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Abstract: We define two principles to obtain dynamizations of decomposable
searching problems, both based on a general formalism for number systems.
The first class enables us to obtain low insertion times, while the query-
time stays reasonable, and the second class enables us to obtain low
query-times, while keeping the update time reasonable. We also give a

general deletion technique for these methods.

Keywords and phrases: decomposable searching problems, dynamization,

number systems.

1. Introduction.

In the past two years, much effort was made to obtain general dyna-
mization methods for classes of problems. Bentley [ 1], and later Saxe and
Bentley [4], defined the class of so-called decomposable searching
problems, for which such general techniques indeed exist. A searching
problem is a problem in which a question (query) is asked about an object
of type T1, with respect to a set of points of type T2, with an answer

of type T3.

Definition 1.1. A searching problem is called decomposable if and only if
2

V x € Tl, A, BE 2T Q(x, AUB) = 0 (Q(x, A), O(x, B))
3

for some efficiently computable operator O on the elements of T

For a decomposable searching problem we may split a set of points into
subsets, and can derive the answer to a query from the answers to the

same query on the subsets without much additional cost. Saxe and Bentley [4]
gave several examples of general dynamization methods, based on different
ways of partitioning a set. Typically a set is partitioned in different
size subsets and each subset is represented as a static structure (a block).
When a new point is inserted, a new structure for it is initiated, or

perhaps a small block is rebuilt with the new point included.
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After sufficiently many insertions, a number of small blocks are taken
together and are rebuilt into one single, larger block. The cost for
this "rebuilding" can be averaged over the preceding insertions and
will not be excessive, as rebuildings of larger blocks will occur less
often. All these methods are based on a way of counting in a number system,
with blocks instead of digits.

We will define two main principles for obtaining dynamization methods,
based on a general formalism for counting, to obtain a more uniform
theory. In section 2 we shall describe the formalism for number systems
we need and give some examples of known counting techniques that belong
to it. In section 3 we shall define two general classes of dynamization
methods based on this frame work. One class permits us to lower insertion
times arbitrarily, and the other permits us to lower query times arbitrarily.
We also give some examples of specific dynamization methods that belong
to the classes. The methods of section 3 are only able to handle insertions.
In section 4 we will show how, for a relevant subclass of decomposable
searching problems, known deletion techniques apply here just as well.

Throughout this paper we will use the following notation:

QS(N)= the query time for a static structure with N points

PS(N)= the time required to build a static structure of N points

QD(N)= the query time for a dynamic structure of N points

ID(N)= the average insertion time over N transactions on an initially
empty structure.

DD(N)= the average deletion time over N transactions on an initially
empty structure (when applicable).

We assume that QS is nondecreasing and that Egjj?S Ps(j) for i s j.

i ER

2. A general way of counting.

421 and b={loj}j21

of positive integers, with a increasing, such that every number n2 0 can be

Most number systems are based on two sequences a={aj}

written as

n= X n.,a with 0 <n, £b
>0 33 3773

in at least one way.

For instance, in the decimal number system one would have: aj=10j-1 and
bj=9' The nj are just the "digits" in the particular number system that
is chosen. We would like number representations to be unique, i.e.,such

that every n can be written in exactly one way as j§0 nj aj.
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We recall a wellknown fact about mixed radix number systems (cf. Knuth [2],
p 175).

Theorem 2.1. A number representation is unique and complete if and only if
i-1
a= T (b,+1) (provided we define b, = 0) for all i > 1.
i =0 3 0

It follows that a number system is completely determined by the sequence
i-1 i~1
b only. Observe that a,= T (b,+1) implies that a.= X (b,a,) + 1.
iy 3 R A
3=0 =
By choosing different sequences b one can obtain many different number

systems.

Examples:
i-1
a) b,=1 for all i » o. In this case a,=1 and a.= 2 =2 .
1 1 i j=1

Hence the number system is the wellknown binary number system.

i-1 i-1
b) bi=k—1 for all i > 0., It follows that a,= m (bj+1) =M k = ki-l.
j=0 i=1
Hence we get the k-ary number system.
i-1
c) bi=i for all i. This is a more interesting example . It has a= M (j+l)=141!
3=0

It is the so called factorial number system (cf. Knuth [ 2] P175).

d) b1= @, In this case a1=1 and the a; (1>1) are "undefined", and every

n can be written as n=n1.1 . The number system is the familiar unary

number system.

