USING ATTRIBUTE GRAMMARS TO DERIVE EFFICIENT FUNCTIONAL PROGRAMS

M.F. Kuiper and S.D. Swierstra

RUU–CS–86–16
September 1986

Rijksuniversiteit Utrecht
Vakgroep informatica
Budapestlaan 6 3584 CD Utrecht
Corr. adres: Postbus 80.012 3508 TA Utrecht
Telefoon 030-488 1454
The Netherlands
USING ATTRIBUTE GRAMMARS TO DERIVE EFFICIENT FUNCTIONAL PROGRAMS

M.F. Kuiper and S.D. Swierstra

Technical Report RUU-CS-86-16
september 1986

Department of Computer Science
University of Utrecht
P.O. Box 80.012, 3508 TA Utrecht
the Netherlands
Using attribute grammars to derive efficient functional programs

M.F. Kuiper and S.D. Swierstra

August 1986

Abstract

Two mappings from attribute grammars to lazy functional programs are defined. One of these mappings is an efficient implementation of attribute grammars. The other mapping yields inefficient programs. It is shown how some transformations of functional programs may be better understood by viewing the programs as inefficient implementations of attribute grammars.

1 Introduction

The transformational approach to programming starts with writing very clear and obviously correct programs. These programs are usually not very efficient. The efficiency of the programs is improved by applying successive transformations.

In this article we show that rewrite rules employing tupling[10] and deriving circular programs can be more easily expressed using attribute grammars[8,9].

We define two mappings from attribute grammars to functional programs. One of these mappings, SIM, yields programs that visit the nodes of a certain data structure usually more than once. The other mapping, CIRC, yields programs that visit the nodes of the same structure at most once. So a functional program that is the image of an attribute grammar \(A \) under SIM can be transformed into a possibly more efficient program by applying CIRC to \(A \).

Mapping CIRC can also be used to implement attribute grammars. CIRC yields attribute evaluators that visit each node of a structure tree only once and that perform no reevaluations of attribute values.

1.1 An example

The following example has been taken from [1]. The problem is to write a program that takes as input a non-empty binary tree \(t \). Every leaf of \(t \) is labeled with an integer value. The output of the program must be a tree \(t' \) with the same structure as \(t \) but every leaf in \(t' \) is labeled with the minimum of the leaf values in \(t \).

A tree is either a leaf with a value \(n \), denoted by \((\text{tip } n)\), or a node with two subtrees, denoted by \((\text{fork } l \ r)\). A straightforward functional program (Figure 1) consists of two functions, \(\text{tmin} \) and \(\text{replace} \). Function \(\text{tmin} \) computes the minimum of the tip values of a tree. Function \(\text{replace} \)
replaces in a tree all tip values by a given value. By combining these two functions the problem is solved.

Figure 1: algorithm 1

\[
\begin{align*}
t\text{min} \(\text{tip } n \) &= n \\
t\text{min} \(\text{fork } l \ r \) &= \text{min} \(t\text{min}(l), t\text{min}(r) \) \\
\text{replace} \(\text{tip } n \) \text{ min-in } &= (\text{tip } \text{min-in}) \\
\text{replace} \(\text{fork } l \ r \) \text{ min-in} &= \text{fork}\(\text{replace}(l, \text{min-in}), \text{replace}(r, \text{min-in}) \) \\
\end{align*}
\]

RESULT \(t = \text{replace} \(t \(t\text{min} \ t \) \) \)

In Algorithm 1 the nodes of the tree are visited twice. Bird [1] uses various rewrite techniques to obtain a solution that visits every node of the tree only once. We will call such a solution a one touch solution.

A different way to obtain a one touch solution is to write an attribute grammar for the input trees. The values of the functions \text{tmin} and \text{replace} are attached as attribute values to the nodes of the tree (Figure 2). The attribute grammar consists of three productions, numbered 0 to 2. The left hand side and the right hand side of a context free production are separated by an arrow. Attribution rules are written between curly brackets and immediately follow the context free rule. Attribute \(a \) of nonterminal \(L \) is refered to as \(L.a \). If a context free rule contains more than one occurrence of a non-terminal then their uses in the attribution rules are indexed, starting with 0.

