Chapter 5

A SURVEY OF CONTENT-BASED IMAGE RETRIEVAL SYSTEMS

by Remco C. Veltkamp and Mirela Tanase
Department of Computing Science, Utrecht University
Utrecht, The Netherlands
\{Remco.Veltkamp,mirela\}@cs.uu.nl

1. Introduction

In this chapter we survey some technical aspects of current content-based image retrieval systems.

A number of other overviews on image database systems, image retrieval, or multimedia information systems have been published, see e.g. [49], [54], [69], [70], [72], [89], [135], [170]. The purpose of this survey however, is to provide an overview of the functionality of temporary image retrieval systems in terms of technical aspects: querying, relevance feedback, features, matching measures, indexing data structures, and result presentation. It compares specific systems, rather than general architectures, and provides a basis for (or defence against) statements like “this or that system already does what your system does”. It also is a thorough foundation for claims that most systems use low level features, and few use high level, semantically meaningful, features.

2. Criteria

Many image retrieval systems can be conceptually described by the framework depicted in figure 5.1. In this chapter we survey how the user can formulate a query, whether and how relevance feedback is possible, what kind of features are used, how features from query image and data base image are matched, how the retrieval results are presented to the user, and what indexing data structures are used.

The user interface typically consists of a query formulation part and a result presentation part. Specification of which images to retrieve from
the database can be done in many ways. One way is to browse through the database one by one. Another way is to specify the image in terms of keywords, or in terms of image features that are extracted from the image, such as a color histogram. Yet another way is to provide an image or sketch from which features of the same type must be extracted as for the database images, in order to match these features. A nice taxonomy of interaction models is given in [178]. Relevance feedback is about providing positive or negative feedback about the retrieval result, so that the system can refine the search.

We will consider several classes of features that are used to specify queries: color, texture, shape, spatial layout, and faces. Color features are often easily obtained directly from the pixel intensities, e.g. color histogram over the whole image, over a fixed subimage, or over a segmented region are often used. Although a precise definition of texture is untraceable, the notion of texture generally refers to the presence of a spatial pattern that has some properties of homogeneity. In particular, the homogeneity cannot result from the presence of only a single color in the regions, but requires interaction of various colors.

There is no universal definition of what shape is either. Impressions of shape can be conveyed by color or intensity patterns, or texture, from which a geometrical representation can be derived. In this chapter we consider shape as something geometrical. Therefore, we consider for
example edge orientation over all pixels as texture, but edge orientation at only region contours as shape information. Shape descriptors are diverse, e.g. turning angle functions, deformable templates, algebraic moments, and Fourier coefficients. For an overview of shape matching techniques, see [177].

Indexing is often used as identifying features within an image; with indexing data structures we here mean structures to speed up the retrieval of features within image collections.

Spatial layout is about the absolute or relative position of color, texture, or shape information. Higher level features are increasingly more specific, and thus less widely used. However, faces are frequently present in pictures and relatively often used as a feature, so that we tally its use separately.

3. Systems

Below we describe a number of content-based image retrieval systems, in alphabetical order. If no querying, features, matching, indexing data structure, or result presentation is mentioned, than it is not applicable to the system (e.g. there is no relevance feedback), or no such information is known to us (e.g. often no information is given about indexing data structures).

3.1 ADL (Alexandria Digital Library)

**Developer.** University of California, Santa Barbara.

**URL.** The homepage is at http://www.alexandria.ucsb.edu/adl.html.

**References.** [110], [184].

**Querying.** With a map browser the user can interactively pan and zoom a two-dimensional map of the world to locate his areas of interest, and select a query area that must contain or overlap with the database images. Then, the user can select a catalogue of images, set alphanumeric query parameters such as type (e.g. aerial photos, maps, remote sensing images), and then retrieve the images overlapping with the area indicated with the map browser.

**Features.** Although it has been reported [108] that images can be searched with texture features, the ADL website does not show this capability. What remains is searching on keywords.

