USING ATTRIBUTE GRAMMARS TO DERIVE
EFFICIENT FUNCTIONAL PROGRAMS

M.F. Kuiper and S.D. Swierstra

RUU-CS-86-16
september 1986

e Rijksuniversiteit Utrecht

R % _—
gg;%:%; Vakgroep informatica

oy 'g\"~ Budapestiaan6 3584 CD' Utrecht
Corr. adres: Postbus 80.012 3508 TA Utracht

Telefoon 030453
The Netherlahds 1434

USING ATTRIBUTE GRAMMARS TO DERIVE
EFFICIENT FUNCTIONAL PROGRAMS

M.F. Kuiper and S.D. Swierstra

Technical Report RUU-CS—86-16
september 1986

Department of Computer Science
University of Utrecht
P.O. Box 80.012, 3508 TA Utrecht
the Netherlands

Using attribute grammars to derive
efficient functional programs

M.F. Kuiper and S.D. Swierstra
August 1986

Abstract

Two mappings from attribute grammars to lazy functional programs are defined. One
of these mappings is an efficient implementation of attribute grammars. The other mapping
yields inefficient programs. It is shown how some transformations of functional programs may

be better understood by viewing the programs as inefficient implementations of attribute
grammars.

1 Introduction

The transformational approach to programming starts with writing very clear and obviously
correct programs. These programs are usually not very efficient. The efficiency of the programs
is improved by applying successive transformations.

In this article we show that rewrite rules employing tupling[10] and deriving circular programs
can be more easily expressed using attribute grammars{8,9].

We define two mappings from attribute grammars to functional programs. One of these
mappings, SIM, yields programs that visit the nodes of a certain data structure usually more
than once. The other mapping, CIRC, yields programs that visit the nodes of the same structure
at most once. So a functional program that is the image of an attribute grammar A under SIM
can be transformed into a possibly more efficient program by applying CIRC to A.

Mapping CIRC can also be used to implement attribute grammars. CIRC yields attribute

evaluators that visit each node of a structure tree only once and that perform no reevaluations
of attribute values.

1.1 An example

The following example has been taken from [1]. The problem is to write a program that takes
as input a non-empty binary tree t. Every leaf of ¢ is labeled with an integer value. The output
of the program must be a tree t’ with the same structure as ¢ but every leaf in ¢/ is labeled with
the minimum of the leaf values in ¢.

A tree is either a leaf with a value n, denoted by (tip n), or a node with two subtrees, denoted
by (fork I r). A straightforward functional program (Figure 1) consists of two functions, tmin
and replace. Function ¢min computes the minimum of the tip values of a tree. Function replace

replaces in a tree all tip values by a given value. By combining these two functions the problem
is solved.

iFigure 1: algorithm 1

tmin (tip n) = n
tmin (fork 1 r) = min(tmin(1l), tmin(r))

replace (tip n) min_in = (tip min_in)
replace (fork 1 r) min_in
= fork(replace(l,min_in),replace(r,min_in))

RESULT t = replace t (tmin t)

In Algorithm 1 the nodes of the tree are visited twice. Bird [1] uses various rewrite techniques
to obtain a solution that visits every node of the tree only once. We will call such a solution a
one touch solution.

A different way to obtain a one touch solution is to write an attribute grammar for the
input trees. The values of the functions tmin and replace are attached as attribute values to the
nodes of the tree (Figure 2). The attribute grammar consists of three productions, numbered
0 to 2. The left hand side and the right hand side of a context free production are separated
by an arrow. Attribution rules are written between curly brackets and immediately follow the
context free rule. Attribute a of nonterminal L is refered to as L.a. I a context free rule contains

more than one occurrence of a non-terminal then their uses in the attribution rules are indexed,
starting with 0.