Figure 2: an attribute grammar for the problem

\[
\begin{align*}
0 &: \ L \rightarrow \text{tip} \\
& \quad \{ L.\text{tmin} := \text{tip}.n \ ; \ L.\text{replace} := \text{tip}(L.\text{min-in}) \} . \\
1 &: \ L \rightarrow L \ L \\
& \quad \{ L[0].\text{tmin} := \text{min} \(L[1].\text{tmin}, L[2].\text{tmin} \) \\
& \quad \quad ; L[0].\text{replace} := \text{fork}(L[1].\text{replace}, L[2].\text{replace}) \\
& \quad \quad ; L[1].\text{min-in} := L[0].\text{min-in} \\
& \quad \quad ; L[2].\text{min-in} := L[0].\text{min-in} \} . \\
2 &: \ \text{ROOT} \rightarrow L \\
& \quad \{ \text{ROOT}.\text{replace} := L.\text{replace} \\
& \quad \quad ; L.\text{min-in} := L.\text{tmin} \} . \\
\end{align*}
\]

This non-circular attribute grammar can be mapped to a set of functions (Figure 3). For every non-terminal \(X \) in the grammar a function \text{eval}_X is created. \text{Eval}_X takes as arguments a structure tree and the inherited attributes of \(X \). The result of \text{eval}_X is a list of the synthesized
attributes of X. In an attribute grammar it is perfectly possible for an inherited attribute of a non-terminal to depend on some of the synthesized attributes of that same non-terminal. This will result in cyclic definitions where an argument in a function call depends on the result of that same call. In the example a cyclic definition occurs in the where-part of eval_ROOT.

Figure 3: a one touch solution

\[
\begin{align*}
\text{eval}_L (\text{tip } n) \text{ min } \text{in} &= (n, \text{tip}(\text{min } \text{in})) \\
\text{eval}_L (\text{fork } l r) \text{ min } \text{in} &= (\text{min}(m_1, m_2), (\text{fork } r_1 r_2)) \\
&\quad \text{where } (m_1, r_1) = \text{eval}_L l \text{ min } \text{in} \\
&\quad (m_2, r_2) = \text{eval}_L r \text{ min } \text{in} \\
\text{eval}_\text{ROOT } t &= r \\
&\quad \text{where } (m, r) = \text{eval}_L t \text{ m}
\end{align*}
\]

In this article we formally show how to use the mappings from attribute grammars to functional programs. Attribute grammars are defined in the second section. Then, in section 3, it is shown how to implement attribute evaluators that do not perform an explicit tree walk on a structure tree. In section 4 the mappings from section 3 are used to rewrite functional programs. Section 5 contains a comparison with related work.

2 Attribute grammars

In this section attribute grammars are defined. The definitions are taken, almost literally, from [12].

2.1 Definitions

A context free grammar $G = (T, N, P, Z)$ consists of a set of terminal symbols T, a set of non-terminal symbols N, a set of productions P and a start symbol $Z \in N$.

When evaluating attributes we are not interested in the concrete syntax. Semantic analysis takes place using the abstract syntax. A structure tree obeys the abstract syntax. We assume that G describes the abstract syntax. To every node in a structure tree corresponds a production from G.

Definition 2.1 An attribute grammar is a 4-tuple $AG = (G, A, R, B)$. $G = (T, N, P, Z)$ is a context free grammar. $A = \bigcup_{X \in TN} A(X)$ is a finite set of attributes, $R = \bigcup_{p \in P} R(p)$ is a finite set of attribution rules and $B = \bigcup_{p \in P} B(p)$ is a finite set of conditions. $A(X) \cap A(Y) \neq \emptyset$ implies $X = Y$. For each occurrence of non-terminal X in the structure tree corresponding to a sentence of $L(G)$, at most one rule is applicable for the computation of each attribute $a \in A(X)$.

3
Elements of R have the form

$$X.a := f(\ldots, Y.b, \ldots).$$

In this attribution rule, f is the name of a function, X and Y are non-terminals and $X.a$ and $Y.b$ denote attributes. We assume that the functions used in the attribution rules are strict.

Definition 2.2 For each $p : X_0 \rightarrow X_1 \ldots X_n \in P$ the set of defining occurrences of attributes is $AF(p) = \{X_i.a | X_i.a := f(\ldots) \in R(p)\}$. An attribute $X.a$ is called synthesized if there exists a production $p : X \rightarrow \chi$ and $X.a$ is in $AF(p)$; it is inherited if there exists a production $q : Y \rightarrow \mu X \nu$ and $X.a \in AF(q)$.

$AS(X)$ is the set of synthesized attributes of X. $AI(X)$ is the set of inherited attributes of X.