**Matching.** When the query is sent to the databases, the query area is compared to the object footprints, according to the functioning matching operator (‘contains’ or ‘overlaps’), and those objects that match are potentially members of the result set for the query.
Result presentation. The matched images are shown as thumbnails, and their footprints are shown on the map in the map browser.

Applications. An important focus for ADL’s collection is on information supporting basic science, including the Earth and Social Sciences. The image datasets (will) include digital elevation models (DEM), digital raster graphics (DRG), scanned aerial photographs, Landsat images, seismic datasets, Sierra Nevada Ecologic Project datasets, and Mojave Ecologic Project datasets.

3.2 AMORE (Advanced Multimedia Oriented Retrieval Engine)

Developer. C & C Research Laboratories NEC USA, Inc.

URL. http://www.ccrl.com/amore/.

References. [120], [121].

Features. The image is segmented into at most eight regions of homogeneous color, and downsized to $24 \times 24$ pixels. The regions in this picture are directly used for matching [81].

Querying. The user first selects a category of images. An initial set of images can be selected at random or by keyword. Of these images, visually similar images can be retrieved. The query image can also be specified by its URL. In a research version of the system, sketching a query image was possible. The user can indicate the relative importance of color and shape.

Matching. First a correspondence between regions in the query and target image is found. Regions corresponding to the same regions in the other image are merged. The shape similarity between two regions is based on the number of pixels of overlap, a kind of template matching. The color similarity between two regions is the distance in HLS space between the uniform region colors [81].

Indexing. Indexing is performed by the COIR (Content-Oriented Image Retrieval) system, see [83].

Result presentation. The retrieved images are shown as thumbnails, without an explicit order. In a research version of the system, result images were displayed as a scatter plot, with shape and color similarity values at the axes, or on a perspective wall [120].

Applications. AMORE is used in the art retrieval system Arthur (Art Media and Text Hub and Retrieval System, http://www.isi.edu/cct/arthur/, developed at the Center for Cultural Technology within the Information Sciences Institute of the University of Southern California.)
3.3 ASSERT

Developer. The School of Electrical and Computer Engineering at Purdue University, West Lafayette.

URL. The homepage is at http://rv12.ecn.purdue.edu/~cbirdev/WWW/CBIRmain.html.

References. [149]

Features. A physician delineates a pathology bearing region (PBR) in images. A lobular feature set (LFS) is associated to a lobe or a combination of adjacent lobes. A LFS contains 26 features of PBRs adjacent to the lobular boundary, and 26 features of PBRs interior to it. The features of each PBR include 14 perceptual features that are specific for HRCT lung images, grouped into linear and reticular opacities, nodular opacities, high opacities, and low opacities. In addition, from 255 general purpose features, a sequential forward selection algorithm selected 12: five grey level, five texture, and two shape features. The grey level features are the grey level mean and standard deviation, and bins 6, 9, and 16 from a 16-bin histogram. The texture features are contrast, entropy, homogeneity, and cluster tendency, all derived from the grey co-occurrence matrix, and the edginess, the ratio of the number edge pixels to the number of pixels in the PBR. The shape features are area, and distance from the PBR region to the enclosing lobular region boundary.

The distribution of the 52-dimensional feature vectors is partitioned into 46 LFS classes.

Querying. A physician delineates a PBR in the query image, from which the features vector is computed.

Matching. The distance between two feature vectors is the Euclidean distance.

Indexing. The 52-dimensional feature space of the LFSs is divided into bins. Each LFS is converted into a hash index by the multi-hash method [68]. The index points to the appropriate bin containing pointers to one or more LFS classes.

Result presentation. The four best matching images are shown.

Applications. Assert is a specifically targeted towards retrieval of high resolution computed tomography images of the lung.

3.4 BDLP (Berkeley Digital Library Project)

Developer. University of California, Berkeley.

