Method Engineering: Achievements, Trends & Challenges

Outline
- Backdrop
- Challenges

Prof. Colette Rolland
CRI
Université Paris1 Panthéon Sorbonne

Evolution in Information System Development Methods (ISD)

Engineered Situated Method

Method Engineering

Universal Method
Method engineering is the discipline of developing, customizing, and/or configuring a situation-specific method from parts of existing methods.

[Brinkkemper 96, Leppanen 2006]
Method Engineering

ME process & research questions

Initial Method Description

Reverse engineering step

Method reengineering guidelines

Situational Method

Construction of a new method reusing method method parts

Several strategies for SME

Storage of method parts in a method base

Modular Method Description:
Modular Method model

Method Engineering

Software engineering vs Method Engineering *

<table>
<thead>
<tr>
<th>Software engineering</th>
<th>Method engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelling (specification)</td>
<td>Meta- Modelling</td>
</tr>
<tr>
<td>CASE</td>
<td>CAME</td>
</tr>
<tr>
<td>(Computer Aided S/W Engineering)</td>
<td>(Computer Aided Method Engineering)</td>
</tr>
<tr>
<td>Software Base</td>
<td>Method Base</td>
</tr>
<tr>
<td>Software metrics</td>
<td>Method metrics</td>
</tr>
</tbody>
</table>

*Motoshi Saeki talk (EMISE)
Method Engineering

Key Method Engineering Artefacts*

ME products

ME meta models
& meta-modelling languages
to represent method parts

ME processes

ME strategies, approaches,
workflows to combine, integrate,
assemble method parts & to guide
the ME process

Kumar & Welke, 1992, Oei, 95, Philhon et al 97, Heym&Osterle 97,
Rolland & Prakash 96, Saeki, 98, Leppanen 00 Saeki 03,
Karlsson & Agerfalk 04,

* Leppanen06

Method Engineering Products

A modularization issue based on two assumptions

(1) A method is composed of a product model and a process model
(2) Meta-Modelling is an appropriate means to describe methods (Yourdon & Coad)

Concept = \{ Class, Attribute, Service\}
Relationship = \{has(CS), has(CA)\}

(a) Meta model of product part

(b) Meta model of process part

Motoshi Saeki talk (EMISE)

The Method Fragment Perspective

[Harmsen 94, Harmsen 97, Brinkkemper 99]
The Method Chunk Perspective

 Tight coupling in a chunk of the process and related product parts

<(Problem description), Discover goal / scenario couples with CREWS-L'Ecrtoire

Method Engineering Products

Towards a consensual view (Cossentino et al, 2006)
Method Engineering Products

- Less consensual view on method part relationship types

Variability (choice context)

Variant

Mandatory

Method Part

Generic patterns (Plihon96)

Abstracts

Composed of

0,N

1,N

- Aggregation mechanism (road maps, trees of contexts, etc.)

Method Engineering Processes

- Emphasis on composition strategies* (classification by Ralyté & Rolland)

- Assembly based

- Extension based

- Paradigm based

* Motoshi Saeki talk in EMISE
Method Engineering Processes

Method Assembly* : classification by J.Ralyté & C.Rolland

Integration strategy

Association strategy

New added association

Overlapped & unified

Method Engineering Processes

Method Assembly by association*: example of product models assembly

Object Model

State Transition Model

ObjectChart, Coleman et al92
Method Engineering Processes

Method Assembly by integration: L’Écritoire and OOSE

- Product assembly operators
 - RENAME (concept, link, property)
 - ADD (concept, link, property)
 - DELETE (concept, link, property)
 - GENERALISE (concept)
 - OBJECTIFY (link, property)
 - MERGE (concept, link, property)

- Process assembly operators
 - RENAME (intention, section)
 - ADD (intention, section)
 - DELETE(intention, section)
 - MERGE(intention, section)

Method Engineering Processes

Less studies on ME processes
“Towards a life cycle for method engineering “(Gupta, Prakash 2007)

<table>
<thead>
<tr>
<th>Stage</th>
<th>Process</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements engineering</td>
<td>Intention matching</td>
<td>Goal of the method To-Be</td>
<td>Intentionally similar methods</td>
</tr>
<tr>
<td>Design engineering</td>
<td>Architecture matching</td>
<td>Architectures of intentionally similar methods</td>
<td>Architecturally similar method</td>
</tr>
<tr>
<td>Construction engineering</td>
<td>Organization matching</td>
<td>Workflows of architecturally similar methods</td>
<td>Method To-Be</td>
</tr>
</tbody>
</table>