Figure 2: an attribute grammar for the problem

0 : L ->tip
{ L.tmin := tip.n ; L.replace := tip(L.min_in) }.
1: L->LL
{ L[0]).tmin := min(L[1].tmin,L[2].tmin)
; L[0].replace := fork(L[1].replace,L[2].replace)
; L[1].min_in := L[0].min_in
3 L[2] .min_in := L[0].min_in }.
2 : ROOT -> L
{ ROOT.replace := L.replace
; L.min_in := L.tmin }.

This non-circular attribute grammar can be mapped to a set of functions (Figure 3). For
every non-terminal X in the grammar a function eval_X is created. Eval_X takes as arguments a
structure tree and the inherited attributes of X. The result of eval_X is a list of the synthesized

attributes of X. In an attribute grammar it is perfectly possible for an inherited attribute of a
non-terminal to depend on some of the synthesized attributes of that same non-terminal. This
will result in cyclic definitions where an argument in a function call depends on the result of
that same call. In the example a cyclic definition occurs in the where-part of eval ROOT.

Figure 3: a one touch solution

eval L (tip n) min_in = (n,tip(min_in))
eval_L (fork 1 r) min_in
= (min(mi,m2), (fork r1 r2))
vhere (mi,r1) = eval_L 1 min_in
(m2,r2) = eval_L r min_in

eval_ROOT t = r
where (m,r) = eval_L t m

In this article we formally show how to use the mappings from attribute grammars to func-
tional programs. Attribute grammars are defined in the second section. Then, in section 3, it
is shown how to implement attribute evaluators that do not perform an explicit tree walk on a
structure tree. In section 4 the mappings from section 3 are used to rewrite functional programs.
Section 5 contains a comparison with related work.

2 Attribute grammars

In this section attribute grammars are defined. The definitions are taken, almost literally, from
[12].

2.1 Definitions

A context free grammar G = (T, N, P, Z) consists of a set of terminal symbols 7', a set of
non-terminal symbols N, a set of productions P and a start symbol Z € N.

When evaluating attributes we are not interested in the concrete syntax. Semantic analysis
takes place using the abstract syntax. A structure tree obeys the abstract syntax. We assume

that G describes the abstract syntax. To every node in a structure tree corresponds a production
from G.

Definition 2.1 An attribute grammar is a 4-tuple AG = (G,A,R,B). G= (T,N,P,Z) is a
contezt free grammar. A = | A(X) is a finite set of attributes, R = U R(p) is a finite
XeTuN pEP
set of attribution rules and B = | | B(p) is a finite set of conditions. A(X)NA(Y) # 0 implies
€P
X =Y. For each occurrence of :on-terminal X in the structure tree corresponding to a sentence
of L(G), at most one rule is applicable for the computation of each attribute a € A(X).

Elements of R have the form
X.a:=f(...,Yb,..).

In this attribution rule, fis the name of a function, X and Y are non-terminals and X.a and
Y.b denote attributes. We assume that the functions used in the attribution rules are strict.

Definition 2.2 For eachp: Xg — X;1...X,, € P the set of defining occurrences of attributes
is AF(p) = {X;.a|Xi.a := f(...) € R(p)}. An atiribute X.a is called synthesized if there

ezrists a production p: X — x and X.a is in AF(p); it is inherited if there erists a production
¢:Y - puXv and X.a € AF(q).

AS(X) is the set of synthesized attributes of X. AI(X) is the set of inherited attributes of X.

Definition 2.8 An attribute grammar is complete if the following statements hold for all X in
the vocabulary of G:

o Forallp : X — x € P,AS(X)C AF(p)

® Forallg : Y - uXve P,AI(X)C AF(q)

e AS(X)U AI(X) = A(X)

Further, if Z is the root of the grammar then AI(Z) is empty.

Definition 2.4 An attribute grammar is well defined if, for each structure tree corresponding

to a sentence of L(G), all attributes are effectively computable. A sentence of L(G) is correctly
attributed if, in addition, all conditions yield true.