URL. The homepage of project is at http://elib.cs.berkeley.edu/, a demo of retrieval from all photos in the collection is at http://elib.cs.berkeley.edu/photos/all.shtml.
References. [26].

Features. There is a number of alphanumerical keys available for querying: the collection, key words, location, county, and photographer. The colors of each image are quantized into 13 colors bins. Six values are associated with each color bin: the percentage of the image with colors in that bin, and the number of ‘very small’, ‘small’, ‘medium’, ‘large’, and ‘very large’ dots of that color found.

Querying. For content-based search, the user can select 13 colors, and indicate the amount (‘any’, ‘partly’, ‘mostly’) of that color in the picture. Also, for colored regions the user can indicate the size (‘any’, ‘small’, ‘medium’, ‘large’) and the quantity of regions with that color (‘any’, ‘few’, ‘some’, ‘many’).

Matching. Image features are stored as text strings. For example, a picture of a sky with clouds might have a few large white regions, and a large amount of blue, and would have a feature text string “mostly blue large white few”. Matching is done by substring matching, e.g. with query string “large white%”.

Indexing. All features are put into a relational database (the Informix Universal Server database management system).

Result presentation. The retrieved photos are presented unordered, with id-number, photographer, and collection keys.

Applications. The collections consist of 23195 images of plants, animals, people, and landscapes, 17000 images from the California Department of Water Resources, Corel Stock photos, and aerial photos of the Sacramento river delta region.

3.5 Blobworld

Developer. Computer Science Division, University of California, Berkeley.

URL. http://elib.cs.berkeley.edu/photos/blobworld/.

A demo of Blobworld is available at http://elib.cs.berkeley.edu/photos/blobworld/start.html.

References. [27].

Features. The features used for querying are the color, texture, location, and shape of regions (blobs) and of the background. The color is described by a histogram of 218 bins of the color coordinates in Lab-space. Texture is represented by mean contrast and anisotropy over the region, as the 2D coordinate \((\text{contrast}, \text{contrast} \times \text{anisotropy})\). Shape is represented by (approximate) area, eccentricity, and orientation.

Querying. The user first selects a category, which already limits the search space. In an initial image, the user selects a region (blob), and
indicates the importance of the blob (‘somewhat’, ‘very’). Next, the user indicates the importance of the blob’s color, texture, location, and shape (‘not’, ‘somewhat’, ‘very’). More than one regions can be used for querying.

**Matching.** To match two color histograms $h_1$ and $h_2$, the quadratic form distance is used: $d(h_1, h_2) = (h_1 - h_2)^T A (h_1 - h_2)$, where $A = (a_{ij})$ is a symmetric matrix of weights representing the similarity between color bins $i$ and $j$. The distance between two texture descriptors is the Euclidean distance between their coordinates in representation space. The distance between centroids is the Euclidean distance. The distances are combined into a single final distance.

**Indexing.** Rather than actually computing the distances between the full color histogram vectors of length 218 as $d(h_1, h_2) = (h_1 - h_2)^T A (h_1 - h_2)$, singular value decomposition (SVD) is used to project the histogram vectors onto a lower-dimensional subspace. The resulting points are indexed by an R*-tree [16].

**Result presentation.** The retrieved images are ranked in linear order, and presented together with the segmented version showing the regions.

**Applications.** The demo on the web provides retrieval from a collection of 10000 Corel stock photos.

### 3.6 CANDID (Comparison Algorithm for Navigating Digital Image Databases)

**Developer.** Computer Research and Applications Group, Los Alamos National Laboratory, USA.


**References.** [92].

**Features.** Each image is represented by a signature consisting of a weighted sum of Gaussian functions. The color features used are the clusters of spectral bands. The texture features used are the mean, skewness, and kurtosis of each pixel. The feature vectors of all pixels together form a point set in higher-dimensional space. On the basis of the $k$-means algorithms, clusters are formed. A mean vector and covariance matrix are computed for each cluster, and the associated Gaussian distribution is weighted by the number of elements in the corresponding cluster. The distribution of the feature vectors is now approximated by the weighted sum of the Gaussian distributions.

