Agents in Organisations:
Autonomy, Regulation and Interaction

Frank Dignum
Huib Aldewereld
Virginia Dignum
M. Birna van Riemsdijk

July 11-12, 2011
EASSS 2011

Agenda

DAY 1
• Welcome
 – Tutors
 – Expectations
• Introduction
 – Background
 – Regulation vs autonomy
 – Existing models
• Agent-Centred organizations
 – Components of organization
 – OperA framework

DAY 2
• Organization-aware agents
 – Architectures
 – Support tools
• Applications
• Challenges
 – Reorganization
 – Implementation complexity

July 11-12, 2011
EASSS 2011
Welcome

• Huib Aldewereld
• Frank Dignum
• Virginia Dignum
• Birna van Riemsdijk

Expectations

• Your background
• Your experiences with organization models
• What you hope to get from this tutorial
INTRODUCTION

Motivation: commons

- Common goods: “The Tragedy of the Commons” (Hardin, 1968)
 - an important class of goods that conventional markets do not handle well
 - A resource is shared
 - None has an incentive to restrict their consumption
 - Yet over-consumption will exhaust the resource
 - Examples: water, pasture, fish, bandwidth
- A generic problem without a generic solution.
 - For a detailed set of case studies see “Governing the Commons” by Elinor Ostrom (Ostrom, 1990)
Motivation: governance

- (Good) governance: evaluating risks and monitoring compliance
- How can component actions be regulated without compromising their integrity or revealing information?
 - Contracts: service level agreements
 - Monitoring/Auditing framework
 - Roles, powers, permissions, authentication
- Software system evolution:
 - closed \rightarrow semi-open \rightarrow open
 - Organization structures are a non-invasive way to constrain software components in open architectures

Agents versus Organizations

- Agents \rightarrow Autonomy
 - Agents are motivated by their own objectives, beliefs...
 - may take up organizational role if it serves their purposes
- Organization \rightarrow Regulation
 - Organizations (too) have their own purpose
 - Exist independently of the agents populating it
Need for organization

• Do agents need organizations?
 – Do agents need to know/reason about the organization?

• Do MAS need organizations?
 – Interaction in MAS cannot be based in communication alone
 – MAS engineering require high-level agent independent abstractions
 ➔ Explicit social concepts defining the society where agents live

Relevance - 1

From the agents’ perspective, organizations:
• Insure a better integration of the agents in the system
• in order to better adapt themselves to change
• Delegation of tasks/beliefs between the agents
 – coalitions, teams, alliances...
 – That is (organizational) structures that need to be represented or exploited

• Despite or Thanks to
 – Multiple limitations : Cognitive, Physical, Temporal, Institutional,
 – Autonomy of the agents
 – The different organizations the agents take part in
Relevance - 2

From MAS perspective, organizations
- insure global behavior at the MAS level
 - In terms of cooperation, collaboration, ...
 - To be sure that the global goals of the system or collective instance are achieved
- represent observed patterns of interaction
- Despite or Thanks to
 - Multiple limitations: Cognitive, Physical, Temporal, Institutional,...
 - Autonomy of the agents
 - Descriptive or prescriptive view

Regulation versus Autonomy

- Regulated, or directed, behavior
 - Pre-determined behavior, external to agent:
 - Lack of agility
 - Do not consider differences in individual capabilities
 - Strict obedience to rules often does not get work done
- Autonomous behavior
 - Ability to make decisions about own activity
 - Individual rationality is insufficient to deal with social behavior (helpfulness, greater good, ...)
 - (Informal) structures are necessary for coordinating processes and stability
Regulation and Autonomy

• Can we have the best of both?

• Combination of individual rationality with laws of social interaction

Regulation with autonomy

• **Internal autonomy requirement:** Specify organization independently from the internal design of the agent
 – Enables open systems
 – Heterogeneous participation

• **Collaboration autonomy requirement:** Specify organizations without fixing a priori all structures, interactions and protocols
 – Enables evolving societies
 – Balances organizational needs and agent autonomy
Agent organization: Main features

- Make a clear distinction between description of organization and description of agents
- Agents are
 - dynamic, autonomous entities that evolve within organizations
- Organizations
 - Are regulative environments that constrain the behaviors of the agents
 - or: may appear as the result of agents’ activities

Requirements for agent organization models

- Reflect and support organizational needs/choices
 - Structure: roles, norms, interaction
 - Strategy: Global goals and requirements
 - Dynamics, open environments
- Satisfy internal autonomy requirement
 - Interaction structures are not completely fixed in advance
- Satisfy collaboration autonomy requirement
 - Explicit agreements concerning individual performance and interaction
Important

- individual agents will not work together just because they happen to be together
- organizational systems have global requirements and goals

- model must balance organizational aims and agent desires
- need to predict/verify overall behavior
 - describe expected behavior independently from agents: roles, scripts
 - describe enactment agreements: contracts

Models for organizations: top-down regulation

- specification
- implementation
Models for organizations: bottom-up autonomy

organization

Emerging / observed

individuals

Implementation

Models for organizations: balance autonomy and regulation

organization

landmarks

instantiation

Dynamic Specification

individuals
Components of organizations

- **Entities** (roles, positions, people, groups, components, ...)
- **Relationships** (networks, interactions, coordination ...)
- **Goals** (purpose, intention, shared, ...)
- **Norms** (culture, rules, ...)
- **Environment** (physical, social, open, dynamic, restrictive...)