Definition 2.3 An attribute grammar is complete if the following statements hold for all X in the vocabulary of G:

- For all $p : X \rightarrow \chi \in P$, $AS(X) \subseteq AF(p)$
- For all $q : Y \rightarrow \mu X \nu \in P$, $AI(X) \subseteq AF(q)$
- $AS(X) \cup AI(X) = A(X)$

Further, if Z is the root of the grammar then $AI(Z)$ is empty.

Definition 2.4 An attribute grammar is well defined if, for each structure tree corresponding to a sentence of $L(G)$, all attributes are effectively computable. A sentence of $L(G)$ is correctly attributed if, in addition, all conditions yield true.

Definition 2.5 For each $p : X_0 \rightarrow X_1 \ldots X_n \in P$ the set of strict attribute dependencies is given by

$$DDP(p) = \{(X_i.a, X_j.b) | X_j.b := f(\ldots X_i.a \ldots) \in R(p)\}$$

The grammar is locally acyclic if the graph of $DDP(p)$ is acyclic for each $p \in P$.

Definition 2.6 Let S be the attributed structure tree corresponding to a sentence in $L(G)$, and let $K_0 \ldots K_n$ be the nodes corresponding to an application of $p : X_0 \rightarrow X_1 \ldots X_n$. The set $DT(S) = \{K_i.a \rightarrow K_j.b\}$, where we consider all applications of productions in S, is called the dependency relation over the tree S. The dependency graph of S, $DG(S)$, is the graph of the relation $DT(S)$.

The following theorem gives another characterization of well-defined attribute grammars. A proof can be found in [12].

Theorem 2.1 An attribute grammar is well-defined iff it is complete and the graph $DG(S)$ is a-cyclic for each structure tree S corresponding to a sentence of $L(G)$.
3 Functional implementations of attribute grammars

Attribute grammars are used to specify the semantics of programming languages. They specify the computation of attribute values attached to nodes in a structure tree. An attribute grammar can be transformed into a compiler[5]. A compiler based on attribute grammars usually consists of two parts: the first part parses the input and builds a structure tree; the second part, the attribute evaluator, decorates the structure tree i.e. it evaluates attributes that are attached to the nodes of the tree. Traditional implementations of attribute grammars perform a tree walk on the structure tree. Nodes in the structure tree are visited. During each visit to a node a subset of the attributes attached to the node is evaluated.

An alternative way to structure a compiler based on attribute grammars is to let the first part of the compiler construct the dependency graph of the structure tree of the input program. The second part of the compiler will reduce the constructed graph. Nodes in the graph correspond with attribute occurrences. A node that corresponds to an attribute \(a \) is labelled with the semantic function defining the value of \(a \). If attribute \(a \) directly depends on attribute \(b \) there will be an arc from the node corresponding with \(a \) to the node corresponding with \(b \).

An attribute evaluation scheme that explicitly constructs the dependency graph and then reduces this graph will be called a 2-phase attribute evaluation scheme. The first phase builds the graph. The second phase reduces the graph.

In this approach attribute values are viewed as terms. A term is either a basic value or a function applied to a list of terms. The basic values in the terms are the basic values in the attribute grammar, like integers and characters. The function symbols in the terms are the names of the semantic functions in the attribute grammar. An attribute evaluator must compute the synthesized attributes of the root of a structure tree. The dependency graph is a representation of these attributes.

We will, from now on, abstract from the use of attribute grammars in compiler generation. We view attribute grammars as describing computations of values attached to nodes in a labelled tree.

3.1 A circular implementation of attribute grammars

The 2-phase attribute evaluation scheme can be easily implemented in a functional language with lazy evaluation and local definitions. In this article SASL [11] will be used. We will define the mapping CIRC that maps an attribute grammar into a functional program. CIRC constructs a SASL program that takes as input a structure tree corresponding to the underlying context free grammar of the attribute grammar. Trees are represented in SASL as lists. Every node consists of a marker and other lists representing the subtrees of the node. The marker in a node determines the applied production rule.

The pattern matching facility of SASL is used to distinguish between different productions with the same left hand side non-terminal. A pattern is a list; the first element is the marker; the other elements are identifiers. The use of patterns in the function definitions is not essential. The different productions of a non-terminal can also be distinguished in the body of the functions by using conditional expressions.

