
Polish Parsers, Step by Step

R. John M. Hughes
Computing Science

Chalmers University of Technology
SE-412 96 Gøteborg, Sweden

rjmh@cs.chalmers.se

S. Doaitse Swierstra
Institute of Information and Computing Sciences

Utrecht University P.O. Box 80.089
3508 TB Utrecht, the Netherlands

doaitse@cs.uu.nl

ABSTRACT
We present the derivation of a space efficient parser combi-
nator library: the constructed parsers do not keep unneces-
sary references to the input, produce online results and effi-
ciently handle ambiguous grammars. The underlying tech-
niques can be applied in many contexts where traditionally
backtracking is used.
We present two data types, one for keeping track of the

progress of the search process, and one for representing the
final result in a linear way. Once these data types are com-
bined into a single type, we can perform a breadth-first
search, while returning parts of the result as early as possi-
ble.

Categories and Subject Descriptors
D.1.1 [Programming Techniques ]: Applicative (Func-
tional) Programming

General Terms
Algorithms

Keywords
parser combinators, breadth-first search, Polish representa-
tion, ambiguous grammars, online results, GLR parsing

1. INTRODUCTION
A basic parser combinator library can be formulated in a

few lines (see figure 1, [1]). We use the interface described
in [4]:

• p <*> q parses p followed by q , where p returns a func-
tion that is applied to the result of q in order to con-
struct the result of the sequential composition

• p <|> q parses either p or q

• pSucceed v is a parser that immediately succeeds with-
out accepting any input and returns v

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICFP’03, August 25–29, 2003, Uppsala, Sweden.
Copyright 2003 ACM 1-58113-756-7/03/0008 ...$5.00.

• pFail is the unit of <|>

• pSym s is the parser that recognizes the symbol s and
returns this s

• f <$> p applies f to the result of parsing p,

• p <* q parses a p and recognizes a q and returns just
the result of p, and

• c <$ p parses a p but just returns c.

Note that this is not a monadic interface.
Such simple libraries thus far always have had some short-

comings:

1. Backtracking implementations based on the list of suc-
cesses method keep a reference to the full sequence of
input tokens, until it has become clear that no further
alternatives will be found.

2. Parsers only start producing a result once the complete
input has been examined, and thus do not exhibit on-
line behaviour.

3. Simple backtracking implementations are grossly in-
efficient when dealing with ambiguous grammars; for
each possible parse for a part of the text, the rest of the
text is parsed once. This becomes immediately clear
if we look at the code for the sequential composition
of two parsers: p <*> q . If the parser p can succeed in
several different ways by consuming the same prefix of
the input, the parser q is called once for each of those
successful parses of p, with the same remaining input
as argument.

As a consequence of the first two points the constructed
result and the initial input are both present in memory once
a complete parse has been found. This is highly undesirable
if we process input that represents a long list of similar items
such as a bibtex file, or when we describe a lexical scanner
that returns a list of input tokens. In such situations we
do not want first read and recognize a complete input file
before producing any output: output should be produced as
soon as an individual element has been recognized.
If the grammar is LL(1), as required by the parsers de-

scribed by Swierstra and Duponcheel [6], this problem does
not occur, since it is a property of the grammar that once
a successful alternative is taken, backtracking will not find
other possible parses and can thus be avoided; as conse-
quence references to the input have not to be preserved and



infixl 3 <|>

infixl 4 <*>, <*, <$, <$>

type Parser a = String → [(a, String)]
(<|>) :: Parser a → Parser a → Parser a
(<*>) :: Parser (b → a) → Parser b → Parser a
pSucceed :: a → Parser a
pFail :: Parser a
pSym :: Char → Parser a

pSucceed v inp = [(v , inp)]
pFail = [ ]
(p <|> q) inp = p inp ++ q inp
(p <*> q) inp = [(f a, rr) | (f , r) ← p inp

, (a, rr) ← q r
]

pSym a inp = case inp of
(s : ss) → if a ≡ s

then [(s, ss)]
else [ ]

[ ] → [ ]

f <$> q = pSucceed f <*> q
p <* q = const <$> p <*> q
f <$ q = const f <$> q

Figure 1: Backtracking implementation

the constructed result can be returned as it is being pro-
duced. For non LL(1) grammars the problem can be par-
tially cured by assuming that by default no backtracking has
to take place, and to require explicit annotation in the code
where a longer look-ahead is needed (the try construct in
the Parsec library [3])1. This works well for grammars that
are (almost) in the LL(1) class, provided the programmer
of the parser indicates explicitly at which points the LL(1)
assumption does not hold. As with placing cut clauses in a
Prolog program, this requires a grammar analysis from the
side of the user of the library. Sometimes this is easily done,
but it can also be a complicated and error prone process,
and is in any case something the writer of the parser has to
be continuously aware of.
In an earlier paper ([4]) we have explained how we can

implement a parsing algorithm that performs a breadth-
first instead of a depth-first search for a complete parse,
and sequentially accesses the input stream; it furthermore
removes the LL(1) restrictions and works with unbounded
look-ahead. This completely cures the first problem men-
tioned above, without any annotations provided by the pro-
grammer nor a need to understand how the parsing process
proceeds internally, but it introduces the second problem
mentioned.
In this paper we show how to cure the second and third

problem mentioned: the build-up of a complete result in
memory and the inefficient handling of ambiguous gram-
mars. The only difference that remains from very general
parsing processes for context-free languages such as GLR
([7]) is that, basically using a top-down parsing method, we