Approaches - 1: e-institutions

- **Common Ontology and language**
- **Agents play roles in fixed protocols:**
 - governors
- **Norms:**
 - Constraints, cannot be violated
AMELI architecture

- **MEDIATION**
 - To facilitate agent communication within scenes.

- **COORDINATION AND ENFORCEMENT**
 - To guarantee the correct evolution of each scene.
 - To guarantee legal movements between scenes.
 - To control the obligations participating agents acquire and fulfil.

- **INFORMATION MANAGEMENT**
 - To facilitate the information agents need in the institution.
Approaches - 2: MOISE+

- **Main Components:**
 - Organisation Modelling Language
 - Organisation Management Infrastructure
 - Organisation-awareness agent mechanisms

- **Middleware for MAS:**
 - artifacts for detecting norm compliance and help coordination
Approaches - 2: MOISE+

- Declarative specification
 - Structural dimension
 - Functional dimension
 - Deontic dimension
- collecting and expressing: constraints, norms, cooperation patterns

MOISE

<table>
<thead>
<tr>
<th>role</th>
<th>deontic</th>
<th>mission</th>
<th>T</th>
<th>FT</th>
</tr>
</thead>
<tbody>
<tr>
<td>back</td>
<td>obliged</td>
<td>m1</td>
<td>1 day</td>
<td>get the ball, go to ... kick ...</td>
</tr>
<tr>
<td>left</td>
<td>obliged</td>
<td>m2</td>
<td>1 day</td>
<td>be placed at ... kick ...</td>
</tr>
<tr>
<td>right</td>
<td>obliged</td>
<td>m3</td>
<td>1 hour</td>
<td>kick to the goal, ...</td>
</tr>
<tr>
<td>attacker</td>
<td>obliged</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

norms (hard constraints)

structure

functioning

Key

July 11-12, 2011
EASSS 2011
Multi-Agent Organizations

- Organization exists independent of agents
- Roles used as positions
- System open for new agents
- Characteristics:
 - Result determined by combining global and individual goals
 - Social aspects determine balance between goals
 - Ontology needed
 - Explicit organizational knowledge

Organization is the leading abstraction
Organizational Modelling

OPERA

OPERA Model

• Organizational Model
 – represents organizational aims and requirements
 – roles, interaction structures, scene scripts, norms

• Social Model
 – represents agreements concerning participation of individual agents (‘job’ contracts for agents)
 – rea = role enacting agent

• Interaction Model
 – represents agreements concerning interaction between the agents themselves (‘trade’ contracts between reas)
Organizational Model

- **Social Structure**
 - roles, groups, dependencies

- **Interaction Structure**
 - scene scripts, connections, transitions

- **Normative Structure**
 - role, scene and transition norms

- **Communication Structure**
 - communicative acts, domain ontology

Social Model

- **Role negotiation scenes**
- Individual agents have own goals and requirements, that not necessarily meet role specification

- **Social Contract**
 - describes a specific agreement for a role enacting agent (rea)
 - Meets organizational expectations
 - Incorporates individual behavior
Interaction Model

- Script negotiation scenes
- Interaction contract
 - describes a specific performance of a scene
- Scene Instantiation
 - Reas are not exactly as the role descriptions
 - Describe the specific interaction protocol realizing landmarks and incorporating rea capabilities

OPERA

- Social commitment
- Interaction commitment
- Interaction pattern
- Interaction Model
Designing OPERA models

- Organizational goals imply different requirements concerning coordination
- Analysis and facilitation of social context
 - Organizational Model
 - Flexible structures: landmarks
- Analysis and facilitation of individual context
 - Social model: instantiation to individual requirements
 - Interaction model: protocols

OPERETTA and OPERA
OPERETTA: Components

- SS editor:
 - Social model specification (Roles, objectives, dependencies)
- IS editor:
 - Interaction model specification (Scenes, transitions, evolution)
- Graphical view and tree view
- Reorganization tracker
 - Building reorganization scripts
- Model validator
 - Checking model integrity, ensuring correct specifications
Example: Conference organization

- Objective:
 - Realize a scientific conference

- Organizational requirements
 - Separation of duties between program and local organization
 - Ensure scientific quality
 - Ensure large attendance
 - ...

- Agent requirements
 - Present own research
 - Receive information about new research development
 - Network
 - ...

