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H.L. Bodlaender

Department of Computer Science, University of Utrecht
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Abstract. Uniform emulations are known in the theory of parallel com-
puting és a class of balanced, structure preserving simulations of
large (processor-) networks on smaller (processor-) networks, possibly
of the same type. The notion of a covering of one graph by another
graph, derived from combinatorial topology, is strongly related to the
notion of uniform emulation: every covering of a connected, undirected
graph is a uniform emulation, A classification of the coverings of
large networks on smaller networks of the same type is given for the
following network types: the ring, the grid, the cube, the cube~
connected cycles, the tree network and the complete network. A ver-
sion of the notion of covering for directed graphs is introduced, and
the directed coverings of the 4-pin shuffle and the shuffle-exchange
networks are completely classified. The problem to decide whether
there 1is a covering of a given graph G=(VG,EG) on a given graph
H=(VH,EH) is shown to be at least as hard as GRAPH ISOMORPHISM, even
it |v,|/|vy| is fixed to a constant cen’.

1. Introduction. Parallel algorithms are normally designed for exe~

cution on a suitable network with N processors, with N depending on
the size of the problem to be solved. In practice the size of the

problem will be 1large and varying, whereas the size of the network

* This work was supported by the Foundation for Computer Science
" (SION) of the Netherlands Organisation for the Advancement of Pure
Research (ZWO).
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will be small and fixed. In [6] Fishburn and Finkel introduced the
concept of uniform emulation, Uniform emulations are balanced, struc-
ture preserving sumulations of large (processor-) networks, on smaller
(processor-) networks, possibly of the same type. Independently Ber-
man [1] proposed a similar notion. An extensive analysis of the con-

cept was made in [2, 3, 4, 5].

Definition. Let G=(VG,EG) and H=(VH,EH) be‘(undirected) graphs (pro-
cessor networks). We say that f: VG > VH emulates G on H iff (v,w)éEG
implies that f(v)=f(w) or (f(v), f(w)) €& EH' f is uniform if there is
a c&N+, such that for all heVH |f-1(h)|=c. ¢ is called the computation

factor of f.

The concept of covering is a fundamental notion in combinatorial
topology. Every covering is a mapping of a d-dimensional complex onto
(another) d-dimensional complex. The notion of a one-dimensional com~
plex corresponds with the notion of an undirected graph (with possibly
parallel edges and selfloops). (Throughout this paper we will use the
terminology of graphs.) In this paper we will study the coverings of
graphs, for graphs representing the interconnection structure of pro~-
cessor networks, The following definition can be found in [8], and in
many other standard books on combinatorial topology, often in general-

ized form.

Definition. - Let G-(VG,EG), Ha(vH,EH) be undirected graphs. We say

that f: VG > vH covers G on H (or "G covers H") iff

1. £ is surjective
2. (v,w)eEG implies ((f(v), f(w)) € EH

3. For all v&VG, let WiseeosW,
f‘(w1)....,f(wk ) are all Ydifferent and each neighbour v' of
v

f(v) is equal to a f(wi) (1§iskv).

be the neighbours of v in G. Then

Theorem 1.1. [8] Every covering of a graph G on a connected graph H is

uniform,
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Corollary 1.2. Let Gs(VG,EG), H=(VH,EH) be undirected graphs and let H

be connected. Every covering of G on H is a uniform emulation of G on
H.

In [8] the following method is given to describe all graphs that
cover a given connected graph H with computation factor c:

- determine a spanning tree B of H,

- make ¢ copies of B,

— for every edge in H that is not an edge in the tree B we have ¢
copies of both its endpoints. These copies are connected on a one-to~
one basis: every copy of first endpoint must be connected to a unique
copy of the second endpoint. (This gives ¢! manners to make the con-
nections.)

Up to isomorphism every graph G that covers H can be obtained in
the described manner. For further details of the theory of coverings

of graphs and more-dimensional complexes, see e.g. [8].
We introduce a directed version of the notion of covering:

Definition. Let G=(VG,EG), H=(VH,EH) be directed graphs. We say
that f: v, » Vy covers G on H (or "G covers H") iff

1. £ is surjective

2. (v,w) € EG implies (f(v), f(w)) € EH'

3. For all v € VG’ K
Then f(w1),..,f‘(wk ) are a1l different, and each successor v'
of f(v) is equal to'a f(wi) (1§i$kv).

4, For all v € VG’
Then f(w'1),..,f(w'l

v' of f(v) is equal to a f(w'i) (1§i$lv).

let w1,..,w be the successors of v in G,

let w'1,..,w' be the predecessors of v in G.