Bajec et al 2007, Agerflak 2007, Mirbel & Ralyté 2006 etc.
Method Engineering Processes

A generic process model for method engineering (Ralyté, Rolland 2003)

Two key tasks to perform:
- Set method engineering goal
- Construct a method that matches this goal

A number of strategies

Method Engineering Processes

A still fragmented position on designing ME processes (Leppanen 2006)

Goodies ………

- a rich set of composition approaches and procedures
- attempts to integrate various composition strategies
- set of generic taxonomy of assembly operators
- proposals for decomposing ME into ME workflows
Method Engineering Processes

and remaining issues

- an incomplete coverage of the systelogical, infological, conceptual, datalogical & physical perspectives (Leppanen, 2006)
- need for a better understanding of the dimensions of situational method development (Aydin et al, 2007)
- poor understanding of the notion of situation (Bucher et al, 2007)
- need for more syntactic and semantic checking techniques
- too conventional workflow type of ME process modeling

Method Engineering Framework (Caise98&..)

SUBJECT WORLD

• Nature
 {situational, rigid, semi-rigid}

USAGE WORLD

• Purpose
 prescriptive, descriptive, explanatory
• Method Management policy
 change, reuse

SYSTEM WORLD

• Characterisation
 {criteria, descriptor, matrix, profile}
• Notation
 {formal, semi-formal, informal}
• Detail
 Abstraction (type, meta-type)
 Granularity: primitive, aggregate, generic
• Enactment support
 presence

DEVELOPMENT WORLD

• Construction approach
 {contingency, on the fly, static}
• Construction technique
 {instantiation, language, composition, ad-hoc}
Method Engineering Trends & Challenges

♣ ♣ Where to go next?

A shift of focus: from engineering issues to usage concerns

From components to services
Towards CoP (Mirbel 07)
- Emphasize and standardize MP interface descriptions
- Publish and make them publicly available
- Provide contextual information to ease MP finding
- Facilitate MP composition
Towards MOA: Method Oriented Architecture

- Use method services as fundamental elements
- Reorganize a portfolio of existing methods into self-describing, elements (services), accessible through standard interfaces and that can be assembled together
- Based on an interaction between three kinds of method agents

MaaS: Methods as Services

- Using Web service technology to provide self-describing, platform agnostic elements (MaaS), accessible through standard interfaces and that can be assembled together

Types:
- LastTradePriceRequest (ticketSymbol: String)
- TradePrice (price: float)

Messages:
- GetLastTradePriceInput (body: LastTradePriceRequest)
- GetLastTradePriceOutput (body: LastTradePrice)

Port-type:
- StockQuotePortType GetLastTradePrice (in: GetLastTradePriceInput, out: GetLastTradePriceOutput)

Binding:
- StockQuoteSoapBinding (StockQuotePortType, soap, document, http) GetLastTradePrice: http://example.com/GetLastTradePrice

Web Service

StockQuoteService

GetLastTradePrice (LastTradePriceRequest) -> (LastTradePrice)

http://example.com/stockquote
MaaS : An XMI based solution (CRI’s approach 07)

Types:

- ImproveRoleRequest
 - inputSchema: XMIDocument
 - RoleName: XmiIdref, ClassWithRole: String, ClassWithoutRole: String
- ImproveRoleResult
 - ResultSchema: XMIDocument

Messages:

- ImproveRoleInput
 - body: ImproveRoleRequest
- ImproveRoleOutput
 - body: ImproveRoleResult

Port-type:

- ImproveRolePortType
 - ImproveRoleAction

Binding:

- ImproveSoapBinding
 - ImproveRolePortType, soap, document, http
 - ImproveRoleAction:
 - http://maas.crinfo.univ-paris1.fr/ImproveRoleAction

From ME to MaaS Management
Method Engineering Trends & Challenges

- Emphasise the evolutionary perspective of ME (Rossi et al, 2004)

From static ME...

Adapt to project contingencies at time t
Assuming a sharp time-space disjuncture*

....To evolutionary ME

Co-evolution of method and system development
Need for evolutionary ME processes
Continuous search for fit at all times

*Orliwowski

Method Engineering Trends & Challenges

- The continuous improvement loop (BPR/TQM like)

Learn & Adapt (Prat,98)

Measure (Sacki,03)
Method Engineering Trends & Challenges

- Engineering methods in an evolutionary perspective

Method rationale (Rossi et al, 2004):
- trace of method changes & associated use experiences

Method configuration (Karlsson & Agerfalk, 2007):
- Three-layered configuration reuse model consisting of method components, configuration packages & templates

Method families:
- Organization of a set of method variants and their justifications

Variability as a central concept for reuse and adaptability

Method Engineering Trends & Challenges

♣♣ Adapt Variation meta-model to method lines [Bühne05]

- accurate level of expression
- expression of variation requirements (Caise07)
- automatic adaptation of method services

Method Line?