3. Two classes of dynamization methods.

In this section we will use the general framework of counting, described
in section 2, to obtain two classes of dynamization methods for decomposable
searching problems. We shall only consider insertions, for the time being.
The first class is constructed in such a way that low insertion times
are achieved.

i-1
Let b be the defining sequence of a number system and let a. = T (b +1).

i j=0



The dynamic system we will use consists of "bags" BAI' BA2, .-« in which
BAi contains at most bi static structures Bi (called blocks) of size ai.
Recall that every number n can be written in exactly one way as

n=§ njaj with nj < bj' So for every n there is exactly one structure
that contains n points, namely the structure in which every BAj contains

just nj blocks (j 2 1). See fiqure 1.
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We will call a bag BAi full if it contains bi blocks and we will call
it empty if it contains no blocks. When we want to insert a point in a
dynamic structure of n points, we will have to change it into the
structure of n+l1 points. When we look at the number system, we see
that adding 1 means a) finding the first n, with n, < bj’ b) setting

n, ...nj_1 to 0 and c) adding 1 to nj. When we want to insert a point p

into the structure, we will proceed in a very similar way and first

determine the smallest j for which BAj is not full, empty BA1 ...BAj_1

and build a new Bj of the points from BA and p (it are

... BA,
j=

1 1

exactly a, points).

3

Theorem 3.1. Let ai < N < ai+1. The dynamic structure described above

b, Q9 _(a,), and an average insertion
1 383

i
has a querytime of QD(N) < Zz
j=
i
time of ID(N) <X P (a.)/aj.

=1 °



- o

ai+1, BA_i must be

empty for all j > i. Every BAj (j £ i) contains at most bj blocks of

Let us first consider the querytime. Because ai <N«

size aj each. When we want to perform a query over BAj we have to perform
the query on every block in BAj, which takes at most bj Qs(aj). Hence, a query
i
over the whole structure takes at most Z b.Q_(a.).
=1 178 3
To obtain a bound for the average insertion time consider what happens
when we insert a point p. Most of the time BA1 will not be full, so we
can just build a structure consisting of p only and put it in BA1 (a1 is
always 1). Sometimes we have to take some bags together and must build
a new structure out of their points. Note that in such a case all points
are moved into a higher indexed bag. Building a block B, (j < i) takes
Ps(aj). When we divide the cost over the points a block is built from,
each point is charged Ps(aj)/aj when it moves into a larger block.

Since no bag beyond BAi can be filled, the total charge per point is

i i
z PS(a.)/a.. Hence the average insertion time is bounded by X Ps(aj)/aj.
j=1 J J j=1

=]
One easily verifies
Corollary 3.1. Let a; <N < a41° The dynamic structure described above

has a querytime of QD(N)S bi QS(N), and an average insertion time of

=1

u M e

ID(N) < i PS(N)/N.

Let us look at some examples again.

a) bi = 1 for all i > 0. In this case ai = 21“1 (See section 2). If
i
i =0 b =3i=0 .
a; <N < a4 then i (log N) and §=1 3 i (log N). It

follows that the dynamization method based on this counting system

achieves

QD(N) < 0(1log N) QS(N)
ID(N) <0 (log N) PS(N)/N

It is the binary method of Saxe and Bentley [4].



. . _i-t
b) bi = k-1 for i > 0. It yields a; = k . If a; <N < 417 then
k 1 k
i =0("log N) and £ b, =0(k log N). Hence
j=1
0 (M) <ok Xlog N) O_(N)
D ~s

k
ID(N) <o( "log N) PS(N)/N

c) b, =i for all i 20, In this case a, = il. Let a, < N < a , i.e.
i i i i+1
il € N < (i+1)! One easily verifies from Stirling's formula that
necessarily i = O dog N ___ . Hence a dynamization based on this
log log N

system achieves

log N 2

QD(N) =0 ((log log N > QS(N)
lgﬂ N

ID(N) <0 ( Tog Tog N > PS(N)/N

d) bi = o, In this (degenerated) case one always has i = 1. Of course,

the number of Bl-structures is always at most N, and in this case

it is exactly N. Thus the method achieves (because a; = 1)
QD(N) < O (N) Qs(l)
< =
ID(N) <1, PS(I)/l Ps(l)
e) b, = 2'-1 for all i > 0, Then a, = A7t Lot g = U g
a, <N < ay,q° then obviously i < V2 log N +1.
i V2 Tog N+1 | R
Also X b, £ 0 (Z 23—1) = 0 ( 2\/2 log N) . Hence
j=1 j=1
o, (M s 0 (2“2 log N) Qg (M)

ID(N) < 0 (Vlog N ) PS(N)/N

There is a relation between the multiplicative factor of QS(N) and

of PS(N)/N in theorem 3.1 which is worth noting.