1Unfortunately parsers constructed by the Parsec library do
not exhibit online behaviour due to their monadic formula-
tion.

cannot handle left recursive grammars and left-factorization
may be needed in certain situations to improve performance.
We do not see this as a problem at all, since in practice uses
of left recursion usually can be nicely captured using special
combinators for recognizing list like structures.
The key idea in this paper is a new data type that en-

ables us to represent any value in a linear way (i.e. as a
sequence of fragments), thus enabling us to intersperse the
result value with information about progress of the parsing
process. This type is introduced in section 2. In section 3 we
start by repeating the way we construct breadth-first recog-
nizers, and subsequently extend them with an incremental
construction of the parsing result. In section 4 we show that
the advantages that are provided by monadic parser inter-
faces are not lost, and that it is still possible to parameterize
parsers with values stemming from earlier recognized parts
of the input. In section 5 we extend the data type that we
have introduced so it becomes possible to parse ambiguous
grammars efficiently, and in section 6 we discuss some opti-
mizations to the code given, that were left out for the sake
of presentation. In section 7 we discuss some practical as-
pects of a library built on the ideas presented in this paper,
whereas in 8 we reflect on what we have done and mention
some further applications of the ideas presented.

2. THE POLISH REPRESENTATION
While parsing we will recognize the fragments of the value

that witnesses a complete and successful parse in a sequen-
tial way, so for a moment we forget about parsing and focus
on the question whether we can find a data type that is
suitable for representing such a linearly fragmented value.
In order to answer this question we let ourselves be inspired
by the way values are represented in Polish expressions.

2.1 The Problem
Polish notation, in which we write operators before their

operands, is a way of writing expressions unambiguously in
a linear way, i.e. without brackets. For example, 1+2×3 is
written as + 1× 2 3, and sin x×π/4 is written × sin x /π 4.
One can interpret Polish by inspecting the operator at the
beginning of the expression, evaluating the correct number
of arguments, and then applying the operator to the argu-
ment values.
To do so correctly, one must know the arity of each op-

erator, which could be problematic if we allow operators to
be arbitrary functions. But we can apply the usual trick of
currying all functions, and taking function application to be
the only operator, with functions thus becoming ordinary
values. Writing function application as ‘@’, 1 + 2 is now
written as @ @+ 1 2.
The problem we consider in this paper is the design of a

fully typed representation and interpreter for Polish expres-
sions in Haskell. The essence of a Polish representation is
its linear nature, but unfortunately we cannot use ordinary
lists since we require the elements to be of different types.
More specifically, we are looking for a data type with con-

structors App and Val such that we can represent the ex-
pression above by:

App (App (Val (+) (Val 1 (Val 2 ⊥))))
Since we know from the syntax of Polish expressions when an
expression is complete the ⊥ at the “end of the list” is unim-
portant. We will from now on write such lists as functions,



so that we can use function composition for concatenation,
and write instead for the list above:

App · App · Val (+) · Val 1 · Val 2

We will aim to write an interpreter such that

interpret (App · App · Val (+) · Val 1 · Val 2) ≡ 3

This problem is interesting because Polish expressions must
be able to contain values of many different Haskell types. In
fact, we do not believe the Haskell 98 type system is powerful
enough to allow this, but with the extensions in the current
versions of Hugs and GHC, it is. The reader may like to try
to solve the problem unaided, before reading further: it is
quite a challenge!

2.2 A Simpler Problem
If we cannot immediately see how to represent Polish ex-

pressions in Haskell, we can consider the simpler problem
of representing ordinary expressions. We may try to define
a type Expr with a binary constructor App and a unary con-
structor Val , so that 1+2 is represented byApp (App (Val (+))
(Val 1)) (Val 2), for example.
Of course, the type of our representation should guarantee

that no type errors arise during expression evaluation. To
ensure that we only represent well-typed expressions, we had
better make the type that an expression evaluates to into a
part of its own type. That is, we define a type Expr a
representing expressions that evaluate to a value of type a.
Now it is clear what the types of the constructors should be:

Val :: a → Expr a
App :: Expr (b → a) → Expr b → Expr a

This suggests the type definition

data Expr a = Val a
| App (Expr (b → a)) (Expr b)

but here the variable b is unbound. Fortunately, current
Haskell extensions permit us to quantify type variables ex-
istentially in type definitions: we can say that an App ex-
pression contains an Expr (b → a) and an Expr b for some
type b, but this type may vary from App node to App node.
Thus we write the type definition as2

data Expr a = Val a
| ∃b. App (Expr (b → a)) (Expr b)

which introduces the constructors with exactly the types we
want.
An evaluator for such expressions is easy to write:

eval :: Expr a → a
eval (Val a) = a
eval (App e1 e2 ) = let f = eval e1

a = eval e2
in f a

We remark only that this definition uses polymorphic re-
cursion, which is allowed in Haskell provided that a type
signature is given explicitly.

2The keyword for this construct used to be forall, but GHC
nowadays also accepts exists.