1
) are all'different, and each predecessor

Let G be the undirected graph obtained by ignoring the direction of
the edges in the directed graph G=(V,E), i.e. G =(V,E), with
E={(v,w)| (v,w) & E or (w,v) €& E}.

Lemma 1.3. Let G,H be directed graphs. If G covers H, then G covers
-I-{..



Proof. Clear from the definitions. o

Corollary 1.4, Every covering of a directed graph G on a directed

graph H is a uniform emulation.

Similar to the description of the graphs that cover an undirected
graph H with computation factor ¢, one can describe all graphs that
cover a directed graph H=(VH,EH) with computation factor c:

- let B=(VH,EB) be a directed graph, such that:

(i) B is a spanning tree of H

(i1) |EB|=|VH|~1, so for every pair of nodes v,,v, & V, at most
one edge between these nodes (regardless to the direction) is an edge
in EB.

- make ¢ copies of B
that is not an edge in E we have ¢

H B
copies of both its endpoints VisVse These copies are connected on a

- for every edge (v1,v2) € E

one-to-one basis: every copy of the first endpoint must be connected
to a unique copy of the second endpoint: the direction of the edges is

from a copy of v, to a copy of v

1 2"
Up to isomorphism every graph G that covers H can be obtained in
the described manner. (The proof of this characterisation uses lemma

1.3. and the result fob the undirected case, and is omitted.)

The notion of covering is much more restricted than the notion of
uniform emulation: in many cases there are many more uniform emula-
tions possible of some network G on some other network H then there
are coverings possible, and in some cases there exist uniform emula-
tions but no coverings of G on H. A (partial) classification of the
uniform emulaﬁions of the shuffle exchange network, the 4-pin shuffle,
the ring, the grid and the cube network on smaller networks of the
same type has been carried out in [2,3]. The classification of cover-
ings of networks on smaller networks of the same type is a "special
case of this problem, In this paper the classification of coverings
is carried out for the following types of graphs; each type is used or

proposed as the interconnection structure for current processor net-

works:



- the ring (section 2.1)
- the grid (section 2.2)
- tree networks (section 2.3)
~ the cube (section 2.14)
- complete networks (section 2.5)
- the cube connected cycles (section 3)

- the 4-pin shuffle (section 4)

- the shuffle~exchange network (section 5)

In section 6 the problem to decide whether a given connected graph
G=(VG,EG) covers a given connected graph H’(VH'EH) is addressed and
proven to be at least as hard as GRAPH ISOMORPHISM, even if the compu-
tation factor c=|VG|/|VH| is fixed.

Let b-b1...bn be a string with n bits € {0,1}, and let o € {0,1}.

We will use the following notation throughout:

: a bit that can be 0 or 1
: the complement of bit a. (0=1, 1=0)

ol ei-=lo

the string one obtains by complementing every bit of b
(b1oo.bn=b1...bn) th
bl; : b,...b; (truncation after the i  bit)

{/b# bj...b (truncation before the 1%pit)

(b); : b, (the 1 it

For functions f defined on n-bit numbers b we use

fi(b): (f(b))i (projection on the ith bit)

2. Coverings of ring, grid, tree, cube and complete networks.

2.1. Ring networks.

Definition. The ring with n nodes 1is the graph Rn=(vn,En) with
v ={0,..,n-1} and E ={(i, (i £ 1) mod n) | ie v 1.

It is easy to classify the coverings of the ring networks. The follow-
ing propositions are given without proof.
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Proposition 2.1.1. Let G be a graph, consisting of connected com-

ponents AG1,...,GJ and let k € N+, kz3. G covers Rk if and only if for

all i, 1s5isj Gi is graph isomorphic to a ring Rn with k|n.

Proposition 2.1.2. Let H be a graph, and n6N+. Rn covers H if and only

if H is graph isomorphic to a ring R, with k|n.

Proposition 2.1.3. The coverings of Rn on Rk with k23, k|n are given
by the following list:

(i) fj(m) = (m+j) mod kK (for j, 05j<k)

(i1) fj(m) = {(~m+j) mod k (for j, 05j<k)
Proof. It is easy to verify that every fj' Fj is a covering of R = on
Ry - K Consider f(0) and f(1), If
£(1)=(£f(0)+1) mod k, then f is of type fj; if f(1)=(f(0)-1) mod Kk,
then f 1is of type fj' In both cases j=f(0). With induction one can

Let f be a covering of Rn on R

verify that £ must be of the designated type. m}

Corollary 2.1.4, For all k,n, k|n, k23 there are precisely 2k cover-

ings of Rn on Rk.