Theorem 3.2.Let f(N) be an increasing function with £(1) = 1 and lim f = o,

Let f_1 be the inverse of f. There exists a sequence b such that the

dynamization method implied by b achieves an average insertion time of
ID(N)

O(£(N) pS(N)/N), while the querytime remains at

£N) sp -1
0 (N) = o(g(N) Q_(N)) for g(N) € % £ G0 ),
D s =1\t



Proof. -1 i=1 i-1 p -1
Let b, = E:Tiiil) -1 for i > 0. Then ai =M (b+1) =1 [f_l( +1) 2> f-l(i).
ol j=0 J 3=0 | £ (3

-1
Hence, if a; <N < a1 then f (i) £ Nand i < £(N). It follows that

I, (N) =0 (i P (N)/N) = O (£(N) P (N)/N)
1 £(N) -1,

0, =o( T b, QS(Nﬁ = o((z £ _{l) -1) QS(N))
j=1 7 / j=t | £ (3)

Note that the estimate on g{(N) in theorem 3.2. is rather crude and can become
very large for "small" f£. One can choose many other b's in the proof of 3.2.
and obtain similar results, with sharper estimates perhaps when explicit
formulae for £ and b are known. Theorem 3.2. shows that the multiplicative

factor for PS(N)/N can be made arbitrarily "small".

Because bi > 1 for all i, the multiplicative factor of the querytime in
theorem 3.1. is always greater than (or equal to) the multiplicative factor
of PS(N)/N. So, to obtain a method with lower querytime we have to use
anaother dynamization. To this end we introduce a second class of methods,
again based on the general formalism for number systems described in
section 2. We again divide the points over bags BAl' BA2, ... but, in-
stead of allowing several blocks in each bag, we now require that each
bag BAi contains just one block, that has size niai for some integer
0 < n, < bi‘ Hence, when n = % njaj, we have a block of. size n1a1 in BAI'

a block of size n,a, in BA2, etc. See figure 2.

171 2

1 Figure 2

BAj is called full if it contains a block of size bjaj and empty if it
contains no points.



Inserting a new point p proceeds in almost the same way as in our first
model. We determine the smallest j for which BAj is not full. We empty all
BAi with i < j, but, instead of adding a new block to BAj like we did
before, we rebuild the current block in BAj together with the points

from BAI,...,BAj_1 and p into a single larger block. Because the number
of points in BAl,...,BA.

5~ and p is exactly aj and BA, contained a block
<

1 J
bj’ we obtain a new block in BA, of size (n,+1)a

3 3

with size n.a, with n.
J3J J

3
which is legitimate.

Theorem 3.3. Let a; <N < ai+1. The dynamic structure described has a

querytime of QD(N) <i QS(N) and an average insertion time of

i
ID(N) < §=1bj PS(N)/N.

Because a; <N < a ,_BAj is empty for j > i. Hence at most the first

i bags can contain pizits. Every bag contains at most 1 block. The size

of every block is at most N so the querytime is at most i QS(N). To obtain
a bound for the average insertion time, we again look at the number of
times a point gets built into a structure. The first time p gets in BAj,

it is built into a block of some size njaj. After another aj insertions this
block will have to be rebuilt and gets size (nj+1)aj. This can happen at
most bj times, because when BAj gets full p is moved into a higher indexed
bag. Hence, in every BAj, a point can be built at most bj times in a block.

Because ai £ N« ai+1, every point cannot be built more than

i

Z b, times in a block. Dividing the cost for building a block over the
i=1 i
points it is built from yields a total charge of at most ¥ b, P_(N)/N

3=1 3 S
i
per point. Hence the average insertion time is bounded by I bj PS(N)/N.
i=1

Note the duality between this theorem and theorem 3.1. (corollary 3.1.).
Whe we use this dynamization, it is easy to see what it yields in our

examples, since we can just swap the multiplicative factors of QD and ID.

a) b.,=1 QD(N) =0 (log N) QS(N)
ID(N) =0 (log N) PS(N)/N

b) b.= k-1 Q) =0 K109 M) 05 (W)
ID(N) =0 (k kZl.og N) PS (N) /N



. _ ‘log N
) by =4 N = ;E;;i;@rﬁ) s
_ log N )2
ID(N) o((log log N ) PS(N)/N
d) b, =o Q) = Qg (N)

=0 = 0
ID(N) (N) PS(N)/N' G(PS(N))

0 () =0 (V log N) Qg (M)

=0(2\/ 2 log

|
I (N) ) Pg (N) /N

Also theorem 3.2. can be adapted to the dual situation.

Theorem 3.4. Let £(N) be an increasing function with £(1) = 1 and lim £ = ¢
Let f_l(N) be the inverse of f(N). There exists a sequence b such that the
dynamization method implied by b (in the second manner) has a querytime

of QD(N) < 0 (£(N) QS(N)) and an average insertion time of

EM) re-l g,
I (N) $0(g(N) P_(N)/N) where g(N) < X LSS LE T B N
S 3=1 \J£719)

— e

The proof is completely similar to the proof of theorem 3.2.

a

The general counting system we have described does not cover all known
number 'systems. For instance, the binomial counting system, as used by
Saxe and Bentley [4], does not fit into this scheme. To accomodate such
number systems also, we have to allow the bi to be a function of both

i and N. We intend to investigate this at some later time.

