Scanline algorithms on a grid

Rolf G. Karlsson and Mark H. Overmars

RUU-CS-86-18

oktober 1986

Rijksuniversiteit Utrecht

Vakgroep informatica

Budapestiaan6 3584 CD Utrecht

Corr. adres: Postbus 80.012 3508 TA Utrecht
Telefoon 030-53

The Netherlands

Scanline algorithms on a grid

Rolf G. Karlsson and Mark H. Overmars

RUU-CS-86-18
oktober 1986

Department of Computer Science
University of Utrecht
P.O. Box 80.012
3508 TA Utrecht
the Netherlands

SCANLINE ALGORITHMS ON A GRID

by

Rolf G. Karlsson! and Mark H. Overmars?

1 Dept. of Computer Science, Linkoping University, 581 83 Linkoping, Sweden

2 Dept. of Computer Science, University of Utrecht, P.O. Box 80.012, 3508 TA
Utrecht, The Netherlands

Abstract: A number of important problems in computational geometry are
solved efficiently on 2- or 3-dimensional grids by means of scanline techniques.
In the solutions to the maximal elements and closure problems, a factor log n is
substituted by loglog u, where n is the set size and u the grid size. Next, by using
a data structure introduced in the paper, the interval trie, previous solutions to
the rectangle intersection and connected component problems are improved upon.
Finally, a fast intersection finding algorithm for arbitrarily oriented line segments
is presented.

Keywords and phrases: scanline techniques, maximal elements, rectangle
problems, connected components, line segment intersection.

1. Introduction

Computational geometry studies the computational complexity of finite geometric
problems. Recently, there has been a growing interest in solving problems in
computational geometry on a grid, i.e., points (or line segments with endpoints)
in U? =[0..u-1]%. See for example, Karlsson [7], Karlsson and Munro [8], Keil
and Kirkpatrick [10], Miiller [15], Overmars [16], and Willard [20,21]. In some
sense, computational geometry on a grid shows the complexity of a problem after
sorting. But apart from being of great theoretical interest, it is our belief that
structures on grids are potentially practical. Indeed, analysis of algorithms with
a restricted domain is of interest for real applications since bounds on the key
space for a particular instance of a problem are often known. The methods we
present should be useful within computer graphics, VLSI design, and robotics.
In graphics, for instance, the key space is a moderate sized raster and, hence,
all points are in U¢ for some small U. In this paper we mainly deal with 2-
dimensional (d =2) orthogonal problems (line segments are axis-parallel). VLSI
technology, for instance, often uses only orthogonal object boundaries and wires.
Note that, with appropriate translation and scaling, U? can approximate any
bounded region of the real plane.

On a grid many problems can be solved more efficiently by using perfect
hashing techniques or table look-up, but due to their costly preprocessing such
methods will not do for the problems we consider. Instead, we achieve our fast
solutions by a more moderate preconditioning work, and by scanning the n points
or objects along one axis while maintaining appropriate data structures.

We demonstrate the technique by applying it to the following problems:

(i) Maximal elements: Given a set of points on a grid, determine those points
that are maximal, i.e. in 2 dimensions, the points p = (zp,yp) for which there are
no other points ¢ = (z4,yq) such that z, < z4 and yp, < y,.

(ii) Maximal layers: Given a set of points on a grid, determine the successive
layers of maximal elements.

(iii) Orthogonal convex hull: Given a set of points on a grid, compute the
orthogonal convex hull, i.e., the smallest convex region that contains all the points,
and where convexity is defined through axis-parallel point connections.

(iv) Closure: Given a set of orthogonal rectangles on a grid, find the closure of
their union.

(v) Rectangle intersection: Given a set of orthogonal rectangles on a grid, de-
termine all pairs of intersecting rectangles. Two types of intersection are consid-
ered: boundary intersection in which two rectangles intersect if their boundaries
intersect and true intersection in which two rectangles intersect if they have some
point in their interior in common.

(vi) Connected component: Given a set of orthogonal rectangles on a grid,
determine their connected components, where two or more rectangles are said to
be connected whenever each two points in their union are connected.

(vii) Line segment intersection: Given a set of arbitrarily oriented line seg-
ments with endpoints on a grid, report all intersections.

See the following table for the results obtained (logarithms to the base 2 when
none is specified).