2.2. Grid Networks.

Definition. The two-dimensional grid network with boundary connec~
tions is the graph GR =(V ,E ) with Vn={(i,j)| i,j € N, 0si,jsn-1} and
E, = {((1,3), (7,3 N] (1,3), (1',3") € Vv and (i=i' AJ = (§* =+ 1)
mod n) or (i=(i' + 1) mod n A j=j')}. The two-dimensional grid network
without boundary connections is the graph GRés(vn,E;) with E; =
((,3),  @L3n) (1,3, (Ar,3') € v and (i=i' Aj=j' + 1) or (i=i
1 AJ=3")}.

v \J
Proposition 2.2.1. If n#m then there exist no covering of GRn on GRm.

A ?
Proof. GRn and GRm both have exactly 4 nodes of degree 2., Because

t )
degree(v) = degree(f(v)) for all v € Vn' and a covering of GRn on GRm
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must be uniform, with a computation factor =+ 1 because n=m, there

1 |
exists no covering of GRn or GRm. n)

One can view the two~dimensional grid network with boundary con-
nections as the product of two ringnetworks: GRn = Rann. Every cover-
ing of GRn on GRm (m|n, m25) can also be written as the product of two

coverings of R on R .
n m

Theorem 2.2.2. Let m|n, mz5, and let f be a function vnévm' f is a

covering of GRn on GRm, if and only if there are coverings f1, f2 of
R on R , with
n m

£0(1,3))

or f((i,i))

(f1(i), fz(j)) for all (i,j) € v,
(f1(J), f2(i)) for all (i,j) € V-

Proof. First note that every cycle with 4 nodes (a "square") in GR
must Dbe mapped on a cycle with U4 nodes (a "square") in GRm. With
induction one can prove that, after having fixed the image of one
cycle with U4 nodes (square) in GRn,vthe whole covering is fixed and

necessarily of the described form. D

By the results of section 2.1. theorem 2.2.2. implies a complete char-

acterization of the coverings of GR_ on GR , m|n, m25,

2.3. Tree networks. The following theorem from combinatorial topology

characterizes precisely which graphs cover a given tree network,

Theorem 2.3.1. [8] Let H be a tree, and let G cover H. Then G consists

of a number (21) of connected components, each graph isomorphic to H.

In particular, if G is connected then G and H are graph isomorphic.

2.4, Cube networks.

Definition. The cube network with 2n"nodes or nmn-cube 1is the graph
. 0
= = i <£ig S =
Cn (Vn’En) with Vn {(b1..bn)| Vi, 1sisn bi 1} and En {(b,c)l b,c € Vn

and b,c differ in exactly one bitposition},
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Proposition 2.4.1, Let cn cover Cm' Then n=m,

st g g

This follows because degree (f(v))=degree(v), for any covering f

of C_ onC_and v€ C_. O
n ’m n

2.5, Complete networks. The same argument can be used for complete

networks,

Definition. The complete network with n nodes-is the graph Kn=(Vn,En)
with V ={0,..,n=1} and E _={(1,3)| 1,5 € VA i=j}.

Proposition 2.5.1. Let Kn cover Km' Then n=m.

3. Coverings of the cube-connected cycles. For denoting the 'cube-

connected cycles' graph we use the notation introduced in [6]. Proces~
sors in the cube-connected cycles with r.2r nodes are addressed by nr-
bit strings with a "divide" 1in any 6ne position between bits. The
position to the left of the first bit is identified with the position
to the right of the last bit, so there are r positions for the divide,
A node p1...pi_1| pi...pr is connected to the following 3 nodes:
PPy | Byeop,
PyecPipl Pyg Pyeeepy
and py...p;_, Py | Piyqe+Ppe

Definition. The cube~connected cycles graph with 2r nodes 1is the
(undirectedé rgraph' L, = (V,E)), withV_ = {p1...pi,1lpi...pr |
Pye++P, € (), 1Sisr} and E_ = {(p1...pi,1|pi.f.pr,
p1...E;:T|pif..pr) | pyeeepy qIPjeeep, €V} {(pyeeepy 1 IPyeeepys
PyeeePilPiqeeeP) | Precepy o lpyeeeps PyeesPi|Pi qe--P, € V. }. (Let
- (+) be the subtraction (addition) modulo r.)