**Querying.** The user provides a query image.

**Matching.** The dissimilarity between two image signatures is based on the normalized Euclidean distance or the inner product of two signatures.
Result presentation. Each pixel is assigned to one cluster, and each associated Gaussian distribution makes some contribution to the dissimilarity measure. In order to show which parts of the images contribute to the match, each pixel is highlighted depending on the contribution made to the similarity measure.

Applications. CANDID is used in the retrieval of pulmonary CT images, and multispectral Landsat satellite images.

3.7 C-bird (Content-Based Image Retrieval from Digital libraries)

Developer. School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada.

URL. http://jupiter.cs.sfu.ca/cbird/.

References. [104], [105].

Features. For each collected image, a feature descriptor and a layout descriptor are computed. A feature descriptor is a set of four vectors: a color vector, a most frequent color (MFC) vector, a most frequent orientation (MFO) vector, and a chromaticity vector. A 512-bin RGB histogram is stored in the color vector. The centroids of the regions associated with the 5 most frequent colors form the MFC vector and the centroids of regions of the 5 most frequent edge orientations form the MFO vector. The 36-dimensional chromaticity vector is computed as follows: first, a normalization of each RGB channel is made to obtain illumination invariance, then the 3D color histogram is replaced by a 2D chromaticity histogram. Treating this chromaticity histogram as an image, first a wavelet-based image reduction is applied, then the Discrete Cosine Transform coefficient matrix is built. The chromaticity vector is made of the 36 values of the upper left corner of the DCT matrix. For search by object model, some geometric data such as the area, the centroid and the eccentricity are computed from color regions associated with each of the MFCs.

The layout descriptor contains a color layout vector and an edge layout vector. To construct these vectors the image is divided into 64 cells, and for each cell the most frequent colors and the number of edges for each orientation are determined.

Also, for images at half and quarter resolution, a feature descriptor like the one described above is stored.

Querying. The user is presented a grid of consecutive images from the database starting at a random position. To start a query by color histogram or color similarity with illumination invariance, one of the buttons under the selected query image is pressed. For a query by color
or texture layout, grids are presented for drawing color, texture density and edge orientation layout. For a query by color percentage, 5 colors and their percentages are indicated by the user. For a query by object model, the user browses through a selection of query images and makes a choice.

**Matching.** The distance between two chromaticity vectors in an illumination invariant color query is the $L_2$ distance. Texture orientation histograms, as well as color histograms for the full image, are matched by histogram intersection.

The first step in a query by object model is a color localization: color regions for each MFC are extracted and for each region, some geometric data such as the area, the centroid and the eccentricity are computed. After selecting the images in the database that share a number of color regions with the query image, a number of vectors are produced by connecting the centroid of the first MFC region with the centroids of the other MFCs. Analyzing the length of these vectors and the angles between them, a hypothesis regarding the existence of an object at a certain scale and orientation (the difference of angles between centroids of the regions corresponding to the MFCs in the query and database image) is made. This hypothesis is tested in a second step by comparing the texture histogram for each pair of matching regions in the two images. The 2D texture histogram measures orientation (the gradient direction of the edge pixels) and edge separation from the grey level image. Finally, if there is sufficient similarity in their texture between the query object and the area in the database image where the supposed similar object was identified, a shape verification based on the Generalized Hough Transform is performed [15].

**Result presentation.** The user can choose the number of rows and columns of the displayed images grid. By clicking on a thumbnail image the user can see some color and texture characteristics of the image (color percentage and layout, texture layout).