Problem Known bound New bound
3-dim maximal elements nlog n [12] nloglog u
maximal layers nlog n nloglog u
orthogonal convex hull nlog n [e.g. 5] nloglog,, u
closure nlog n [18] nloglog u
boundary intersection k + nlog n [3,13] k + nloglog u
true intersection k + nlog n [3,13] k + nlog u/loglog u
connected components nlog n [4] nlog u/loglog u
line segment intersection k + nlog®n/loglog n [2] k + u 4 nlog n or
or (k + n)log n [1] (k + n)loglog u + nlog n

To solve some of these problems a new dynamic 1-dimensional structure for the
stabbing problem (for a set of intervals, determine those containing a query point)
on a grid is designed that is more efficient than known dynamic solutions. We
will call this structure an interval trie.

The structure of the paper is as follows. In Section 2 we describe the interval
trie and give some preliminaries that will be used in the rest of the paper. In
Section 3 we demonstrate the scanline technique by applying it to the maximal
elements and closure problems. In Section 4 we also invoke the interval trie to solve
rectangle intersection problems. In Section 5 we solve the connected components
problem. In Section 6 we allow line segments to be arbitrarily oriented when
solving the intersection problem. Two new solutions will be given. Finally, Section
7 contains conclusions and some open problems.

2. Preliminaries

Let us first recall some known results that will be used throughout this paper. Van
Emde Boas [19] presented a structure which can store n keys from U = [0..u — 1]
using O(u) space so that in time O(loglog u) keys can be inserted, deleted and the
key nearest to a specified key in U can be found. A drawback of this structure is its

2

©(u) preprocessing. Instead, we will use a more flexible tree structure introduced
by Johnson.

Theorem 2.1: (Johnson [6]) Given a set of n keys from U = [0..u — 1], there
exists a structure using O(u) storage such that in time O(loglog u) it can be
initialized and keys can be inserted, deleted and the key nearest to a given value
in U can be determined.

We will call this structure a Johnson tree. It can also be used to solve 1-
dimensional range queries in O(k+loglog u) time, where k is the number of re-
ported answers.

In solving problems we will presort the given points. It is well known, that
given a set of n keys in U, they can be sorted in O(n + u) time using O(n + u)
storage. However, it is possible to do it more efficiently.

Theorem 2.2: (Kirkpatrick and Reisch [11]) Given a set of n keys in U, they
can be sorted in O(n(1 + loglog,u)) time using O(n + u) storage.

We will now describe a new dynamic data structure, called the interval trie, used
to solve the 1-dimensional stabbing problem on a grid, that is, given a set of
intervals [a;..b;] with e; and b; in U, store them so that for any query point p in
U we can efficiently determine the intervals that contain p. Let F(u) = log®u for
some € > 0. We split the set of intervals V into sets V3, V2,... where V; contains all
segments of length between F(u)*~! and F(u)*. Clearly, there are at most O(log
u/log F(u)) = O(log u/loglog u) sets V;. We treat the V;’s separately. For each
V; we divide the universe in equal parts of size F(u)*~!. Hence, each interval has
its beginpoint in one part, overlaps at most F(u) parts, and has its endpoint in
another part. No interval can have begin and endpoint in the same part. For each
part we have three lists: B of beginpoints, E of endpoints, and O of overlapping
intervals. Both B and E we store as Johnson trees making it possible to insert
and delete begin and endpoints in O(loglog u) time. We connect the begin and
endpoints in a double linked list. The set O we store as a list. Moreover, we build
a global Johnson tree S that stores for each interval where it is stored in lists O.

To perform a query we query each V; separately. In V; we find the part
containing the query point p in O(1) time. We report all intervals in the corre-
sponding list O and report the correct intervals in B and E by walking along the
lists in the correct order. In list B we start at the begin point that lies leftmost.
If it lies left of p its interval must contain p and we report it. After this we look
at the next beginpoint in the same way. We continue until we find a beginpoint
that lies to the right of p. In E we walk along the points from right to left in a
similar way. Hence, per V; we spend time proportional to the number of answers.
It is easy to see that in this way all answers are reported exactly once.

To insert and delete an interval we determine the V; the interval belongs to.

3

We insert or delete it in the right B and FE structures, insert or delete it in S and
add or remove it from at most O(F(u)) O lists (updating and using S).

Theorem 2.3: Given a set of n intervals on a grid U, for each € > 0 there exists
a dynamic structure for solving the stabbing problem with a query time of O(log
u/loglog u), an insertion and deletion time of O(log°u), and using O(ulog®u)
storage.