2.3 The Polish Type
Returning to Polish expressions, it is tempting by analogy

to define a type Polish a, representing Polish expressions of
type a, but a moment’s reflection shows this will not be
enough. In the expression App · Val (const 1) · Val 2, for
example3, the Polish subexpression Val (const 1) · Val 2
after the initial App represents two values, namely const 1
and 2, of different types. In general, a Polish expression may
represent arbitrarily many values, and therefore we cannot
expect it to be possible to give the type Polish just a single
type parameter.
Our solution is to give the Polish type an additional pa-

rameter, representing the type of “the part at the right hand
side of a ·”. Thus the expression above will have the type
s → Polish Int s, while the subexpression Val (const 1) ·
Val 2 will have the type s → Polish (b → Int) (Polish Int s).
We need to assign the constructors the following types:

Val :: a → Polish b s → Polish a (Polish b s)
App :: Polish (b → a) (Polish b s) → Polish a s

Notice that these types account for the number of values
the expression represents, which is increased by Val and
decreased by App.
Once again, we can handle the type variable b in the type

of App, which does not appear in the type of its result, by an
existential quantification. But the type of Val presents a dif-
ferent problem: its result type is not of the form Polish a s,
which means that we cannot directly give Val this type via
a data type definition. Fortunately, the natural type above
is an instance of

Val :: a → s → Polish a s

which does have a result type of the right form, so we will
simply take this to be the type of Val instead, and define
the following nested data type:

data Polish a s
= Val a s
| ∃b. App (Polish (b → a) (Polish b s))

Now indeed, terms of the sort we considered in the intro-
duction are well-typed. For example,

App · App · Val (+) · Val 1 · Val 2
:: s → Polish Int s

2.4 A Polish Interpreter
Our second goal is an interpreter for Polish expressions,

that is, a function

interpret :: (s → Polish a s) → a

But this type does not take into account that some Polish
expressions represent many values – for example, the Polish
expression following an App. We therefore generalize to a
function eval , which returns both the value of the first com-
plete sub-expression, and the unconsumed part of the Polish
input:

eval :: Polish a s → (a, s)

We can then define

interpret v = (fst · eval) (v ())

3Where const x is a constant function returning x



The eval function is now straightforward to define:

eval :: Polish a s → (a, s)
eval (Val a s) = (a, s)
eval (App s) = let (f , s ′) = eval s

(a, s ′′) = eval s ′

in (f a, s ′′)

Once again, polymorphic recursion is needed to type this
definition, so the type signature cannot be omitted. Since
Haskell’s let-expression binds lazily, s ′ will not be evaluated
if f is a lazy function – for example:

interpret (App · Val (const 1) · Val ⊥) ≡ 1

This is exactly what we are looking for in an online parser,
since it means that we can start evaluating a Polish expres-
sion, and even construct a part of its result, before the en-
tire expression has become available. It will be this property
that facilitates the online behaviour of the parser combina-
tor library that we will introduce now.

3. PARSING POLISH

3.1 Motivation
As we mentioned in the introduction, the design of the

Polish type arose as the result of an attempt to define a
parser combinator library that constructs parsers that re-
turn their result in an online way; that is, as soon as it can
be unambiguously decided that some value will be used to
construct the final result it becomes available to the callee
of the parser, just as a foldr may already return part of its
result when processing a list of elements.
We also want to avoid a problem in many parsing libraries

related to choice. Every parser must be able to choose be-
tween alternative possible parses for the same input – for
example, between parsing an addition and parsing a multi-
plication. Normally one parse fails quickly, since they ac-
cept quite different constructs. But in backtracking parsers
this choice operation results in a space leak. The prob-
lem occurs when the first alternative to be tried actually
succeeds, and therefore consumes a large amount of input,
but the second alternative is retained as a backup. To re-
tain the possibility of constructing the second parse, the
entire input must be kept available – even though the sec-
ond parse in all probability would fail quickly were it to be
tried. Ever since Wadler [8], backtracking parsing libraries
have included more or less ad hoc solutions to this problem,
permitting the second parse to be discarded when the first
one ‘commits’ to its result. These solutions unfortunately
lead to unmodular code: when we write the first alternative,
we must decide when to commit based on our knowledge of
all its alternatives. When the grammar is later modified,
such parsers have a tendency to stop working.
One of the consequences of taking the backtracking (or

depth-first) approach is that it is only after the parsing pro-
cess has been completed that the result becomes available;
the information about how the result was reached precedes
the actual result. One moment of reflection however tells
us that from a parsing point of view there is nothing which
prevents us from already returning that part of the result
for which no parser ”threads” are competing anymore. So
as soon as we are no longer interested in look-ahead infor-
mation we can produce the result recognized thus far. This
will usually be after inspecting only a few input tokens.

rSucceed = R (λk input → k input)
rFail = R (λk input → Fail)
R p <*> R q = R (λk input → p (q k) input)
R p <|> R q = R (λk input → p k input

‘best ‘
q k input

)
pSym a = R (λk input →

case input of
(s : ss) → if a ≡ s

then Shift (k ss)
else Fail

[ ] → Fail
)

Fail ‘best ‘ p = p
q ‘best ‘ Fail = q
Done ‘best ‘Done = error "ambiguous grammar"

Done ‘best ‘ q = Done
p ‘best ‘Done = Done
(Shift v) ‘best ‘ (Shift w) = Shift (v ‘best ‘ w)

recognize (R r) input = r Done input

Figure 2: The recognizing combinators

The question that arises now is how to combine the two
useful properties: not unnecessarily retaining references to
the input, and returning parts of the result as soon as pos-
sible.
The basic idea is that the parser returns a interleaving of

two kinds of sequences: a sequence of fragments constituting
the result we are interested in, and a trace of the parsing
process itself that is used for the breadth-first search.