### 3.8 CBVQ (Content-Based Visual Query)

**Developer.** Image and Advanced Television Lab, Columbia university, NY.

**References.** [154].

**Features.** The first in a series of systems (which include VisualSEEk, SaFE and WebSEEk) developed by the same team at the Columbia University, CBVQ is the only one that enables queries by texture. First, for each pixel in the image a 9-dimensional texture vector is computed. The components of this vector are the magnitudes of the output of a Haar
wavelet filter bank with three iterations on the low frequency. Next, by thresholding the output of each filter, 9 binary images are produced, one for each spatial-frequency subband in the wavelet decomposition. The image pixels are merged into regions of homogeneous texture by using non-linear filtering on each binary image to reduce the noise in the texture content, followed by a sequential labeling algorithm and then a reconstruction of the image by overlapping regions from the binary subband images. Each region is represented by a 9-dimensional binary vector, where each 1 represents a high level of spatial-frequency energy within a particular subband. For each texture region detected, spatial information is also extracted, including region centroid, area, and the dimensions of the minimum bounding rectangle. For each database image, a global color histogram is also computed, and a color segmentation of the image is performed (see VisualSEEk).

**Querying.** The system allows queries by example (the user can select one of the displayed random images or gives the URL address of any image on the Web) and direct queries (by constructing a color histogram). After selecting the query image in a query by example, the user chooses one of the available search methods: color histogram, color composition, texture and histogram manipulation (the query image histogram can be used to construct a new query histogram).

**Matching.** Matching by texture regions is most probably done in the same way as color region matching is performed in VisualSEEk.

**Indexing.** See VisualSEEk.

**Result presentation.** The best 20 matches are presented to the user in decreasing similarity order, together with the matching score.

**Relevance feedback.** Any of the retrieved images can be chosen as the new query image.

### 3.9 Chabot

**Developer.** Department of Computer Science, University of California, Berkeley, CA, USA.


**References.** [126].

**Features.** One of the early systems, Chabot aimed at combining text based descriptions with image analysis in retrieving images from a collection of photographs of the California Department of Water Resources. The system made use of an existing text description database of the collection, adding other types of textual information for querying such as the shooting date, the picture location, the perspective of the photo. For each image a color histogram containing only 20 bins is computed.
Querying. The user is presented with a list of search criteria (such as keywords, photographer, film format, shooting date, perspective, location, and colors). The color criterion offers limited options for the user to choose from, such as ‘mostly red’ or ‘some yellow’. The user has the possibility to define concepts, which are combinations of search criteria that the concept satisfies. For example, the concept of ‘sunset’ is defined as a combination of keyword (‘sunset’) and color (‘mostly red’ or ‘mostly orange’) criteria.

Matching. To match a ‘mostly …’ color criterion, more than 50% of the pixels in an image must have the requested color. For the ‘some …’ color criterion, one or two of the 20 colors in the histogram must be qualified as the requested color.

Indexing. The images and associated data are stored in the database POSTGRES, developed at the University of California, Berkeley.

Result presentation. Images are shown without specific order.

Applications. The database contains 11643 images of California natural resources.

3.10 CHROMA (Colour Hierarchical Representation Oriented Management Architecture)

Developer. School of Computing, Engineering and Technology, University of Sunderland, UK.

URL. http://osiris.sund.ac.uk/~cs0sla/

References. [99]

Features. From each image a color dominance vector is generated, of at most length ten. The vector lists the color classes of decreasing dominance. There are ten classes: {uncertain colors like very dark and very bright}, {white}, {grey}, {black}, {red, pink}, {brown, dark yellow, olive}, {yellow, orange, light yellow}, {green, line}, {blue, cyan, aqua, turquoise}, {purple, violet, magenta}. Each pixel of an image tallies for one class, the first vector component is the class with the highest count, etc. If a class does not occur in the image, the vector does not contain this class, and has less than ten components.

A second feature is a 15 × 15 matrix of color classes. First the image is represented at 15 × 15 resolution, which color quantization algorithm is used is not mentioned. The matrix contains the color class of each pixel. This provides a rough description of layout in the image.