Proof: Follows from the above discussion. O

It should be noticed that constructing the structure for an empty set takes time
O(loglog u logu) time.

3. Maximal Elements and Closure

We will now demonstrate the scanline technique by applying it to the 2-dimensional
maximal elements problem, where a point p = (zp,y,) is said to be maximal if
there are no points ¢ = (z4,yq) such that z, < z; and y, < yq. After an initial
lexicographical sorting of the points, using the algorithm in Theorem 2.2, we scan
the z-axis from right (value u-1) to left (value 0), stopping at the z-coordinate of
each point in the set. With the scanline we keep track of the point with highest
y-coordinate passed so far. (In the beginning this y-coordinate is initialized to
0.) If the y-value at the current point is larger than the value stored with the
scanline, the current point must be maximal. Hence, we can report it and store
its y-value at the scanline. In this way we find the set of maximal elements in
O(n(1 + loglog,u)) time.

By maintaining a Johnson tree to store the current y-values of successive
layers of maximal elements during the scan, we can similarly solve the maximal
layers problem. When stopping at a point p we can in O(loglog u) time determine
the y-value y;, of the nearest layer L below p. We update the tree by deleting yr,
and inserting yp, to form the continuation of L. If the point p is smaller than any
y-value in the tree it starts a new layer and is inserted in the tree.

Theorem 8.1: Given n points from U2 we can compute the maximal layers in
time O(nloglog u) using O(u + n) storage.

Proof: Follows from the presentation above. 0O

"

Figure 1. Forming maximal layers by scanning points from right to left

Similarly, a plane sweep technique gives an O(nloglogu) time solution to the 3-
dimensional maximal elements problem, as follows.

Theorem 3.2: Given n points from U® we can compute the maximal elements
in time O(nloglog u) using O(u + n) storage.

Proof: We first sort all the points with respect to their z-coordinate. This takes
O(n(1+loglog,u)) time and O(n +u) storage, by Theorem 2.2. Next we initialize
an empty Johnson tree in O(loglog u) time. We then sweep a plane that is parallel
to the zy-plane in the z-direction from u —1 to 0, stopping at each point we pass.
With the plane we keep the contour of maximal elements of the projections of the
points we have passed. We store in the Johnson tree the maximal points on the
boundary of the projected zy-contour area, ordered according to z-coordinate.
When the scan plane passes a point, p, we update the Johnson tree, by checking
whether p lies above or below the current contour. After finding the closest point
to p in the tree, we can in O(1) time decide if p lies outside or inside the projected
contour area. If it lies outside it is a new maximal point and we report it, and
augment the contour. Otherwise p is not maximal and we can proceed to the
next point. It is easy to see that in this way all points that are maximal will be
correctly reported. An update of the Johnson tree may involve deleting many
points, but counted over all updates each point may only be inserted and deleted
once. Thus, moving the scanplane and performing the queries and updates takes
O(nloglog u) time in total. O

The above algorithms we adapt to solve two other problems, finding the orthog-

5

onal convex hull and computing the closure. The convex hull of a set is the
smallest convex region that contains the set. The prefix orthogonal means that
convexity is defined by axis-parallel point connections, i.e., for each two points
in the polygon on a horizontal or vertical line, the line segment in between them
lies completely inside the polygon. Keil and Kirkpatrick [10] solve the similar
problem of computing the non-orthogonal convex hull in the same time bound.

Theorem 3.3: Given n points from U? we can compute their orthogonal convex
hull in time O(n(1 + loglog, »)) using O(u + n) storage.

Proof: We observe the following. By determining the four extreme z- and y-values
of the point set, the orthogonal convex hull is given by four monotonic staircase
curves between the extreme points. Thus, we solve our problem by computing the
maximal elements, changing the definition of maximality appropriately between
each of the four extrema. O

Next we consider the following problem. Given a set of n axis-parallel rectangles,
compute their closure, defined as follows. Two points p; = (z1,¥1) and p; =
(%2,y2) are incomparable if neither one dominates the other (they are mutually
maximal). Assume WLOG z; > z; and y; < y;; then the SW-conjugate and
NE-conjugate of p; and p; are ¢1 = (z1,y2) and g2 = (z2,y1) respectively. A
region R is NE-closed if for any two incomparable points p; and p; connected in
R, the NE-conjugate of p; and p; is also in R. Analogously, we define a SW-closed
region. Based on this, the NE-closure of a region S of the plane, denoted N E(S),
is the smallest NE-closed region containing S. Analogously, we define the SW-
closure. The closure is the smallest region containing S that is both SW-closed
and NE-closed.