Assume that an attribute grammar \(AG=(G,A,R,B) \) is given, and \(B=\emptyset \). Assume, without
loss of generality, that for all X in N

$$\text{AI}(X) = \{X.\text{inh}_0, \ldots, X.\text{inh}_{k_X-1}\}$$

and

$$\text{AS}(X) = \{X.s_0, \ldots, X.s_{l_X-1}\}.$$

So X has k_X inherited and l_X synthesized attributes.

A non-terminal N_0 is translated into a SASL function eval_{N_0}. The first argument of eval_{N_0} is a labelled tree. Production $p : N_0 \rightarrow N_1 \ldots N_n$ is translated into a definition for eval_{N_0}:

$$\text{eval}_{N_0}(p, L_1, \ldots, L_n) \text{ inh}^0 \ldots \text{inh}^0_{k_{N_0}} = (s^0_0, \ldots, s^0_{l_{N_0}}) \text{ where } \text{BODY}(p)$$

BODY(p) is the translation of the attribution rules for p, $R(p)$. For every attribution rule, defining a synthesized attribute of N_0,

$$N_0.s_j := f(...)$$

in $R(p)$, BODY(p) contains a SASL definition

$$s^0_j = f(...).$$

For every attribution rule, defining an inherited attribute of N_j ($1 \leq j \leq n$),

$$N_j.\text{inh}_i := f(...)$$

in $R(p)$, BODY(p) contains a SASL definition

$$\text{inh}_i^j = f(...)$$

Occurrences of $N_j.s_i$ and $N_0.\text{inh}_i$ in $f(\ldots)$ are replaced by inh^0_i and inh^i_j respectively. For every N_j, $1 \leq j \leq n$, BODY(p) contains a definition

$$(s^0_0, \ldots, s^0_{N_0}) = \text{eval}_{N_j} L_j \text{ inh}^j_0 \ldots \text{inh}^j_{k_{N_j}}$$

Theorem 3.1 Let AG be a WAG, and let S be a structure tree obeying the context free grammar of AG. The execution of $\text{CIRC}(AG)$ with input S terminates.

Proof: The SASL program $\text{CIRC}(AG)$ contains two kinds of functions: the eval functions and the semantic functions.

First note that the eval functions never cause non-termination. They split their first argument, a finite structure tree, in smaller parts and pass these to the eval-functions in their body.

The semantic functions are strict by definition. They do not terminate if they are called with a non-terminating argument or if they cause infinite recursion. If the latter happens then AG
contains an error. So, to show that the execution of CIRC(AG) terminates, it must be shown that the semantic functions are always called with well defined arguments.

With the call of a function in BODY(p) corresponds a piece of the dependency graph DG(S). Suppose that BODY(p) is evaluated during the execution of CIRC(AG) S. If BODY(p) contains the definition

\[a = f(\ldots, b, \ldots, c, \ldots) \]

then DG(S) contains nodes corresponding with a, b and c (say \(\alpha, \beta \) and \(\gamma \)); furthermore DG(S) contains arrows from \(\beta \) to \(\alpha \) and from \(\gamma \) to \(\alpha \).

So if the computation of CIRC(AG) S leads to an infinite sequence of function calls then DG(S) must contain a cycle. This contradicts the assumption that AG is WAG. \(\Box \)

The case \(B \neq \emptyset \) is an easy extension of the case \(B = \emptyset \); the result of an eval function is extended with a boolean value. This boolean value indicates whether all conditions in the tree passed to this function yielded true.

4 Using attribute grammars to derive functional programs

Mapping CIRC can be used to implement attribute grammars. In this section we will define another mapping, SIM, from attribute grammars to functional programs. SIM can also be applied to all well defined attribute grammars. SIM is however too inefficient to act as a realistic implementation of attribute grammars. SIM and CIRC can be used in the derivation of efficient functional programs. A functional program that is the image of AG under SIM is usually inefficient: nodes in the structure may be visited more than once and attributes may be evaluated more than once. A more efficient program, equivalent with SIM(AG) can be derived by applying CIRC to AG. The strategy in transforming a functional program \(F \) is: first find an attribute grammar AG such that \(F = \text{SIM}(AG) \) and then apply CIRC to AG. Program \(F' = \text{CIRC}(AG) \) is equivalent with \(F \).