Definition 2.6 Foreachp : Xo — Xy...X, € P the set of strict attribute dependencies is
given by

DDP(p) = {(Xi.a,X;.b)|X;.b:= f(...Xi.a...) € R(p)} ‘
The grammar is locally acyclic if the graph of DDP(p) is acyclic for each p € P.

Definition 2.8 Let S be the attributed structure tree corresponding to a sentence in L(G), and
let Ko...K, be the nodes corresponding to an application of p : Xo — Xy...X,.. The set
DT(S) = {Ki.a — K;.b}, where we consider all applications of productions in S, is called the

dependency relation over the tree S. The dependency graph of S, DG(S), is the graph of the
relation DT(S).

The following theorem gives another characterization of well-defined attribute grammars. A
proof can be found in [12].

Theorem 2.1 An attribute grammar is well-defined iff it is complete and the graph DG(S) is
a-cyclic for each structure tree S corresponding to a sentence of L(G).

3 Functional implementations of attribute grammars

Attribute grammars are used to specify the semantics of programming languages. They specify
the computation of attribute values attached to nodes in a structure tree. An attribute grammar
can be transformed into a compiler[5]. A compiler based on attribute grammars usually consists
of two parts: the first part parses the input and builds a structure tree; the second part, the
attribute evaluator, decorates the structure tree i.e. it evaluates attributes that are attached to
the nodes of the tree. Traditional implementations of attribute grammars perform a tree walk
on the structure tree. Nodes in the structure tree are visited. During each visit to a node a
subset of the attributes attached to the node is evaluated.

An alternative way to structure a compiler based on attribute grammars is to let the first part
of the compiler construct the dependency graph of the structure tree of the input program. The
second part of the compiler will reduce the constructed graph. Nodes in the graph correspond
with attribute occurrences. A node that corresponds to an attribute a is labelled with the
semantic function defining the value of a. If attribute a directly depends on attribute b there
will be an arc from the node corresponding with a to the node corresponding with b.

An attribute evaluation scheme that explicitly constructs the dependency graph and then
reduces this graph will be called a 2-phase attribute evaluation scheme. The first phase builds
the graph. The second phase reduces the graph.

In this approach attribute values are viewed as terms. A term is either a basic value or
a function applied to a list of terms. The basic values in the terms are the basic values in
the attribute grammar, like integers and characters. The function symbols in the terms are
the names of the semantic functions in the attribute grammar. An attribute evaluator must
compute the synthesized attributes of the root of a structure tree. The dependency graph is a
representation of these attributes.

We will, from now on, abstract from the use of attribute grammars in compiler generation.

We view attribute grammars as describing computations of values attached to nodes in a labelled
tree.

3.1 A circular implementation of attribute grammars

The 2-phase attribute evaluation scheme can be easily implemented in a functional language
with lazy evaluation and local definitions. In this article SASL [11] will be used. We will define
the mapping CIRC that maps an attribute grammar into a functional program. CIRC constructs
a SASL program that takes as input a structure tree corresponding to the underlying context
free grammar of the attribute grammar. Trees are represented in SASL as lists. Every node
consists of a marker and other lists representing the subtrees of the node. The marker in a node
determines the applied production rule.

The pattern matching facility of SASL is used to distinguish between different productions
with the same left hand side non-terminal. A pattern is a list; the first element is the marker;
the other elements are identifiers. The use of patterns in the function definitions is not essential.
The different productions of a non-terminal can also be distinguished in the body of the functions
by using conditional expressions.

Assume that an attribute grammar AG=(G,A,R,B) is given, and B=0. Assume, without

loss of generality, that for all Xin N

AI(X) = {X.inho, ..., X.inhg, 1}
and
AS(X) = {X.SQ, ooy X.s,x_l}.
So X has kx inherited and lx synthesized attributes.
A non-terminal Ny is translated into a SASL function eval_Np. The first argument of eval_Ny
is a labelled tree. Production p : Ng — Nj...N,, is translated into a definition for eval_Ny:
eval_No (p, Ly,...,L,) inhJ .. .intho = (83,..., s?No)

where BODY(p)

BODY(p) is the translation of the attribution rules for P, R(p). For every attribution rule ,
defining a synthesized attribute of No,

No.sj = f(...)
in R(p), BODY(p) contains a SASL definition

For every attribution rule, defining an inherited attribute of N i (1< j<n),
Nj.inh; = f(..))
in R(p), BODY(p) contains a SASL definition
inh = f(...).