Edges of the type (pT...pi_1|pi.f.pr, p15..pi_1|pi...pr) are called
exchange edges; edges of the type (p1...pi,1|pi...pr,

p1...pi|p ...pr) are called divide shift edges. Notice that every

i+
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node is adjacent to 2 divide shift edges and one exchange edge. When a
divide shift edge is passed in the direction from p1...pi_1|pi...pr to
p1...pi|pi+1...pr we say it is passed in the positive direction, oth-

erwise we say it is passed in the negative direction.

We will only consider coverings of CCCr on CCCS with rz2sz29,

Lemma 3.1. Every cycle in CCCP with r29 has at 1least 8 nodes. For
every cycle with exactly 8 nodes in CCCr with rz9 there are p.l...pr €
(%)r, ie {1,..,r}, such that the successive nodes visited by the
cycle (assuming starting point and direction in which the cycle is

traversed are well chosen) are:

PyeeePy] Pyyq PyypeeeP
PyesePy Pyyyl Pyypesep
PyesePy Piyql Pyypeeep

PyecePyl Py Pyipeeep

p1...Ei| P PiypeeeP

o e e TR T ]

i+

PyeesPy Pyyql Pyipeeepy
PyesePy Pig| Pyipesepy
PPy | Pyyy Piyne+P,

—— i

This is easy, but tedious to check. o

Now let f be a covering of CCCr or CCCS, with rz2sz9, Every cycle
with 8 nodes of CCCr must be mapped upon a cycle with 8 nodes of CCCS.
Notice that every edge that is adjacent to a cycle with 8 nodes but

not part of this cycle, necessarily is a divide shift edge.

Lemma 3.2. Let f cover C,CCr on CCCS, r2s29., Then f maps nodes con-
nected by a divide shift edge on nodes connected by a divide shift
edge and nodes connected by an exchange edge on nodes connected by an

exchange edge.
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For every divide shift edge e there is a cycle of 8 nodes to which
e 1is adjacent, but of which e is no part. Hence e must be mapped upon
an edge, adjacent to a cycle of 8 nodes, that is: a divide shift edge.
Because every node is adjacent to exactly 2 divide shift edges and one

exchange edge, exchange edges must be mapped upon exchange edges. O

Now let f(0|0..0) be given, There are two possible values for
£(00/0..0), the node reachable from £(0|0..0) by a divide shift in
positivé direction, and the node reachable from f(0|0..0) by a divide
shift in negative direction. The choice of £(0]|0..0) and £(00|0..0)
fixes the covering f,

Lemma 3.3. Let b and ¢ be nodes in CCCP, that are connected by a
divide shift edge. There is at most one covering f of CCCr on CCCS
(r2s29) with £(0}0..0) = b and £(00|0..0) = c.

Suppose f(OlO...O) =b = pT"'pi-1|pi"'ps and f(00|0...0) = C =
PyeeePy 1Py [Py
tion, then the proof is analogous.) Let f be a covering of CCCr on

seePge (If b»c 1is a divide shift in negative direc-

ey, If f(q1...qj_1|qj.f.qr) reaches f‘(q1...qjlqj+1

shift in positive direction, then every f(q1...qj,_1|qj,...qr) reaches

...qr) by a divide

f(q1...qj,|qj,+1...qr) by a divide shift in positive direction

(1£j'sr). Similarly for negative directions.

Proposition 3,3.1. Let b',c' be nodes in cccr, and ¢' can be reached

from b' by a divide shift in positive direction. Then f(c') can be
reached from f(b') by a divide shift in positive direction.

o g . o

Suppose not. We now can divide (%)P in two disjunctive sets A and

B, with A = {q...q, |  flaqy...qq_;la;...q,) reaches
f(a;...q;la;,,.+.9,) by a divide shift in positive direction} and B =

{ayeeeq, | flayeeeqy ,lay...0.) reaches flg...q;]q,,---0,) by a

i+
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divide shift in negative direction}. (Note that the choice of i |is
not important.) We know that A and B are not empty. For instance On €
A.

There must be strings a € A, b € B, that differ in exactly one
b?tpos%tion. So there are Pye+ep, € (%)P, i, 1gisr, Qqeeeg € (%)S,
9y---9 ¢ (%)S

- f(pyeeepy | By PiigeeePn) = q1...qj_1[ ay 9
- t‘(p1...pi_1 pil pi+1.f.pr)
- f(p1...pi_1|-§; PiyqeeePp)
- Py o Py PisreePp)

» Js 1838s, j', 18j'Ss, with

419

Q1°f'QJ,1 le QJ+1"'qP

aj--a}i a!, | SHTPRRR M

1 1 ) '
Q;o--qj"1| qj' j,+1f..qr

From 3.2 we have

= f(pyeeepy pll PisreeePp)
- f(py..opy | by PioqeePp)

SIERRL M Sil Qy,q -9 hence

SPRTRL P ay qj*1|qj+2...qp.