4. Accomodating deletions.

Until now we have only considered insertions. Often one also would like
to delete points from a set (and thus from the structure). The condition
of decomposability of a problem is too weak to obtain a general structure
with both a reasonable querytimer and a reasonable average deletion time
(cf. Saxe and Bentley [4]), and one has to put some more restrictions on
the problems to handle them in a sufficiently general way. A first attempt
in this direction was made by Saxe and Bentley [4]. The problems they
considered were later renamed into "decomposable counting problems" by

van Leeuwen and Maurer [5].
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Definition 4.1. A decomposable searching problem is called a decomposable
counting problem if and only if for any set of points S and any subset
S' of S, the answer Q(S/S') can be synthesized at only nominal extra

cost from Q(S) and Q(S').

Given a decomposable counting problems, it is not necessary to perform
deletions immediately when they occur. We can buffer them in some way for
a while. Saxe and Bentley [4] describe how this property can be used to
obtain a deletion strategy for the dynamizations they describe, which
is fast on the average. The idea is to implement the buffer as just another
dynamic structure of the same kind, as a "ghost-structure”, containing all
deleted points. Insertions are always performed on the primary structure and
are processed as usual. When the size of the ghost-structure becomes
half the size of the primary structure, one builds a completely new
structure of all points currently left and throw away all deleted points.
So the ghost-structure becomes empty again. One can easily see that this
technique applies not only to the methods described by Saxe and Bentley [4]

but to all methods we have characterized in this paper.

Theorem 4.1. Given a decomposable counting problem and a dynamization
method with an average insertion time of O(f£(N) PS(N)/N), there is a way

to perform deletions in average time O(f(N) PS(N)/N) as well (for f(N)2 1).

We use the method to perform deletions described above. Usually, performing
a deletion consists of inserting a point into the ghost-structure. Because
the ghost-structure is smaller than the primary structure, the time needed
will be less than its insertion time, i.e.,at most o(f(N)PS(N)/N). But
sometimes we need to rebuild the complete structure after a deletion.
This takes at most Ps(k) were k is the number of points left in the
structure (using that PS is at least linear). Divided over the number of
deletions since the last rebuilding, which is k too, this makes for an

Ps(k) PS(N)
extra charge of X < N per deletion. Note that we no longer "count"

in a monotone manner in the primary structure, but this can be shown not to

affect the time-estimate on insertions by more than a constant factor
(c£. [5D.

a

Another class of decomposable searching problems for which one can
process deletions efficiently was defined by Overmars and van Leeuwen (31,

later redefined in a slightly more general way by van Leeuwen and Maurer {5].
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Definition 4.2. A decomposable searching problem, together with a static
data-structure S for it, is called a DD-searching problem if and only

if S allows one to delete arbitrary objects or to replaced them by some

kind of dummy object that will not affect later queries, without causing
an increase in the future deletion ar querytime. Let Ds(n) be the time

needed for such a "deletion" in a structure of n points.

Note that the querytime may remain unchanged, despite the fact that more
and more points get deleted from S (the structure will go "out of balance").

(Vvan Leeuwen and Maurer [5] call these problems RD-decomposable.)

Theorem 4.2. Given a DD-searching problem and a dynamization method of
the sort described above, one can perform deletions in o(Ds(N) + PS(N)/N)

average time, without changing the bounds on the query and insertion time.

We will only give a brief sketch of the method suggested in [S].
When we want to delete a point we first locate the block it is in
and delete it (or replace it by a dummy). We ignore the time for any
dictionary look-~up needed. The deletion of the point from its block
takes at post DS(N). When the proportion of dummies in the whole
structure has become too big as a result of the last deletion, then we
rebuild the complete structure. This takes at most PS(N), which makes
O(PS(N)/N) per deletion. Because the number of dummies is kept less than
a constant fraction of the total number of points the average insertion

and querytimes can be shown to remain essentially unaltered.

a

One can show that the deletior time is in fact O(D_(m) + Ps(m)/m) where
m is the maximal number of points in the set at any time. Some interesting

examples of DD-searching problems can be found in [3] and [5].

Overmars and van Leeuwen [3] also define a subclass of decomposable
searching problems, called MD-searching problems, for which a merging
technique can be used to obtain even faster insertions. This technique
can also be used for our second class of dynamization methods to save a

factor of log N in insertion time for MD-searching problems.
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