Occurrences of N;.s; and Ny.inh; in f(...) are replaced by inhQ and 3{ respectively. For every
N;, 1< j < n, BODY(p) contains a definition

(sdy.--, s{Nj) = eval N; L; inh} ... inh}mj

Theorem 3.1 Let AG be a WAG, and let S be a structure tree obeying the context free grammar
of AG. The ezecution of CIRC(AG) with input S terminates.

Proof: The SASL program CIRC(AG) contains two kinds of functions: the eval functions and
the semantic functions.

First note that the eval functions never cause non-termination. They split their first ar-
gument, a finite structure tree, in smaller parts and pass these to the eval-functions in their
body.

The semantic functions are strict by definition. They do not terminate if they are called with
a non-terminating argument or if they cause infinite recursion. If the latter happens then AG

contains an error. So, to show that the execution of CIRC(AG) terminates, it must be shown
that the semantic functions are always called with well defined arguments.

With the call of a function in BODY(p) corresponds a piece of the dependency graph DG(S).
Suppose that BODY(p) is evaluated during the execution of CIRC(AG) S. If BODY(p) contains
the definition

a=f(...,b,...,¢,...)
then DG(S) contains nodes corresponding with a,b and ¢ (say @, B and v); furthermore DG(S)
contains arrows from f to @ and from v to a.

So if the computation of CIRC(AG) S leads to a infinite sequence of function calls then
DG(S) must contain a cycle. This contradicts the assumption that AG is WAG. 0O

The case B# @ is an easy extension of the case B= @; the result of an eval function is extended

with a boolean value. This boolean value indicates whether all conditions in the tree passed to
this function yielded true.

4 Using attribute grammars to derive functional programs

Mapping CIRC can be used to implement attribute grammars. In this section we will define
another mapping, SIM, from attribute grammars to functional programs. SIM can also be
applied to all well defined attribute grammars. SIM is however too inefficient to act as a
realistic implementation of attribute grammars. SIM and CIRC can be used in the derivation
of efficient functional programs. A functional program that is the image of AG under SIM is
usually inefficient: nodes in the structure may be visited more than once and attributes may
be evaluated more than once. A more efficient program, equivalent with SIM(AG) can be
derived by applying CIRC to AG. The strategy in transforming a functional program Fis: first

find an attribute grammar AG such that F=SIM(AG) and then apply CIRC to AG. Program
F'=CIRC(AG) is equivalent with F

SIM maps every synthesized attribute to a function. For every synthesized attribute N.s of

AG, SIM(AG) contains a function eval_N.s. Eval_N.s takes as arguments a structure tree and
all the inherited attributes of Ny. If

® s is a synthesized attribute of non-terminal Ny which depends on v other attributes,
ep: No—N;y...N,, € Pand
¢ SF(p) contains Np.s := f(...)

then SIM(AG) contains the definition

eval_N.s (p,L1,...,Lyp) Gg...ap—1 = f(...)
where BODY'(N.s)

For every definition of an inherited attribute

Nj.inhg 1= gal...)

in SF(p), BODY'(N.s) contains a definition
inhd = ga(...).
For every synthesized attribute N;.s3 BODY'(N.s) contains a definition
sf, = eval_Nj.sg L; inhj.. .inh{j.

Figure 1 contains an example of an image of SIM. This is a rather typical example. The
images of SIM contain a lot of functions each working on the entire structure tree. As can be
seen in the example the structure tree is visited more than once. The example does not show
that during the execution of SIM(AG) attribute values might be computed more than once.