Now nOtlfi that p1’f’pi—1’31pi+1ff‘pr; p1ff'pi-1pi|pi+1"'pr;
ERRI PN 70 JUPRRRLVERS SRR Sy N |

a cycle with 8 nodes in CCCP. However, their images are not 4 succes~

-+p, are 4 successive nodes in

sive nodes in a cycle with 8 nodes in CCCS. So there is a cycle with 8

nodes that is not mapped upon a cycle with 8 nodes. Contradiction., o

This shows that f is completely determined by the choice of f(OlO..O)
and f(00|0..0). Let d be a node of CCC .. Look at the path from 00..0
to d, and the f~images of the nodes on this path. If the path uses an
exchange edge, a divide shift in positive direction or a divide shift
in negative direction, respectively, then the path formed by the f-
images must use the same type -of edge. Hence f(d) is fully determined
by £(0]0..0) and £(00|0..0). o

Corollary 3.4, Let s}r. There are at most Zs.zs coverings of cccr on
cee .
s
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—————

There are s.2° possible choices for £(0}0..0). For £(00|0..0)

there are 2 choices left. D
Lemma 3.5. Let CCCP cover CCCS. Then sir.

Proof.
The number of nodes of CCCS must divide the number of nodes of

cce,. T.e. 5.2%| r.2", sos|r. @
Consider the following graph isomorphisms of CCCS.

1. Let I &{1,..,s}. The function XI does not move the divide, but

flips the bits with index in I:
xI(p1ocopj|pj+.‘oo.ps) = q1.3“oqj'lqj'+1ovoqs<-—->
J=3'; qQ;=P; for all i€I; q; *P4 for all i€l.

2. Let t € {0,..,5~1}. The function St shifts the whole string, the

divide incluis, t positions to the left:
St(p1oonpi|pi+.‘.ops) = pt+1..pi|pi+1..ps p1o-opt
(or, of course, pt+1..fpsp1...pi|pi+1...pt).

3. The function R reverses the string. Notice that the divide is still
placed after the same bit, not between the same bits, as origi-

nally:
R(p1...pi|pi+1...ps) = Ps...pi+1pi|pi,1...p1.

It is easy to check that for every I €{1,..,s}, t € {0,..,s-1}, XI’
St and R are graph isomorphisms (= coverings) of CCCS onto itself.

Corollary 3.6. Every graph isomorphism of CCCS is of one of the fol-

lowing forms:
XI o St (I «{1,..,8}, ostss~-1}

or XI o St o R (I ={1,..,8}, ostss-1}.
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Proof .

The described forms give 2s.2s different graph isomorphisms of
CCCS. Corollary 3.4, shows there cannot be more (every isomorphism is

a covering). 0o
Consider the following function F: cccr »> CCCS:

F(p....p; |p;
! (%/5371 )
&q, = I b . ) mod 2 (for all j, 15jss)
J k=0 ks+]j

and i'=i mod s (i.e. the divide is placed after the i mod sth bit).

---pr_) = q,‘ouuqi' Iqi'+1 .oqqr

Lemma 3.7. F is a covering of CCCP on CCCS.

Broof.

It is clear that F is surjective.

Consider a node p1...pi|p ...pr in CCCr and its 3 neighbours.

i+
From the definition of F it is clear that -each of these neighbours is

mapped upon another neighbour of F(p). o

Theorem 3.8. Every covering f of CCCr on CCCS can be written as f=JoF,
where F is given by the definition above, and J is a graph isomorphism
of CCCS onto itself.

Proof.