A reason for considering the closure problem, is that it has an important relation
to the problem of safeness and deadlock-freedom when several users concurrently
access a database [22]. There, it is common for a user to lock a variable, for
exclusive access, at the beginning of an update and unlock it afterwards. If
the two axes in our problem formulation reflect the history of actions taken by
two users, then a rectangle depicts a time slot when both users would access a
variable. Given this, one can show that any sequence of lock, update and unlock
steps which avoids the SW-closure is deadlock-free. Using our technique we speed
up the O(nlogn) time closure algorithm, given by Soisalon-Soininen and Wood
[18].

7/////
7

Figure 2.(a) The NE-closure, and (b) the closure of a set of rectangles

Theorem 3.4: Given n rectangles with corners from U2, we can compute their
closure in time O(nloglog u) using O(n + u) storage.

Proof: Soisalon-Soininen and Wood (18] showed that the closure can be de-
termined by first computing the NE-closure, through a left-to-right scan of the
rectangles, followed by a right-to-left scan to get the SW-closure of the result. We
outline their algorithm as described in [17]. For each connected component, the
boundary of its closure consists of two z-monotonic staircase curves. A component
is called active if it is intersected by the scanline. Thus, a component is active
if and only if it contains at least one (active) rectangle intersecting the scanline.
An active component is characterized by an active interval, which is the segment
between the maximum y-value of all rectangles found so far in the component
and the minimum y-value of the currently active rectangles. The scanline will
stop at either a left side or a right side of a rectangle. Consider the left-to-right
scan that constructs the NE-closure (the SW-closure of the result is constructed
analogously).

At the left side of a rectangle, R, we either (i) initialize an active interval
(when R does not overlap any active component), or (ii) extend an active interval
(when R overlaps only one active component), or (iii) merge two or more active
intervals with R.

When the scanline stops at the right side of a rectangle, R, either (i) R is
deactivated shrinking its active interval upward (when R is the bottommost active
rectangle of the component), or (ii) the component is terminated (when R is the
only active rectangle of the component), or (iii) R is deactivated without affecting
the active interval.

To handle the above actions, we store two types of elements in a Johnson
tree, T, the lower endpoints of the active intervals and the lower y-values of
active rectangles. These elements are linked in two leaf lists. We note that the
component set of active rectangles are disjoint. Thus, by linking the leaves which
store lower y-values we know the rectangle order and cardinality within each
component. This makes merging of active intervals easy.

When encountering a rectangle left side [y;..y2], the greatest interval end-
point smaller than y; is found in T and its leaf list is traversed until also y, is
located. This takes time O(m+ loglog u), where m is the number of active in-
tervals that will be merged by the new rectangle. Clearly, two active intervals
can be merged and their lists of active rectangles concatenated in O(loglog u)
time. By consistently charging the cost of merging two active intervals to the
rightmost rectangle involved, the total time is O(nloglog) since each rectangle
can be charged at most once. The updating of T when encountering a right side
follows similarly from cases i) to iii) above. We can in O(loglog u) time decide if
an active rectangle is the bottommost, or the last active in a component. O

4. Rectangle Intersection

In this section, we present solutions to two variants of the rectangle intersection
problem. First, we only look for rectangles which intersect each other’s edges.
We call this boundary intersection.

Theorem 4.1: Given n orthogonal rectangles on U2, the pairs of rectangles that
boundary intersect can be located in time O(k + nloglog u) using O(n + u) space,
where k is the number of reported answers.

Proof: We can also state the problem as follows: Given a set of horizontal and
vertical line segments, report all intersections. To solve this problem we use a
plane sweep approach. We sweep a scanline from left to right. With the scanline
we keep a Johnson tree, T, storing the y-coordinates of all horizontal line segments
intersecting the scanline. When the scanline encounters the left endpoint of a
horizontal line segment, its y-coordinate is inserted into T'; when it is a right
endpoint its y-coordinate is deleted from T'. These updates are done in O(nloglog
u) total time. When the scanline encounters a vertical line segment, I = [y1--v2],
a range query is performed. We locate the greatest y-coordinate in T smaller
than or equal to y2, and the smallest y-coordinate greater than or equal to y;. By
traversing the linked list between these two leaves, we find the horizontal segments
intersecting I. It should be clear that in this way all intersections are reported in
the stated time bound. O

Next, we extend the algorithm to also handle proper rectangle containment, in
which two rectangles intersect if they have some point in their interior in common,
e.g., one rectangle can lie completely inside the other.