3.2 Recognisers
Let us for a moment postpone the question of how a parser

constructs a result, and focus on recognizers instead, where
a recognizer is a degenerate parser that does not build up
value. Our recognizers will just indicate their progress, and
finally their success or failure by returning a value of type:

data Progress = Shift Progress
| Done
| Fail

in which Shift represents the successful recognition of a sin-
gle input token, Fail indicates a dead end, and Done signals
the completion of a successful parse.
A recognizer take two arguments: a continuation for rec-

ognizing the rest of the input once once this recognizer has
succeeded, and the input of which a prefix has to be recog-
nized. For the sake of presentation we will assume that the
input is a sequence of characters:

newtype Rec = R (String → Progress)
→ (String → Progress)

We can now define the combinators for sequential com-
position <*>, alternative composition <|>, the basic always
successful recognizer rSucceed , the always failing recognizer
rFail , and a function for constructing a single-symbol rec-
ognizer rSym. They are all given in figure 2.
The choice between two alternatives is implemented by



the function best (figure 2), that traverses the two alterna-
tives in a synchronized way: when both of its alternatives
present a Shift , the function produces one while removing
the Shift ’s at the same time from both alternatives. If ei-
ther of its alternatives presents a Done this indicates we
have found a successful parse. In case both alternatives
present Done at the same time we have found more than
one successful parse, and thus have been parsing with an
ambiguous grammar. Notice that a failing alternative can
be discarded altogether as soon as it presents its Fail step,
so that a recognizer built using <|> will ultimately return
either one of its branches, provided the grammar is not am-
biguous. Note however that the function best is looking
only as far as needed into the progress information in or-
der to decide which alternative to choose; thus the strategy
we follow deals with unbounded look-ahead, and only looks
ahead when needed.

3.3 Parsers
The next step is to extend the recognizers to real parsers,

that return a parsing result. The essence of this paper is that
for the result type of a parser we define a data type Steps ,
that combines both the Polish and Progress data types (fig-
ure 3); our parsers deliver information both regarding their
progress, just like our recognizers, and their result, expressed
in Polish. If we think of the Progress type as representing
a sequence of recognition steps, and the Polish type as a
sequence of applications and values, then the Steps type
represents an interleaving of these two sequences. Because
of the freedom we will use in changing an interleaving it is
no longer guaranteed that the Done constructor marks the
end of a sequence. So we have slightly changed its introduc-
tion: it can now contain further steps. In the function parse
(figure 3) we use this facility to pass back the unused part
of the input in the result.
The reason for linearising the output of a parser in Polish,

is that it can be interleaved with the recognition trace. So
our first attempt for the type representing the new parsers
is:

newtype Par a
= P (∀w . (String → w) →

(String → Steps a w)
)
unP (P p) = p

In figure 3 we also define an evaluation function evalSteps
for Steps which just discards the recognition trace and oth-
erwise behaves like eval .
The definition of a small library of basic parsing combina-

tors appears in figure 4 (apart from the new function best ,
to which we return below).
Using these definitions we may construct a parser for an

addition expression, using a very simple parser for integers:

pPlus = (+) <$> pInt <* pSym ’+’ <*> pInt
pInt = 0 <$ pSym ’0’

<|> . . .
<|> 9 <$ pSym ’9’

data Steps a s
= Val a s
| ∃b. App (Steps (b → a) (Steps b s))
| Shift (Steps a s)
| Done (Steps a s)
| Fail

evalSteps :: Steps a s → (a, s)
evalSteps (Val a s) = (a, s)
evalSteps (App s) = let (f , s ′) = evalSteps s

(a, s ′′) = evalSteps s ′

in (f a, s ′′)
evalSteps (Shift v) = evalSteps v
evalSteps (Done v) = evalSteps v
evalSteps Fail = error "wrong input"

Figure 3: The data type Steps

pSucceed :: a → Par a
pFail :: Par a
pSym :: Char → Par Char

pSucceed a = P (Val a·)
pFail = P (λ → Fail)
P p <*> P q = P ((App·) · p · q)
P p <|> P q = P (λk input

→ (p k input) ‘best ‘ (q k input)
)

pSym a
= P (λk input →

case input of
(s : ss) → if a ≡ s

then (Shift · Val s · k) ss
else Fail

[ ] → Fail
)

parse p input
= let (result , rest) =

evalSteps (p (λrest → Done (Val rest ()))
input

)
in (result , fst · evalSteps $ rest)

Figure 4: The parsing combinators



The result of parsing 1 + 2 with this parser is:

App · App · App · Val const ·
App · Val (+) ·

Shift · App · Val (const 1) ·
Val ’1’ ·

Shift · Val ’+’ ·
Shift · App · Val (const 2) ·

Val ’2’
Done

which, when we evaluate it, yields const ((+) (const 1 ’1’))
’+’ (const 2 ’2’), or (after simplification) 1 + 2, that is, 3.
Now suppose that we try to parse the same input, using

an analogous parser for multiplications instead. This results
in a sequence of steps terminated by Fail :

App · App · App · Val const ·
App · Val (∗) ·

Shift · App · Val (const 1) ·
Val ’1’ ·

Fail

Now, a parser which parses either an addition or a mul-
tiplication must choose between these parses, and we can
see immediately that this is more complicated than in the
case of recognizers. The choice must be made based on the
progress information embedded in the sequence, and indeed
cannot be made until the second Shift has been produced,
but this information is preceded in each parse by Polish op-
erations for creating the parse result. Moreover, since the
parse result differs between the two parses, we clearly cannot
start returning it until we know which parse will eventually
be chosen.
Fortunately, we can freely change the interleaving of the

Polish operations and the recognition trace as long as we
do not reorder either subsequence, since they are essentially
independent of each other. In particular, we can move the
first progress step to the front of a sequence, thus making
it possible to make a progress decision. We therefore de-
fine a function getProgress that moves the first element of
the embedded progress trace to the head of the interleaved
sequence (or formulated differently, pushes the value con-
structing elements behind the first progress step), returning
a parse with a top constructor that is either Shift , Fail or
Done. We define the best function on parsers to convert its
arguments into this form, if necessary, and define some new
alternatives for the function best .