Every function of the form JoF is a covering of CCCP on CCCS.
There are 23.2s possible choices for J, so there are 2s.2s possible
functions of this form, It follows from corollary 3.4, that there can-

not be more coverings of cccr on CCCS. u]

4, Coverings of the 4-pin shuffle. Stone [9] proposed a network,

called the shuffle-exchange network, which has been successfully used
as the interconnection network underlying a variety of parallel pro-
cessing algorithms. There are two slightly different types of graphs,
both realizing Stone's concept of a shuffle-exchange network. We use

the terminoclogy of [6] and call these graphs the shuffle-exchange
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(graph) and the U4-pin shuffle,
Nodes in the U4~pin shufle are given n-bit addresses in the range
O..Zn-1. A node b,..b_ has edges to the two nodes b...b 0 and b...b 1
1 n 2 n 2 n

(move the leading bit to tail position and possibly flip this bit).
The following definitions are taken from [2]:

Definition, The 4-pin shuffle is the graph Sns(vn,En) with
0
= <ig o = <i< =
Vy={b,...b | VIZisn b =7} and E «{(b,c)| b, ¢ & V AV2sisn b.=c, .}.
Definition. An emulation f: Sn > S
€ E =(f(b), f(c)) € E,

-k is a step-simulation, iff (b,c)

Lemma 4.1, Every covering of Sn on S is a uniform step~simulation.

n-k
Definition.~Let f: Sn > Sn—k be a step-simulation, f: Sk+1 > S1 is
defined by f(b1nf'bk+1) = f (b QQ.b +1Ofoo)t

1 k

Theorem 4,2, [2] The mapping w, defined by =(f)=f from the step-

simulations' ] + S to the step-simulations S +> S, is a bijec
n n~k k+1 1

tion, with the following further properties:
1. If £ is uniform, then w(f)=f is uniform

2. f(b1...bn)=w(f)(b1...b 1)fn(f)(bz...b )...w(f)(bn_ "'bn)'

k+ K+2 k

Lemma 4,3, Let f cover S, on S, _, . Then:

(1) {£(0 b,..b), £(1 by..b )} = (0,1}, for all b,..b, & (
(2) {f(v,..b, 0), F(b,..b, 1} = {0,1}, for all b

2,

N

oabk 6 ("‘) .

Kk k 1 1

- g~

(1) b,..b 0..0 has predecessors Ob
f(0b1..bk0..0) and f(1b1..bk
different in their first coordinate, because they are both predeces-
ko..O). S0 f(0b1oobk) # f(1b1ltbk)f

(2) is proved by similar argument. ©

1..ka..O and 1b1
0..0) must be different: they can only be

..ka..O. Hence
sors of f(b1..b

So, for coverings f of Sn on S we have that for all x&(%)k-z £(0x0)

n-k
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= £(1x1) = £(0x1) = £(1x0). However, this is also a sufficient condi~

tion for a step-simulation f to be a covering,

Lemma 4.4, Let f: S > be step~simulating, and let for all x&
0.k~-2
(T)

" n~-k
£(0x0) = £(1x1) = £(1x0) = f(1x0). Then f is a covering.

Proof .

Without much difficulty it can be checked that the conditions for

the coverings of directed graphs are fulfilled. w}

So we have a necessary and sufficient condition for a step-simulation
S, * S,-x to Dbe a covering. With the help of this condition we can
completely classify the coverings of Sn on Sn—k'

Theorem 4,5,

]

a. If k=1 then the coverings of Sn on sn—k = Sn—i are the following:
f(b,..b)) = cpoee , with e, = (b; = b, ) (1sisn-1)
f(b1..bn) = CyeeCpy with c; = (bi bi+1) (1gisn-1)
b. If 2sk<n, then every covering f of Sn on Sn—k can be found by
choosing for each string x € (%)kp1 whether
~ £(0x0) = £(1x1) = 0 and £(0x1) = £(1x0) = 1

or - £(0x0) = f(1x1) = 1 and £(0x1) = F(1x0) = O
k-1
c. For every n>kz21 there are exactly 2 coverings of Sn on Sn~

ko

(In [2] it was proven that the functions f: b+b and f: b-b are the

only possible graph isomorphisms of Sn (= coverings of Sn on Sn).)

5. Coverings of the shuffle-exchange network. Nodes in the shuffle-

exchange network are again given n-bit addresses in the range 0..2n’1.

There is an edge from node b to node ¢ if and only if b can be "shuf-
fled" (move the leading bit to tail position) or "exchanged" (flip the
tail bit) into c.

Definition. The shuffle-exchange network is thé graph SEZn = (Vn,ﬁn)
: . 0 ~
= SS E =
with Vv {(o,,..,b )| Visisn b,=7} and E_ = {(b,c)| b,c &V A
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<ig = - <isn~ = =c_
(W2sisn bi=c, , Ab, = c ) or (Visisn-1 b;=c; Ab =c)}.