Theorem 4.2: Given n orthogonal rectangles on U?, the pairs of rectangles that
true intersect can be located in time O(k + nlog u/loglog u) using O(n + ulog®u)
space, where k is the number of reported answers.

Proof: Rectangles R; and R intersect if their boundaries intersect or the left
bottom corner of R; lies in R; or the left bottom corner of R; lies in Ry. More
than one can happen, but with some care it is possible to avoid that intersections
are reported more than once. Hence, we can solve the problem by solving two
problems: the boundary intersection problem and the following problem: Given
a set of points and a set of rectangles, determine for each rectangle what points it
contains. The boundary intersection can be solved as described in Theorem 4.1.
To solve the second problem we again sweep a scanline from left to right. With
the scanline we keep an interval trie containing the y-extensions of all rectangles
that intersect the scanline. When the scanline encounters a left edge of a rectangle
it is interserted in the interval trie. When we encounter a right edge it is deleted.
When the scanline encounters a point we perform a stabbing query with this point
on the interval trie. By Theorem 2.3, this will report rectangle containments in
the stated time bound. 0O

5. Connected Components

We consider the following problem. Given n axis-paralliel rectangles, compute the
set of connected components. Note this problem is more complicated than finding
the closure, where rectangles are merged to form monotonic components. To solve
the connected component problem we again sweep a line from left to right over
the plane. With the scanline, we maintain three data structures. First, a cluster
trie, storing the connected components; secondly, an endpoint trie, storing the
endpoints of the active rectangles (rectangles intersected by the scanline); and
finally, an interval trie, storing the y-intervals of active rectangles. This set-up is
somewhat similar to the one in [4], but the new data structures provide a more
efficient solution.

—>

v

%

?

7

7

Z extends
z active
/] interval
Z

Z

Figure 3. Scanning for connected components (active intervals are shaded)

Theorem 5.1: Given n orthogonal rectangles on U? we can compute the con-
nected components in time O(nlog u/loglog u) using O(n + ulog®u) storage.

Proof: Each connected component has a cluster identifier, and is represented by
one or more active intervals, defined as follows. An active interval is a segment
between the minimum and maximum y-value of a non-interrupted subset of active
rectangles in the component (i.e., the segment should not overlap rectangles from
other clusters). We implement the cluster trie and the endpoint trie as Johnson
trees. When the scanline encounters the left side of a rectangle, the y-interval of
the rectangle is inserted in the interval trie and the corresponding endpoints are
inserted in the endpoint trie; when a right side is encountered the y-interval and
the endpoints of the rectangle are deleted. The cluster trie is updated as follows.

When inserting an interval I = [y;..y3] in the interval trie, we can in the
cluster trie, in O(loglogu +m) time, find the m active intervals overlapping I.
Next, we determine if I true intersects at least one other rectangle, R. f m > 1,
this is immediate; otherwise we search the endpoint trie to see whether I contains
an endpoint of another y-interval and if not, search the interval trie top-down for
an interval containing I. This takes O(log u/loglog u) time. Having found that I
true intersects a rectangle R, the active interval, A, including R is extended in the
cluster trie if y; is smaller than the minimum value of A or y; is greater than the
maximum value of A. In general, when I intersects more than one active interval,
we amortize the time to merge them (like in the closure solution, Theorem 3.4)
by charging the rightmost rectangle involved in a two-interval merge with the

10

[z..z + 1). We will take care that the INTER bags only contain intersections
between neighbors in the tree T (see below). To initialize the structures, each
line segment is stored in the proper BEGIN and END bag, and all INTER bags
are made empty. Next, we move a scanline from left to right over the plane. With
the scanline we keep a balanced binary tree T' (e.g. an AVL tree) storing the line
segments that are intersected by the scanline. The scanline stops at each integer
z-coordinate z. At a stop position z we do the following three things:

(1) Insert all line segments in BEGIN(z) in T. Compute the intersections at
the inserted segments with their neighbors and insert them in the proper INTER
bags. For each pair of line segments that stop being neighbor (because a new
segment was inserted in between them), remove them from the right INTER bag.
(This can be done in O(1) time per line segment inserted when we keep with each
line segment in T pointers to the position in INTER bags of its intersections with
neighbors.)