Variant VP dependency

VP requires VP excludes

Variant dependency

V requires V
V excludes V

Variant

constraints

Method Engineering Trends & Challenges

♣♣ The radical change (BPR like)

Innovative Method Theories

Method Ontology (theory)

instance-of

abstracted from

ISD Context

ME Context

New ways of System Design

instance-of

abstracted from

ISD models

abstracted from
Move towards intentional process modelling

From prescriptive workflows...

- ISD & ME processes are decision making processes
- Design is a cognitive act and intentionality is at the core of cognition
- Method guidance shall use human intentions as the drive of the process

To flexible intentional guidance...

Method Engineering Trends & Challenges

Using philosophical foundations

- Intentionality is at the core of cognition (all modern philosophers: Brentano, Twarsdwowski, Hurssel, Sartre, Merleau Ponty, Berner...)
- Intention is a mental state that integrates desires and beliefs and determines actions

Intentionality Model

Intentional action attributes

- Desire
- Belief
- Intention
- Skill
- Awareness

Intention baseline
Method Engineering Trends & Challenges

Guiding the achievement of intentions

- **Intention refinement**
- **Nature meta-model**

Choice Guideline in NATURE

- **CC1**: a2
- **CC2**: a4 or a9 or a10 or a11
- **CC3**: a1 or a7 or a8
- **CC4**: a6
- **CC5**: a5
- **CC6**: a1 or a7
- **CC7**: a8

Possible choices:

- a1: cardinalities are: \(<t, s, -p, a, v>\)
- a2: cardinalities are: \(<p, ?, ?, -?, ?>\)
- a3: cardinalities are: \(<?, ?, -p, ?, ?>\)
- a4: cardinalities are: \(<t, m, -p, s, p>\)
- a5: cardinalities are: \(<?, v, ?, ?, p>\)
- a6: cardinalities are: \(<?, ?, -p, ?, v>\)
- a7: cardinalities are: \(<t, s, p, -p, s, p>\)
- a8: cardinalities are: \(<p, m, -p, m, v>\)
- a9: cardinalities are: \(<t, m, -v, t, s, p>\)
- a10: cardinalities are: \(<t, s, p, -t, s, p>\)
- a11: cardinalities are: \(<t, s, v, -t, s, p>\)
Method Engineering Trends & Challenges

Guidance types

Step guidance: the satisfaction of an intention (step guidance)

Flow guidance: selecting the next intention to make the process proceed

<table>
<thead>
<tr>
<th>Technique</th>
<th>Intention</th>
<th>Solve goal conflict</th>
<th>Operationalize goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brainstorming session</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWOT analysis</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Scenario construction</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Metrics</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Heuristics</td>
<td>*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method Engineering Trends & Challenges

Can we export reuse mechanisms?

From aggregation based Web services composition …

Reuse Mechanisms in ME*:
- Analogy construction (Ralyté, paradigm based)
- Aggregation (almost all)
- Configuration (Bajec, Karlsson&Agerfalk)
- Specialization (Rossi, Ralyté, Baskerville..)
- Instantiation (Nuseibeth, view point super templates)

*Jorg Becker

To a more complete set of mechanisms (2007) …
Method Engineering Trends & Challenges

Can we export reuse mechanisms?

<table>
<thead>
<tr>
<th>Reuse Mechanism</th>
<th>Number of utilizations (over 19)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analogy construction</td>
<td>3</td>
<td>16%</td>
</tr>
<tr>
<td>Aggregation</td>
<td>14</td>
<td>74%</td>
</tr>
<tr>
<td>Configuration</td>
<td>2</td>
<td>11%</td>
</tr>
<tr>
<td>Specialization</td>
<td>9</td>
<td>47%</td>
</tr>
<tr>
<td>Instantiation</td>
<td>1</td>
<td>5%</td>
</tr>
</tbody>
</table>

Conclusion

Motivations
- Composability
- Dynamicity
- QoS
- Variability

Usability (easy use of method services)

Needed assembly of elements (method services)
Thank you for your attention