SIM maps every synthesized attribute to a function. For every synthesized attribute \(N.s \) of AG, SIM(AG) contains a function \(\text{eval}
(N.s) \). \text{Eval}
(N.s) takes as arguments a structure tree and all the inherited attributes of \(N_0 \). If

- \(s \) is a synthesized attribute of non-terminal \(N_0 \) which depends on \(v \) other attributes,
- \(p : N_0 \rightarrow N_1 \ldots N_n \in P \) and
- SF(p) contains \(N_0.s := f(\ldots) \)

then SIM(AG) contains the definition

\[\text{eval}_{N.s} (p, L_1, \ldots, L_n) a_0 \ldots a_{v-1} = f(\ldots) \]

where \(\text{BODY}'(N.s) \)

For every definition of an inherited attribute

\[N_j.inh_\alpha := g_\alpha(\ldots) \]
in SF(p), \(BODY'(N.s) \) contains a definition

\[inh^j_\alpha = g_\alpha(\ldots). \]

For every synthesized attribute \(N_j.s_\beta \ BODY'(N.s) \) contains a definition

\[s_\beta = eval.N_j.s_\beta I_j inh^0_\alpha \ldots inh^j_{k_j}. \]

Figure 1 contains an example of an image of SIM. This is a rather typical example. The images of SIM contain a lot of functions each working on the entire structure tree. As can be seen in the example the structure tree is visited more than once. The example does not show that during the execution of SIM(AG) attribute values might be computed more than once.

In the remainder of this section we will demonstrate our technique with a simple example. The problem[3] is to find the deepest nodes of a tree. A tree may have many leaves at the same depth so the result is a list of leaves. The program we derive is lazy: only lists that are needed to construct the answer are computed. The first and inefficient solution consists of two functions, \(depth \) and \(front \).

\[
\begin{align*}
\text{depth (tip n)} &= 0 \\
\text{depth (fork l r)} &= 1 + \max (\text{depth l}) (\text{depth r}) \\
\text{front (tip n)} &= (n,)
\end{align*}
\]

\[
\begin{align*}
\text{front (fork l r)} &= \text{depth l} > \text{depth r} \rightarrow \text{front l} \\
&\quad \text{depth l} < \text{depth r} \rightarrow \text{front r} \\
&\quad \text{depth l} = \text{depth r} \rightarrow \text{front l} + \text{front r}
\end{align*}
\]

The corresponding attribute grammar can be easily constructed:

\[
\begin{align*}
0 : L \rightarrow \text{tip} \{ \text{t.depth} := 0; \text{L.front} := \text{list}(n) \}.
\end{align*}
\]

\[
\begin{align*}
1 : L \rightarrow L L \{ L[0].\text{depth} := \max(L[1].\text{depth},L[2].\text{depth}) \\
&; L[0].\text{front} := \IF L[1].\text{depth} > L[2].\text{depth} \rightarrow L[1].\text{front} \\
&\quad \IF L[1].\text{depth} < L[2].\text{depth} \rightarrow L[2].\text{front} \\
&\quad \IF L[1].\text{depth} = L[2].\text{depth} \rightarrow \text{append}(L[1].\text{front},L[2].\text{front}) \FI}.
\end{align*}
\]

Now we can apply CIRC to derive the efficient solution:

\[
\begin{align*}
eval_L (\text{tip n}) &= (0,n) \\
eval_L (\text{fork l r}) &= (\max l.\text{depth} r.\text{depth}, \\
&\quad l.\text{depth} > r.\text{depth} \rightarrow l.\text{front} \\
&\quad l.\text{depth} < r.\text{depth} \rightarrow r.\text{front} \\
&\quad l.\text{depth} = r.\text{depth} \rightarrow l.\text{front} + r.\text{front}) \\
\text{where} \ (l.\text{depth},l.\text{front}) &= eval_L l \\
&\quad (r.\text{depth},r.\text{front}) = eval_L r
\end{align*}
\]
5 Related work and conclusions

Other researchers have also described methods to translate attribute grammars into functions or procedures. Jourdan[4] gives a mapping from attribute grammars to functions. His target language is a non-lazy functional language. His translation yields a correct implementation for the class of absolutely non-circular attribute grammars[7]. Katayama[6] translates attribute grammars into Pascal procedures. In his scheme attributes may be evaluated more than once, although he claims otherwise.

Deransart and Maluszynski[2] use attribute grammars to analyse logic programs. They derive conditions under which a Prolog program allows a non-standard, but efficient, evaluation strategy.

The main conclusion of this article must be that attribute grammars can be used to derive efficient functional programs. Whether the mapping CIRC is a feasible implementation of attribute grammars largely depends on the speed of implementations of functional languages and is beyond the scope of this article.

References