Fail ‘best ‘ p = p
q ‘best ‘ Fail = q
Done ‘best ‘ Done = error "ambiguous grammar"

Done a ‘best ‘ q = Done a
p ‘best ‘ Done a = Done a
Shift v ‘best ‘ Shift w = Shift (v ‘best ‘ w)
p ‘best ‘ q = getProgress id p

‘best ‘
getProgress id q

This definition is closely analogous to the definition for rec-
ognizers.
The getProgress function traverses its input searching for

a step, accumulating the step-free part of its input in its first
parameter as a function, and then reinserts the accumulated
information after the first progress step (we will make sure

that every parse ends with a Done step):

getProgress f (Val a s) = getProgress (f · Val a ) s
getProgress f (App s) = getProgress (f · App ) s
getProgress f (Done p) = Done (f p)
getProgress f (Shift s) = Shift (f s)
getProgress f (Fail ) = Fail

Unfortunately, this straightforward definition of getProgress
does not type-check! The reason is that, in the first equa-
tion, we apply getProgress to s of type s – a type variable.
The problem is that the second component of a Val need not
be of Steps type, so we cannot apply getProgress to it.
Our solution is to overload getProgress instead; so we de-

clare

class HasProgress st where
getProgress :: (st → Steps x y) → st → Steps x y

and make the above definition the instance at type Steps :

instance HasProgress s ⇒ HasProgress (Steps a s) where
. . . as before. . .

This instance declaration defines HasProgress (Steps a s) in
terms of HasProgress s; we also need a ‘base case’, which
we can take to be:

instance HasProgress () where
getProgress f () = Fail

Provided we see to it that top-level parsers produce a Steps a ()
for some a, we will now be able to apply getProgress to all
intermediate parses.
The introduction of this class now enforces a slight adap-

tation of our parser type:

newtype Par a
= P (∀w . (HasProgress w ⇒

(String → w) → String → Steps a w)
)

With this definition, the first version of our simple Polish
parsing library is complete, and can be used to write online
parsers which do not leak space.

4. MONADIC INTERFACE
One of the advantages of a monadic interface ([2]) over the

interface chosen here is that one can parameterize parsers
on the results of earlier successful parsers. Fortunately it
is straightforward to make Parser also an instance of the
Monad class.
We proceed as follows. Let us assume that parser p is

of type Par a, and that q is of type a → Par b. Suppose
we know the result a of the parser p that serves as the
left operand in a monadic composition, then the result of a
parser

P (λk input → p (q a k) input)

will be of type Steps a (Steps b s). So all we now have to
do is to define a function getVal , that makes it possible to



extract the value of type a from this sequence.

getVal :: Steps a (Steps b s) → (a,Steps b s)
getVal (Val a s) = (a, s)
getVal (App s) = let (a, s ′) = getVal s

(f , s ′′) = getVal s ′

in (f a, s ′′)
getVal (Shift v) = let (a, r) = getVal v in (a,Shift r)
getVal (Done v) = let (a, r) = getVal v in (a,Done r)
getVal (Fail) = (⊥,Fail)

One can see getVal as the counterpart of getProgress .
Whereas the latter manipulates the sequence in such a way
that it starts with progress information, it is getVal that
makes the first value represented in the sequence available,
while keeping the progress information. In order to avoid
further typing problems we have given getVal a type that is
somewhat less general than one might expect, in the sense
that we require the second parameter of the Steps argument
to be a Steps again. This is not unreasonable; apparently
we are not only interested in the embedded value, but we
also want to keep the steps, and thus we need a place to
return them too.
The instance definition for the monad now becomes:

instance Monad (Parser s) where
return a = pSucceed a
P p >>= q = P (λk input →

let (a, ps qres) =
getVal (p (unP (q a) k) input)

in ps qres
)

At first sight this may look confusing, since part of the
parsing result is used for the construction of the parser
p (unP (q a) k) itself. Note however that all the informa-
tion in the sequence that is needed for this value is produced
by the first parser, and thus can be freely used before the
second parser is called, and thus before the second parser
has to be constructed! Note also that progress information
stemming from the use of p is also immediately available in
ps qres , even before the value resulting from the call to p
has become fully available. Lazy evaluation saves our day
again! The value ps qres contains the progress information
from p, together with the progress information and result
from q a (and of course also elements stemming from k).
Notice that if the parse p fails then the value a is probably
undefined. This does not do any harm because the result of
q will never be inspected, being shielded by a Fail .
One may wonder what should be the interpretation of

a parser such as: pSym ’1’ >>= const (return 1). Should
it immediately return the value 1, or should it only do so
provided it has first recognized a 1; it is clear from the def-
initions above that we chosen for the latter interpretation.
Note that we do not recommend using the monadic in-

terface without good reason, since the parsers it constructs
do not have online behaviour, for an essential reason — no
part of the result of a bind can be produced until at least
the first operand has completed parsing. One should only
use this interface when there is a good reason to param-
eterize a parser on a previously parsed value. One good
example is a parser that recognizes expressions based on op-
erator priorities: first we recognize the priority definitions,
and bind them to a function that subsequently parses ex-
pressions ([5]). Another nice example is the recognition of

XML-like structures:

pXML = do t ← pOpenTag
Tag t <$> pMany pXML <* pCloseTag t

data XML = Tag t [XML ]
pMany p = (:) <$> p <*> pMany p <|> pSucceed [ ]

Finally some might wonder whether the monadic law p>>=
return ≡ p holds. In a strict sense it does not since the online
behaviour of the left hand side is different from that in the
right hand side. They are however equivalent with respect
to inspection using getVal and getProgress .