(2) Delete all line segments in END(z) from T. This means that new pairs of
line segments in T' become neighbors. Compute the intersections between these
line segments and insert them in the right INTER bags.

(3) For each intersection in INTER(z), report it and change the position of
the two intersecting segments in T'. This means that some new neighbors appear
in T and some old ones disappear. Insert and remove the appropriate intersections
from the INTER bags. Since this might add new intersections to INTER(z), we
have to check that they have not already been reported. As we do not treat
intersections in left to right order (because INTER is an unordered bag) this is
no trivial operation. To check whether the intersection has already been reported
we adapt a technique from Myers [15]. Assume we want to add the intersection
between s and s’ to INTER(z). We now check in which order s and s’ occur at
position z + 1. If they are already in this order their intersection must already
have been treated and, hence, nothing needs to be done. Otherwise we insert the
intersection in INTER(z). This clearly takes only O(1) time.

Some intersections removed from INTER(z) may not yet have been treated,
but are anyway guaranteed to reappear. It is clear that in this way the intersec-
tions in INTER(z) are not performed in a left to right order! It just depends on
the order in which they are in the bag. We claim this does not matter and that all
intersections between z and z+ 1 will be properly reported. This follows from two
observations. (i) When an intersection is reported, it does exist and has not been
reported before. (ii) When INTER(z) is empty, this means that each two neigh-
bors in T either do not intersect between z and z+1 or that their intersection has
been reported. We will show that this can only be the case when the line segment
in T are in the right order, i.e., in the order they should be in immediately before
z + 1. When they are in this order, all intersections must have been reported

12

because each segment must have changed place with all the segments with which
it intersect between z and z + 1. To prove that the line segments are in the right
order, assume they are not. Then there must be two neighbors !; and l; that
should be in the reverse order. Assume /; and /2 do not intersect between z and
z + 1. In this case they cannot have changed place between z and z + 1 and thus
are in the right order. Assume /; and l; do intersect between z and z + 1. As
they are neighbors and INTER(z) is empty, their intersections must have been
reported and, hence, they must have changed place. As it is impossible that they
again changed place, their order is correctly the reverse of the order at position
z. This proves that [; and I; are in the right order. Contradiction. Hence, all
line segments in T are indeed in the right order. This shows that the algorithm
correctly reports all intersections.

What remains to be shown is the time bound. Initializing the tree T and the
bags is O(1) work, while sorting the begin and endpoints along z-coordinate and
putting them in the right bags takes O(n(1 + loglog,u)) time. Inserting and
deleting a segment in T requires O(log n) work, or O(nlog n) counted over all
insertions and deletions. Performing an intersection takes O(1) time, assuming
that with each intersection we store a pointer to the right position in the tree T',
and also the check whether an intersection has been reported before takes O(1)
time. Unfortunately, we have to stop at each z-coordinate to see whether one of
the three bags contains points. This adds a term O(u) to the time bound. Given
k reported intersections, the time bound follows.

The storage required for the bags and the tree T is O(n + u) because only
intersections between neighbors are stored. 0O

When u is small this method is an improvement over known techniques, but when
u grows the method soon becomes worse. The O(u) time is only spent because
for each z-position we have to check whether one of the bags is not empty. To
avoid this, we store the z-positions with non-empty bags in a Johnson tree. In
this way we can find the next non-empty bag in time O(loglog). Initially, all
positions at which a line segment starts or ends are stored in this tree. When an
intersection is found that has to be put in bag INTER(z), we search whether =
is in the tree. If it is, we just put the intersection in INTER(z). Otherwise, we
first insert z in the tree. In this way the tree is maintained correctly.

Theorem 6.2: Given n line segments on U2, we can compute all k intersections
in time O((k + n)loglog u + nlog n) using O(n + u) storage.

Proof: Follows from the above discussion, since a Johnson tree is initialized in
O(loglog u) time. O

13

7. Conclusions and Open Problems

We have applied scanline techniques to solve a number of important problems in
computational geometry on a grid. As an algorithmic tool in the solutions, we
have introduced the interval trie, a grid correspondent to the segment tree. For
typical values on grid size and set size, say in computer graphics, our bounds are
better than the known bounds.