In the remainder of this section we will demonstrate our technique with a simple example.
The problem(3] is to find the deepest nodes of a tree. A tree may have many leaves at the same
depth so the result is a list of leaves. The program we derive is lazy: only lists that are needed to

construct the answer are computed. The first and inefficient solution consists of two functions,
depth and front.

depth (tip n) =0
depth (fork 1 r) = 1 + max (depth 1) (depth r)

front (tip n) = (n,)
front (fork 1 r) = depth 1 > depth r -> front 1
depth 1 < depth r -> front r
depth 1 = depth r -> front 1 + front r

The corresponding attribute grammar can be easily constructed:

0 : L ->tip {t.depth := 0; L.front := list(n) }.

1 :L->LL {L[0].depth := max(L[1].depth,L[2].depth)
;L[0] .front :=
IF L[1].depth > L[2].depth -> L[1].front
(0 L[1].depth < L[2].depth -> L[2].front
00 L[1]).depth = L[2].depth ->

append(L[1].front,L[2] .front)
FI}.

Now we can apply CIRC to derive the efficient solution:

eval_L (tip n) = (0,n)
eval L (fork 1 r) = (max 1_depth r_depth,
1_depth > r_depth -> 1_front
1_depth < r_depth -> r_front
1l_depth = r_depth -> 1_front + r_front)
vhere (l_depth,l_front) = eval L 1
(r_depth,r_front) = eval_L r

5 Related work and conclusions

Other researchers have also described methods to translate attribute grammars into functions
or procedures. Jourdan[4] gives a mapping from attribute grammars to functions. His target
language is a non-lazy functional language. His translation yields a correct implementation for
the class of absolutely non-circular attribute grammars[7). Katayamal6] translates attribute
grammars into Pascal procedures. In his scheme attributes may be evaluated more than once,
although he claims otherwise.

Deransart and Maluszynski[2] use attribute grammars to analyse logic programs. They
derive conditions under which a Prolog program allows a non-standard, but efficient, evaluation
strategy.

The main conclusion of this article must be that attribute grammars can be used to derive
efficient functional programs. Whether the mapping CIRC is a feasible implementation of attri-

bute grammars largely depends on the speed of implementations of functional languages and is
beyond the scope of this article.

References

[1] R.S. Bird. Using circular programs to eliminate multiple traversals of data. Acta Informat-
ica, 21:239-250, 1984.

[2] P. Deransart and J. Maluszynski. Relating Logic Programs and Attribute Grammars. Tech-
nical Report 393, INRIA, April 1985.

[3] J. Hughes. Lazy memo-functions. In J-P. Jouannaud, editor, Functional Programming
Languages and Computer Architecture, pages 129-146, Springer, 1985.

[4] M. Jourdan. An Efficient Recursive Evaluator Jor Strongly Non-circular Attribute Gram-
mars. Technical Report 235, INRIA, October 1983.

[5] U. Kastens, B. Hutt, and E. Zimmerman. GAG: A Practical Compiler Generator. Springer,
1982.

[6] T.Katayama. Translation of attribute grammars into procedures. TOPLAS, 6(3):345-369,
July 1984.

[7] K. Kennedy and S.Warren. Automatic generation of efficient evaluators for attribute gram-
mars. In Proceedings of third conference on POPL, pages 32-49, ACM, 1976.

[8] D.E. Knuth. Semantics of context-free languages. Math. Syst. Theory, 2(2):127-145, 1968.

[9] D.E. Knuth. Semantics of context-free languages (correction). Math. Syst. Theory, 5(1):95-
96, 1971.

[10] A. Pettorossi. Methodologies for Transformations and Memoing in Applicative Languages.
PhD thesis, University of Edinburgh, October 1984.

(11] D.A. Turner. A new implementation technique for applicative languages. Software-practice
and ezperience, 9:31-49, 1979.

[12] W.M. Waite and G.Goos. Compiler Construction. Springer, 1984.

10