5. PARSING AMBIGUOUS GRAMMARS
Standard backtracking implementations implicitly produce

a search tree of which the leaves represent possible solutions
and failures. Such a tree may however contain many identi-
cal subtrees, and as such may be more expensive to evaluate
than strictly needed. So the question arises whether we can
share the computations represented by such subtrees, thus
getting a DAG-like structure. In the context of parsing this
situation arises if we deal with ambiguous grammars: a spe-
cific segment of input may be recognized in many different
ways, but the state we are in after all such successful recogni-
tions is the same. Can we can extend our library to recognize
such situations, and prevent costly recomputations?
The answer to this question will be partly a yes, but be-

fore presenting our solution we look into the type of an am-
biguous parser. The ”list of successes” approach naturally
lends itself to dealing with ambiguous grammars, because
of the chosen encoding: an empty list denotes failure, a sin-
gleton list a single success and a longer list more than one
successful parse. So the fact that we return a list value
automatically handles the situation in which we deal with
ambiguous grammars. Our parsers however always return a
single result, and as long as we do not know yet what this
single result will be, postpone the point at which they return
(part of) any value. So we make essential use of the fact that
eventually there will always exactly be one successful path
from the root to a leaf in the search tree. So we propose the
introduction of a new parser combinator amb that indicates
that a parser may return more than one result:

amb :: Par a → Par [a ]

The essence of an ambiguous parse is that several paral-
lel parsing ”threads” terminate at the same time. Since
we perform a breadth-first execution of these threads this
point is easily recognized, provided we mark the points in
the sequence where a parse for the ambiguous nontermi-
nal is completed. In order to be able to do so we intro-
duce one more alternative for the data type Steps , called
RS . This alternative corresponds closely to a shift-reduce
state in a bottom-up parser, and contains information about
sequences that represent complete parses (reduce), and se-
quences corresponding to parses that extend beyond this
point (shift):

data Steps a r = . . . as before . . .
| RS [Steps a r ] (Steps a r)

We first discuss how to extend the function best . Since the
RS essentially is a progress indicator, we decide to deal with
it by adding patterns to the definition of best directly and
not to leave this to getProgress somehow. The extended best



best :: HasProgress r ⇒
Steps a r → Steps a r → Steps a r

. . .
Shift v ‘best ‘ Shift w = Shift (v ‘best ‘ w)
RS as ac ‘best ‘ RS bs bc = RS (as ++ bs)

(ac ‘best ‘ bc)
RS as ac ‘best ‘ r@(Shift ) = RS as (ac ‘best ‘ r)
l@(Shift ) ‘best ‘ RS bs bc = RS bs (l ‘best ‘ bc)
p ‘best ‘ q = getProgress id p

‘best ‘
getProgress id q

instance HasProgress s ⇒ HasProgress (Steps a s)
. . .
getProgress f (RS r s) = RS (map f r) (f s)

Figure 5: The extended function best

is given in figure 5. The first line represents the already ex-
isting case in which both alternatives have not completed
yet, and can make progress by shifting a symbol. The next
case, with an RS pattern at both sides, corresponds to a
reduce-reduce ”conflict”, i.e. a join-point where several am-
biguous parses meet again. We do not see the conflict as a
conflict however since we want to deal with ambiguous gram-
mars explicitly, and thus just store both results in the first
component of the resulting RS . Note that it is an essential
invariant of our approach that if two RS meet each other in
a call to best they correspond to the same point in the input,
since they are both preceded by an equal number of Shift
steps! The second components of both arguments may con-
tain sequences corresponding to shift actions at this point
of the input, so we choose between these shifting sequences
with another call to best . The next two alternatives corre-
spond to a shift-reduce state, for which we compare the shift
side with the other shift sequence incorporated in the RS
side. Furthermore we extend the definition of getProgress
for the RS case, by storing the f -represented value steps in
the components.
It seems that we are done now, but unfortunately we have

still some more work to do, since we now have RS con-
structors left in our sequences. Since we allow ambiguous
nonterminals to occur inside other ambiguous nonterminals
we have to make sure that the RS marks corresponding
to different non-terminals do not get mixed up. We solve
this problem by introducing for each introduction of an RS
mark a process unRS (figure 6), that removes these marks
again. This makes everything dealing with ambiguity invis-
ible outside the non-terminal, besides the fact that its type
has changed. Now we can give the definition of amb:

amb (P p)
= P (λk input

→ unRS id (p (λinp → RS [k inp ] Fail) input)
)

The last alternative of the function unRS is the most inter-
esting one. The ls argument now contains a list of sequences,
all starting with Val and App steps making up the value we
are interested in, and a common tail that corresponds to the
steps taken afterwards. The snd (head res) recovers one of
these common tails and uses this to build a new sequence
that contains at the head a Val occurrence with the values