Theorem 5.1. There do not exists coverings of SE, on SE,  with kin and
k23.

o~ . g -

Suppose k{n, k23 and f is a covering of SEn on SEk' With Rl(b) we

denote the string b "’bnb1 i.e. b rotated 1

1+1{mod n) f'fbl(mod n)’

positions to the left.
Let b e £ (0% 1),

1

Lemma 5.1.1. f£(RE(b)) = RE(£(b)) = R (0¥ 1), for all 120.

——— - g

With induction., For 1=0 the lemma is trivially true. Suppose the

lemma holds for certain 1. Then it holds also for 1+1:

f‘(Rl(b)In_1 (Rl(b))n) must be mutually adjacent to f(Rl(b)), so
must be connected with f(Rl(b)) via the exchange edge (we use that
f(Rl(b)) cannot be of the form (01)n/2 or (10)n/2 (induction

hypotheses)). This shows that f(Rl+1(b)) must be connected with

f(Rl(b)) via- a shuffle~edge, hence f(R1+1(b)) = R’(f(Rl(b)) =
RM™Vrm)). o

k-1

In particular we now have: 0. '1 = f£(b) = f(R"(b)) = Rn(Ok’1

1). So
k|n. Contradiction. o

Theorem 5.2, Let k23, k|n. The coverings of SEn on SEk are given by

the following list:
n/ k=1

esb ) = ( £ b,

)modz (1£igk).
: Jek+i
J=0

t
1. £', defined by fi (b1

n/ k-1

geesb) = R bj'k+i]

— -
2. f', defined by fi (b
J=0

mod2 (15isk).
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Proof .

—— g -

Because On in SEn has a selfloop, and Ok, 1k are the only nodes in

SEk with a selfloop one has for every covering f of SEn on SEk: f(On)
k

= 0 or f(On) = 1k. We suppose we have a covering f of SEn on SEk with

f(On) = Ok, and will show that f is then necessarily of the form f!',

1r £(0™) = 1¥ then f is of the form FT.

Lemma 5.2.1. If £(b) = ' (b) and £(b) & {012, (10)?},
then 1. f(b1...bn_1 bn) = f"(ll)1.,..l)n'1 bn)

= |
2. f(b2-ocbn b1) - f (bzc.cbn b1)

3. f(b, by.eub L) = £'(b byeesd )

-~ g g g

First note f(b,...b . B;) must be mutually adjacent to f(b).
— ‘= ' T Py Y '
Hence f(b1"fbn—1 bn) f (b1f"bn~1 bn). (Use the definition of f'.)
Further use that f(bz...bn b1) must be a successor of f(b), unequal to
v . = f! i
f‘(b1...bn bn)' This shows f‘(b2...bn b1) f (b2...bnb1). Similarly
= f1

Without proof we mention the following result:

Lemma 5.,2.2. For every b&(%)n there is a path from On to b, such that

for every node c on the path, except b: f'(c) & {(01)n/2, (10)n/2}.

(If n is odd, it will of course never be the case that f'(c) €

(on™2, 1oy™2y .

With induction to the length of the path, mentioned in 5.2.2.‘one now

can prove that f(b) = f'(b) for every b €& (%)n. a

6. Complexity results. In this section we consider the following

problem:
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[GRAPH COVERING]
Instance: Connected, undirected graphs G=(VG,EG), H=(VH’EH)

Question: Is there a covering of G on H?

The subproblem of GRAPH COVERING, in which the computation factor
c=|V,|/[Vy| is fixed is called c-GRAPH COVERING. (The related problems
UNIFORM EMULATION and c-UNIFORM EMULATION were addressed and proven
NP~complete in [4,5].) The following lemma shows that 1~-GRAPH COVERING
and GRAPH ISOMORPHISM are virtually the same problem.

Lemma 6.1. [8] Let G=(VG,EG) and H=(VH,EH) be connected, undirected
graphs and |Vg|=|v,|. A function f: Vg > Vy covers G on H iff f is a
graph isomorphism of G on H.

It is still an open problem whether GRAPH ISOMORPHISM is solvable in
polynomial time or not, and whether it is NP-complete or not [7].
Theorem 6.2. shows that c-GRAPH COVERING is at least as hard as GRAPH
ISOMORPHISM, indicating that it will be very hard, if not impossible
to find a polynomial time algorithm for it: any polynomial time algo~
rithm for c~GRAPH COVERING would enable us to solve GRAPH ISOMORPHISM

in polynomial time.

Theorem 6.2. If there exists an algorithm that solves ¢c~GRAPH COVERING
in time < f(|Vv,|); then there exists an algorithm that solves GRAPH
ISOMORPHISM in time S f(|V,|+4)+ O(max tvgls 15l |Eg[1), for every

cz21.