Methodology (1)
Designing the Coordination

- Identify (functional) requirements
 - Identify global functionalities and objectives of society

- Identify stakeholders

- Create role tables
 - Important parties in achieving the organizational objective
 - Relations between parties

Social Structure
Scenario: Conference organization

- Modeling the organization of a conference
- Stakeholders
- Objectives
- Dependencies

<table>
<thead>
<tr>
<th>Role</th>
<th>Objectives</th>
<th>Dependencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author</td>
<td>Paper accepted</td>
<td>Program chair</td>
</tr>
<tr>
<td>Local organizer</td>
<td>Successful conference</td>
<td>Program chair, Participants...</td>
</tr>
<tr>
<td>Program chair</td>
<td>High quality conference</td>
<td>Authors, reviewers</td>
</tr>
<tr>
<td>Reviewers</td>
<td>Quality papers, independent eval</td>
<td>Program chair</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Roles

- Roles indicate important parties
- Sub-objectives are identified by means-end analysis
- Role dependencies identify interaction between roles, leads to scenes

<table>
<thead>
<tr>
<th>ROLE DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Role id</td>
</tr>
<tr>
<td>Objectives</td>
</tr>
<tr>
<td>Sub-objectives</td>
</tr>
<tr>
<td>Rights</td>
</tr>
<tr>
<td>Norms</td>
</tr>
<tr>
<td>Type</td>
</tr>
</tbody>
</table>
Creating the Social Structure

Role example
Methodology (2)
Designing the environment

• Identify organizational norms
 – Responsibility analysis
 – Resource analysis
 – Trigger analysis
 – Norm specification
 – Sanction specification

• Communication:
 – Model Ontology
 – Concrete domain ontology
 – Generic communication acts

Normative & Communicative Structures

Norms

• Statutes: Abstract norms
 – Main objective of the organization,
 – Values that direct the fulfilling of this objective
 – Context
 – E.g. Fairness of exchange

• Concrete norms
 – Protocols and Rules: enable agents to comply with organizational norms
 – Constraints: cannot be violated
 – Regulations: agent can decide

• Counts-As connects Abstract-Concrete
Communication Dimension

• Abstract Level
 – Generic Terms
 • Incontextual concepts
 – Model Ontology
 • concepts of the framework itself
 • E.g. norm, rule, role, group, violation, landmark...

• Concrete Level
 – Concrete domain ontology
 – Generic communication acts

Scenario: ontology and norms

• Ontology for the conference organization
 – Author, paper, session, review, PC-member, website, deadline, notification, proceedings, ...

• Norms in the conference organization
 – Role: PC-member cannot review own papers
 – Interaction: Session chair can stop presentation if too long
 – Global: English language must be used for all communication
Creating the Environment

– Communicative structure build *automatically*;
– Or via importing existing domain ontology

Methodology (3)

Defining interaction

• Scene scripts
• Structure interaction
 – Partial ordering of scenes
 – Relationships between scenes
 • Causal dependency: Sequence of scenes
 • Synchronization: AND relation between scenes
 • Parallelism: OR relation between scenes
 • Instantiation: new scene instances

Interaction Structure
Scene script

<table>
<thead>
<tr>
<th>SCENE DEFINITION</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Scene identifier</td>
<td>From role dependency</td>
</tr>
<tr>
<td>Roles</td>
<td>Participants in scene</td>
</tr>
<tr>
<td>Description</td>
<td>Textual description</td>
</tr>
<tr>
<td>Results</td>
<td>Objectives of scene -> relate to role dependency</td>
</tr>
<tr>
<td>Patterns</td>
<td>Partial ordering of landmarks to achieve result, for each scene result</td>
</tr>
<tr>
<td>Norms</td>
<td>From norm analysis</td>
</tr>
<tr>
<td>Rationale</td>
<td>Further information</td>
</tr>
</tbody>
</table>

Creating the Interaction Structure
Methodology (4)
Validation

• Validation checks:
 1. Meta-model constraints
 (is the model an instance of the meta-model?)
 2. OperA specific constraints
 (is the model a correct OperA model?)

• Validation intended as design-assistance
Model Tracker

- Design support for reorganization
- Tracks changes to model
- Formal change operators
- Can set milestones to mark important design states
- Exports to change scripts

Advantages

- Full separation between organizational and agent design
- Full MDE
 - Support for integration with other models
- Intuitive concepts and interfaces
 - Enables rapid, collaborative prototyping, with stakeholders/domain experts
- Flexibility
 - Landmarks as alternative to protocol specification
- Integrity
 - Formal language based on deontic, temporal logic
Conclusions

• Organizations are first-class entities in the development of agent systems
• Balance organizational and individual requirements
• Agent autonomy: role performance

• OPERA: organization design framework following these principles
• OPERETTA: modelling environment for OPERA

• More information / download:
 – http://www.operetta-tool.nl/