Although we could have made a separate class for overload-
ing the function unRS we have decided to extend the class
HasProgress with an extra function. Notice that when the
function best is called in the last alternative of unRS we
know what te type of the ”tail” is, but Haskell doesn’t; so
we had to place a constraint on the function unRS for keep-
ing track of this.

class HasProgress st where
getProgress :: (st → Steps x y) → st → Steps x y
unRS :: HasProgress y ⇒

(st → Steps x y) → st → Steps [x ] y

instance HasProgress r ⇒ HasProgress (Steps a r) where
. . .
unRS f (Val a r) = unRS ( f · Val a) r
unRS f (App r) = unRS ( f · App ) r
unRS f (Shift r) = Shift ( unRS f r)
unRS f (Done r) = error "incorrect program"

unRS f Fail = Fail
unRS f (RS ls r)

= let res = map (evalSteps · f ) ls
in Val (map fst res) (snd (head res))

‘best ‘
unRS f r

instance HasRS () where
. . .
unRS = ⊥

Figure 6: Removing RS marks

found for the ambiguous parser and the steps produced by
the continuation. Of course this new sequence now will have
to compete with possible other, still active threads, for this
nonterminal. Of course the RS mark also has to be removed
from this alternative.
One might wonder whether this solution is really online.

The answer is that it is not, but also that it cannot be online.
The online property essentially depends on the fact that we
may produce a result once we know that no other result will
be produced, i.e. we have one active thread left. But in
the case of an ambiguous grammar we only know that this
is the case once we have reached the RS mark: in a parser
amb (p<*>q) it may be the case that the ambiguity actually
stems from the q , so the fact that we have only one thread
while working on the p does not bring us very much.
We finally notice that when constructing the RS step in

the continuation we expect the continuation k to return
some Steps b r , so we will have to specialize the type of
Par a bit:

newtype Par a
= P (∀b r . HasProgress r ⇒

(String → Steps b r) → String
→ Steps a (Steps b r)

)

6. SOME OPTIMIZATIONS
Thus far we have not paid attention yet to the efficiency of

our algorithms; we have placed emphasis on the presentation
instead. in this section we show some improvements that
may be necessary for a really useful library.



6.1 Combining steps
There is an easy optimisation which can be quite signifi-

cant if the function best has to compare several steps before
being able to decide; i.e. in those cases where we need a
significant look-ahead.
When getProgress traverses the progress-free part of a

parser, is accumulates the information found there, and rein-
serts this after the first encountered step. If getProgress
is subsequently applied again to the constructed result, it
will traverse this progress-free prefix again, which is clearly
wasteful. The waste can be avoided by introducing a new
alternative of Steps , representing a suspended getProgress
computation:

data Steps a s
= . . . as before . . .
| ∃b x . Mix (Steps b x → Steps a s) (Steps b x)

Mix f s represents the sequence f s, with an invariant
that f only adds progress-free steps. Now we can modify
getProgress to construct a suspension Mix f s a soon as it
encounters its first progress step, and to continue directly
from that point on if applied to the same sequence again.
The new cases are:

getProgress f (Done p) = Done (Mix f p)
getProgress f (Shift s) = Shift (Mix f s)
getProgress f (Mix g s) = getProgress (f · g) s

Other functions on Steps just treat Mix f s as f s.

6.2 Special cases
The sequences constructed contain many frequently oc-

curring subsequences that, if they are represented by special
alternatives, can reduce the length of the sequence consid-
erably. We mention a few that may be introduced, but we
will not discuss the extensions to the functions involved since
they are all straightforward.
To start with we observe that quite often a Shift is imme-

diately followed by a Val , so it makes good sense to have a
special kind of step ShiftVal , that acts both as a shift and
as a Val .
As we can see from the examples given there are many

occurrences of <$> and <$ in our parsers. For these we may
introduce a special step kind:

data Steps a r = . . .
| ShiftVal a r
| ∃b. AppVal (b → a) (Steps b r)

f <$> q = (AppVal f ·) · q
f <$ q = (AppVal (const f )·) · q

Similarly, we notice that in many cases we are not inter-
ested in the result of the parser, and just want to recognize
something. In such cases it is wasteful to insert the values
into the sequence, together with a function which removes
them from the result. An efficient solution is to tuple ev-
ery parser (constructor P) with a recognizer (constructor R)
that recognizes the same sequence of input tokens but does
not return a result; so instead of constructing parsers out of
parsers and recognizers out of recognizers we now construct

pairs of a parser and a recognizer out of such pairs.

type PR a = (Par a, Rec)
f <$> (P p, R r) = (P ((AppVal f ·) · p)

, R r
)

f <$ (P p, R r) = (P ((Val f ·) · r)
, R r
)

(P pp,R pr) <*> (P qp, R qr) = (P ((App·) · pp · qp)
, R ( pr · qr)
)

(P pp,R pr) <* (P qp, R qr) = (P ( pp · qr)
, R ( pr · qr)
)

Lazy evaluation will make that only parsers that are actually
used are constructed.