Querying. The user can navigate through a hierarchy, built on the color dominance vectors of all images in the database. The root contains all images. Each branch i below the root contains all images whose
color dominance vector starts with \( i \). Each branch \( j \) below each node \( i \) contains all images whose vector starts with \( ij \), etc. The user can temporarily omit selected color groups.

A second way of querying is with a sketch or query image, whose \( 15 \times 15 \) matrix is matched with the database images’ matrices.

**Matching.** The matching score of two images is the Jaccard’s coefficient of their matrices, which is the number of matrix elements that are equal, divided by the maximum number, 225.

**Indexing.** Except for the navigation, no indexing data structure is used. The querying with an image or sketch involves matching all database images.

**Result presentation.** The resulting images are presented in linear order of matching score.

### 3.11 DrawSearch

**Developer.** Department of Electrical and Electronic Engineering, Technical University of Bari, Italy.

**References.** [52].

**Features.** The features used for querying are color, texture and shape. The image is divided into \( 4 \times 4 \) subimages and within each subimage, the average color is computed. This results in a 48-length color vector. Shape is represented by means of Fourier descriptors. It is unclear how the contour-based segmentation of the image is done. The components of the shape descriptor are the real part of the lower 100 Fourier coefficients. Texture-based image segmentation makes use of Gaussian Markovian Random Fields.

**Querying.** The system has two user interfaces: one that allows queries by color and shape, and the other one allowing queries by texture. In the first subsystem, the user draws a sketch on a canvas, selecting color attributes for the lines and closed regions. In the texture retrieval subsystem, a query is posed by selecting a texture area within a database image.

**Matching.** In the color/shape subsystem, the similarity between two feature vectors is given by the cosine metric. The similarity score between a query and a database image is calculated as a weighted sum of the distances between the two color vectors and shape descriptors.

**Result presentation.** Images are displayed in decreasing similarity order.

**Relevance feedback.** In the retrieval by texture subsystem, the user can improve retrieval results by selecting relevant images from the displayed query results. The other subsystem allows both relevant and
nonrelevant images to be marked by the user when reiterating the query. The new query vector is computed by combining the feature vector of the original query $Q$ with the feature vectors of relevant and nonrelevant images: $Q^{k+1} = Q^k + \delta \sum_{i=1}^{n_{\text{rel}}} X_i - \epsilon \sum_{j=1}^{n_{\text{notrel}}} Y_j$, where $\delta, \epsilon$ are positive real weights, $X_i$ is the feature vector of the $i$th relevant image, and $Y_j$ of the $j$th nonrelevant image.

3.12 FIDS (Flexible Image Database System)

Developer. Department of Computer Science and Engineering, University of Washington, Seattle, WA, USA.


References. [19].

Features. FIDS uses the following features. The color histogram, and the fraction of flesh colored pixels. The histogram of values after applying the Sobel edge filter. The local binary pattern histogram. The coefficients of the Haar wavelet decomposition. These features are also taken of subimages in a grid, in rows, and columns.

Querying. The user chooses an image as query image. He can select the feature distance measures, and combine them into an overall distance measure. A result image can be used as next query image.

Matching. The distances between the histograms are the $L_1$-distance. The distance between wavelet coefficients, is some weighted difference. An overall distance can be composed by taking the weighted sum, maximum, or minimum of the individual feature distances, which preserves metric properties.

Indexing. In a preprocessing step, the distance of all database objects to $m$ reference objects are computed, and stored in a so-called trie structure [58]. At query time, the distances $d_i$, $i = 1, \ldots, m$ of the query to these reference objects are also computed. These both distances and the triangle inequality are used to establish a lower bound on the distance between the query and the database images. The trie structure is used to filter the database images on this lower bound.

Result presentation. The images can be ordered on their lower bound, so that no exact distances between query and images need to be calculated. Alternatively, the user can select of how many of those the true distance must be calculated.