1~ . i e

For ¢=1 this follows from lemma 10.1. Let c22 be given, and let
there exists an algorithm for c-GRAPH C(OVERING that uses time £
£(|vg]), that is: it decides whether G=(V;,Eq) covers H=(V.,E,) in
time at most f£(|vy|).

Now let an instance of GRAPH ISOMORPHISM be given, i.e. we have
two connected graphs G=(V,,E;) and H=(Vg,E.), with |V |=|v,| and
|EG|=lEH| and ask the question whether G and H are graph isomorphic.



- 19 -

We will now define graphs G', H' with IVG'|=[VH!+M, |VG'[=0.]VH‘| and
G' covers H' if and only if G and H are graph isomorphic,

1) L A} \]
To H we add U4 extra nodes v, ,v.' v, vu, with extra edges
1

\j 1 '2 '3 L l)'
), (v3, 1

between v, and every node in VH’ and (v1, v2), (v2, v

(s vp)e (See flga 61

ot ]

and

3

= emm - - -

- i - o o

e b

- e e = BN e e S G EEE . e ® mm - -

fig. 6.1.

G' is formed by taking ¢ copies of G, adding LWc extra nodes v§

(1sigec, 15j54), and adding the following edges:

- vi is connected to every node in the ith copy of G (1sisce)
- vi is connected to v; (1gige) _

- v, is connected to v% and to v (1sisc)

- v; is connected to vuiﬂ)mOd ¢ (151sc)

An example of the construction is shown in fig 6.2., with c=4,
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fig 6.2. G' with c=l

Claim 6.2.1., G' covers H' if and only if G and H are graph isomorphic.

—— . e

Let f cover G' on H‘. Note that the only node with degree lv [+1
in H' is v1. Hence f(v ) = v1 for every i, 1sisc. This shows that the
copy of G, connected to v:, must be mapped upon the copy of H, con-
nected to v1 and f restricted to this copy of G gives a graph isomor-
phism of G on H.

It is easy to see that if G and H are graph isomorphie, then @G
covers H', o

G' and H' can be constructed in time O(max {IV |, IEG|, IEHI}), hence
there exists an algorithm that solves GRAPH ISOMORPHISM in time g

PVl +4) + otmax (|v,|, gy, Byl o

It is an interesting open question open whether ¢-GRAPH COVERING is

polynomially equivalent to GRAPH ISOMORPHISM for c22, and whether it
is NP-complete,



- 21 ~

References

[1] Berman, F., Parallel processing with limited resources, Proc, oOf

t2]

(3]

(4]

(5]

(6]

(71

£8]

[9]

the Conf. on Information Sciences and Systems, pp. 675-679,
The Johns Hopkins University, 1983. '

Bodlaender, H.L. and J. van Leeuwen, Simulation of large networks
on smaller networks, Tech. Rep. RUU-CS-84~4, Dept. of Computer
Science, University of Utrecht, Utrecht, 1984.  (Extended
abstract in: K. Mehlhorn (ed.), Proc., of the ond Ann; Symp.
on Theoretical Aspects of Computer Science (STACS 85), Lecture
Notes in Computer Science, Vol. 182, Pp. 47-58, Springer Ver-
lag, Berlin 1985.) ' |

Bodlaender, H.L. Uniform emulations of two different types of
shuffle exchange networks, Tech. Rep. RUU~CS~-84-9, Dept of
Gomputer Science, University of Utreoht, 1984,

Bodlaender, H.L. and J. van Leeuwen, The complexity of finding
uniform emulations, Tech. Rep. RUU-CS-85~4, Dept. of Computer
Science, University of Utrecht, Utrecht, 1985. A

Bodlaender, H.L., The complexity of finding uniform emulations on
paths and'ring networks, Tech. Rep; RUU-CS-85~5, Dept. of Com~
puter Science, University of Utrechb Utrecht, 1985; '

Fishburn, J.P. and R.A. Finkel Quotient networks, IEEE Trans. on
Comput 0'31 (1982) 288’295.

Garey, M.R. and D.S. Johnson, Computers and Intraetability, a
guide ‘to the 'theory of NP—completeness, W.H. Freeman, San
Francisco, Calif., 1979. o

Reidemeister, K., Einfthrung in die Kombinatorische Topologie,
Friedr. Vieweg & Sohn Akt. Ges., Braunschweig, 1932.

Stone, H.S., Parallel processing with the perfect shuffle, IEEE
Trans, on Comput. C-20 (1971) 153-161.