7. PRACTICAL POLISH
The techniques described in this paper have been included,

although in a heavily optimized way, in a parsing library,
together with many other libraries and tools4. This combi-
nator library ([4]) produces parsers that parse at about half
the speed of off-line generated parsers, while also preparing
for and performing full error repair and error reporting.
This repair process was addressed by Swierstra and Azero

([5, 4]), who describe a parsing strategy in which an error
repairing parser returns a sequence of steps that represent a
trace of progress of the parsing process and the taken repair
actions. The corresponding parsing result was built up in
an accumulating parameter, and is appended to the parsing
trace when a successful parse has been found. Hence that
solution did not have online behaviour. The basic idea of
the error repair is that a parser doesn’t just fail when a sym-
bol cannot be recognized, it proceeds in parallel along two
alternative routes: insert the symbol expected, and delete
the current input symbol and try again. Once we associate
a specific cost with each insertion and deletion we can use a
more general version of our function best to select between
all the different possible corrections, according to whatever
strategy one might wish to express. One of the nice aspects
of the introduction of the data type Steps is that nothing
prevents us from incorporating even more information in the
sequence by adding extra alternatives, provided they once
again form an ‘orthogonal‘ subsequence whose elements may
be freely shifted back and forth in the main sequence, pro-
vided their mutual order does not change. We use this for
getting tracing information out of the parsing process and
for constructing error messages.

8. OTHER APPLICATIONS
We have derived a small parsing library using a number of

orthogonal concepts. Looking back at the code constructed
we can see three different elements:

1. a data type Progress with a function best

2. a data type Steps , with a class HasProgress containing
a function getProgress (and possibly unRS)

3. a set of parser combinators generating sequences con-
sisting of the first two elements

4http://cvs.cs.uu.nl/cgi-bin/cvsweb.cgi/uust/INSTALL.html



We notice that the first two elements are of independent
interest, and that there is nothing in them that is particu-
larly connected to parsing. Essentially elements of the data
type Progress represent search trees, with Shift applications
forming the edges, Done and Fail as leaves, and calls to best
for forming branching nodes and representing the breadth-
first searching process. A path in such a tree may further-
more contain a value, represented as a sequence of fragments
interleaved with Shift ’s.
The single role of the parser combinators is to generate

this branching tree, but we may easily envision other appli-
cations that generate similar structures.
A second observation is that the trick we applied to the

data type Expr a in converting it to a data type Polish a r
can be applied to all data types. Suppose we need a se-
quential representation of a data type T . Now provide all
data types reachable from T with an extra parameter and
rewrite each right hand side of an alternative in a ”continu-
ation” passing style. As an example consider the following
two definitions for RoseTree : the standard one and its con-
tinuation style counterpart (the ′-ed identifiers):

data RoseTree a = Node a [RoseTree a ]
| Leaf

type IntRoseTree = RoseTree Int

data RoseTree ′ a ′ r = Node ′ (a ′ (List (Rosetree ′ a) r))
| Leaf ′ r

data List ′ f ′ r = Cons ′ (f ′ (List ′ f ′ r))
| Nil ′ r

data Int ′ r = Int ′ Int r

type IntRoseTree ′ = RoseTree ′ Int ′

In our example we have used the type Polish because parsers
are polymorphic in the result they return, and we should
thus be able to represent any kind of value. The technique
may be useful in many other contexts.

9. WNIOSKI (CONCLUSIONS)
We have shown that we can represent Polish expressions

in Haskell in such a way that progress information such as
recognizer steps can be merged with the Polish, and a lazy
interpreter can be defined, permitting applications that pro-
duce Polish to work in an “online” manner. Applications
that output Polish can be run “in parallel”, by synchroniz-
ing their progress, and this in turn permits a breadth-first
exploration of a search space. The Polish idea underlies
a high performance parsing library, which demonstrates its
practicality, and we hope it may find other applications too.

10. ACKNOWLEDGEMENTS
We want to thank Arthur Baars, Atze Dijkstra and Daan

Leijen for helpful comments on earlier versions of the paper,
and we thank Andres Löh for his help with the lhs2TEX
system.

11. REFERENCES
[1] J. Fokker. Functional parsers. In J. Jeuring and

E. Meijer, editors, Advanced Functional Programming,
number 925 in Lecture Notes in Computer Science,
pages 1–52. Springer-Verlag, Berlin, 1995.

[2] G. Hutton and E. Meijer. Monadic parser combinators.
Journal of Functional Programming, 8(4):437–444, July
1998.

[3] D. J. P. Leijen and H. J. M. Meijer. Parsec: Direct style
monadic parser combinators for the real world. UU-CS
2001-35, Department of Computer Science, P.O.Box
80.089, 3508 TB Utrecht, the Netherlands, 2001.

[4] S. D. Swierstra. Combinator parsers: From toys to
tools. In G. Hutton, editor, Electronic Notes in
Theoretical Computer Science, volume 41. Elsevier
Science Publishers, 2001.

[5] S. D. Swierstra and P. R. Azero Alcocer. Fast, error
correcting parser combinators: a short tutorial. In
J. Pavelka, G. Tel, and M. Bartosek, editors,
SOFSEM’99 Theory and Practice of Informatics, 26th
Seminar on Current Trends in Theory and Practice of
Informatics, volume 1725 of LNCS, pages 111–129,
November 1999.

[6] S. D. Swierstra and L. Duponcheel. Deterministic,
error-correcting combinator parsers. In J. Launchbury,
E. Meijer, and T. Sheard, editors, Advanced Functional
Programming, volume 1129 of LNCS-Tutorial, pages
184–207. Springer-Verlag, 1996.

[7] E. Visser. Scannerless generalized-lr parsing. P 9707,
Programming Research Group, University of
Amsterdam, July 1997.

[8] P. L. Wadler. How to replace failure by a list of
successes. In J. Jouannaud, editor, Functional
Programming Languages and Computer Architecture,
volume 201 of LNCS, pages 113–128. Springer-Verlag,
1985.