We believe that many other geometry problems can be solved efficiently by
using the methods in this paper. Problems like the measure problem and other
contour problems are presently being looked at. Furthermore, since there exist
scanline algorithms for triangulation and construction of Voronoi diagram it would
be interesting to see if the methods of this paper can be employed to make such
solutions faster.

In another paper, we have extended some of the results in this paper to higher
dimensions [9].

8. References

[1] J.L. Bentley and T. Ottman, Algorithms for Reporting and Counting Geomet-
ric Intersections, IEEE Trans. Comp. C-28, 9 (1979), 643-647

[2] B. Chazelle, Intersecting is Easier than Sorting, Proc. 16th Annual ACM
Symposium on Theory of Computing (1984), 125-134

[3] H. Edelsbrunner, A New Approach to Rectangle Intersections, Part II, Int. J.
Comput. Math. 13 (1983), 221-229

[4] H. Edelsbrunner, J. van Leeuwen, T. Ottmann and D. Wood, Computing the
Connected Components of Simple Rectilinear Geometrical Objects in d-space,
R.A.LR.O. Theoretical Informatics 18, 2 (1984), 171-183

[5] R.A. Jarvis, On the Identification of the Convex Hull of a Finite Set of Points
in the Plane, Information Processing Lett. 2 (1973), 18-21

[6] D.B. Johnson, A Priority Queue in which Initialization and Queue Operations
Take O(loglog D) Time, Math. Systems Theory 15, 4 (1982), 295-310

[7] R.G. Karlsson, Algorithms in a Restricted Universe, Ph.D. thesis, University
of Waterloo, 1984, Dept of Computer Science Tech. Report CS-84-50

[8] R.G. Karlsson and J.I. Munro, Proximity on a Grid, Proc. 2nd Symposium
on Theoretical Aspects of Computer Science, Springer-Verlag Lecture Notes in
Computer Science 182 (1985), 187-196

14

[9] R.G. Karlsson and M.H. Overmars, Normalized Divide and Conquer, to appear

[10] J.M. Keil and D.G. Kirkpatrick, Computational Geometry on Integer Grids,
Proc. 19th Annual Allerton Conference (1981), 41-50

[11] D. Kirkpatrick and S. Reisch, Upper Bounds for Sorting Integers on Random
Access Machines, Theoretical Computer Science 28 (1984), 263-276

[12] H.T. Kung, F. Luccio and F.P. Preparata, On Finding the Maxima of a Set
of Vectors, J. ACM 22, 4 (1975), 469-476

[13] E.M. McCreight, Efficient Algorithms for Enumerating Intersecting Intervals
and Rectangles, Xerox Palo Alto Res. Center, Tech. Report PARC CSL-80-9,
1980

[14] F.W. Myers, An O(E log E + I) Expected Time Algorithm for the Planar
Segment Intersection Problem, SIAM J. Computing 14 (1985), 625-637

[15] H. Miller, Rastered Point Location, Proc. Workshop on Graphtheoretic
Concepts in Computer Science (WG85), Trauner Verlag, 1985, 281-293

[16] M.H. Overmars, Range Searching on a Grid (ext. abst.), Proc. Workshop
on Graphtheoretic Concepts in Computer Science(WG85), Trauner Verlag, 1985,
295-305

[17] F.P. Preparata and M.1. Shamos, Computational Geometry, An Introduction,
Springer-Verlag, 1985

[18] E. Soisalon-Soininen and D. Wood, An Optimal Algorithm for Testing for
Safety and Detecting Deadlock in Locked Transaction Systems, Proc. ACM Sym-
posium on Principles of Data Bases (1982), 108-116

[19] P. van Emde Boas, Preserving Order in a Forest in Less Than Logarithmic
Time and Linear Space, Information Processing Lett. 6, 3 (1977), 80-82

[20] D.E. Willard, Log-logarithmic Worst-case Range Queries Are Possible in
Space ©(n), Information Processing Lett. 17, 2 (1983), 81-84

[21] D.E. Willard, New Trie Data Structures Which Support Very Fast Search
Operations, J. Comput. Syst. Sci. 28 (1984), 379-394

[22] M.Z. Yannakakis, C.H. Papadimitriou and H.T. Kung, Locking Policies:
Safety and Freedom for Deadlock, Proc. 20th Annual IEEE Symposium on Foun-
dations of Computer Science (1979), 286-297

15

