees with parameter k,
graphs with bandwidth k, k-outerplanar graphs, (k constant). Hence, for these classes of
graphs, the CHROMATIC INDEX and the GRAPH ISOMORPHISM problem are also solvable
in polynomial time.

We did not show how to obtain edge-colorings of G with the desired number of colors,
or how to construct a graph isomorphism between two partial k-trees, if one exists. How-
ever, this can be done with some small modifications of the algorithms (using some extra
bookkeeping), also in polynomial time. We omit the details.

Although our algorithm for CHROMATIC INDEX on partial k-trees is polynomial, the
time it uses is double-exponential in k, and hence the algorithm is far from practical, even
for the smallest values of k. For the case that the treewidth is at most 2 (or, equivalently:
G is a series-parallel graph), an O(n - |E|) = O(n3) algorithm was found by Syslo [15].
Hence, it is an interesting open problem to find more practical polynomial algorithms for
the CHROMATIC INDEX problem on graphs with a treewidth < k, for constants k > 2.

References

[1] S. Arnborg. Efficient algorithms for combinatorial problems on graphs with bounded
decomposability — A survey. BIT, 25:2-23, 1985.

[2] S. Arnborg, D. Corneil, and A. Proskurowski. Complexity of finding embeddings in
a k-tree. SIAM J. Alg. Disc. Meth., 8:277-284, 1987.

[3] S. Arnborg and A. Proskurowski. Characterization and recognition of partial 3-trees.
Siam J. Alg. Disc. Meth., 7:305-314, 1986.

[4] S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard problems on
graphs embedded in k-trees. TRITA-NA-8404, Dept. of Num. Anal. and Comp. Sci.,
Royal Institute of Technology, Stockholm, Sweden, 1984.

13

(5] H. L. Bodlaender. Classes of Graphs with Bounded Treewidth. Tech. Rep. RUU-CS-
86-22, Dept. of Comp. Science, University of Utrecht, Utrecht, 1986.

(6] H. L. Bodlaender. Dynamic programming algorithms on graphs with bounded tree-
width. Tech. Rep. MIT/LCS/TR-394, Lab. for Comp. Science, M.LT., 1987.

[7] S. Fiorini and R. J. Wilson. Edge-colorings of Graphs. Pitman, London, 1977.

(8] L. Holyer. The NP-completeness of edge-coloring. SIAM J. Comput, 10:718-720,
1981.

[9] J. Hopcroft and R. M. Karp. An %2 algorithm for maximum matching in bipartite
graphs. SIAM J. Comput, 4:225-231, 1975.

[10] D. S. Johnson. The NP-completeness column: an ongoing guide. J. of Algorithms,
6:434-451, 1985.

[11] D. S. Johnson. The NP-completeness column: an ongoing guide. J. of Algorithms,
8:285-303, 1987.

[12] N. Robertson and P. Seymour. Graph minors. II. Algorithmic aspects of tree-width.
J. of Algorithms, 7:309-322, 1986.

[13] J. Saxe. Dynamic programming algorithms for recognizing small-bandwidth graphs
in polynomial time. SIAM J. Alg. Disc. Meth., 1:363-369, 1980.

[14] P. Scheffler and D. Seese. A combinatorial and logical approach to linear-time com-
putability. 1986. Extended abstract.

[15] M. Syslo. NP-complete problems on some tree-structured graphs: a review. In
M. Nagl and J. Perl, editors, Proc. WG’83 International Workshop on Graph The-

oretic Concepts in Computer Science, pages 342-353, Univ. Verlag Rudolf Trauner,
Linz, West Germany, 1983.

14