3.13 FIR (Formula Image Retrieval)

Developer. Developed by Fraunhofer Institute for Computer Graphics, Darmstadt, Germany, in association with TXT Ingegneria Informatica S.P.A. (Italy), Giunti Multimedia Srl (Italy), Epsilon Software (Greece),
and Kino TV & Movie Productions S.A. (Greece), as part of the Esprit IV project FORMULA.


References. [181].

Features. Basic shape and color information of an image are represented using a multiresolution wavelet decomposition. A preprocessing step include a rescaling of the image to a square thumbnail of $128 \times 128$ pixels and a transformation of the thumbnail colors from the RGB space to CIELUV space. Next, a non-standard two-dimensional Haar wavelet transform is performed on each color channel individually, followed by a truncation of the resulting coefficients. Only the coefficients larger than a threshold are retained and after rounding to integer values they are stored in a feature vector.

Querying. A query is submitted by giving an example image.

Matching. The distance measure between two feature vectors is a weighted Euclidean distance, with different weights for each of the resolution levels in the wavelet decomposition.

### 3.14 FOCUS (Fast Object Color-based Query System)

Developer. Department of Computer Science, University of Massachusetts, Amherst, MA.


A demo of the system is available at http://cowarie.cs.umass.edu/~colordemo/mdas/demo1/phase0.html.

References. [48].

Querying. The user can select as query one of the displayed template images, or create a new template by marking a subimage which contains the region of interest.

Features. Each image is divided in cells of $100 \times 100$ pixels and for each cell a color histogram in the HSV space, coarsely quantized along the saturation and value axes ($64 \times 10 \times 10$), is computed. The peaks of all local histograms are determined and combined in a list of unique peaks for the whole image by merging multiple copies of the same peak. Also, a frequency table is constructed which, for each color in the HSV space, gives the number of images that have a peak of that color.

The spatial relationships between color regions are represented by means of a spatial proximity graph (SPG) constructed in two phases. First an intermediate SPG is generated, with one node corresponding to each color peak computed for the image cells. Two nodes in this graph
are connected if their corresponding peaks are located in the same cell or are located in neighboring cells and have the same color. This graph is then simplified, by unifying all connected nodes of the same color in a single node, and stored using an adjacency matrix representation.

For the query image, a global color histogram is computed and color region relationships are determined at pixel level.

**Matching.** The peaks of a query image are subjected to approximate range queries in the increasing order of their corresponding entries in the frequency table. From the resulting lists, the set of images which have peaks matching all query peaks are determined. For the images in this set, a matching score is computed as the sum of the $L_1$ distances between each query peak and the matched candidate peak.

To match the SPG of the query image with that of a candidate image, first the candidate SPG is reduced by removing any node whose corresponding peak does not match a query peak. Then it is checked if the query graph appears as a subgraph in the candidate SPG.

**Indexing.** The color peaks of the database images are stored in a $B^+$ tree [94] sorted with hue as the primary key, followed by saturation and value.

**Result presentation.** When the user submits a query by clicking on an image, the images are retrieved using the first phase of matching (the images displayed are the images that have all the colors of the query image). By clicking on the 'Refine Results' button, the retrieved images are subjected to the second phase of matching, where the spatial relationships of the matched color regions is analyzed in order to detect a query object in a candidate image.

**Applications.** The database consists of 400 advertisements and 800 color natural images.

### 3.15 ImageRETRO (Image RETrieval by Reduction and Overview)

**Developer.** Department of Computer Science, University of Amsterdam, The Netherlands.


**References.** [179].

**Querying.** The user is shown a number of images (called overview), each of them being representative for a part of the image collection. By selecting one of these images, the user selects a part of the database, which is then clustered, and another set of representative images is shown.
to the user. By this successive filtering, the user obtains a small set of images which can be browsed manually.

**Features.** The following features are used in clustering images: a 15-bin hue histogram, the number of colors (the number of bins with more pixels than a threshold, relative to the total number of bins in the hue histogram), the average color (the center of gravity of the circular hue histogram is the bin which gives the lowest average value when taken as a starting point in computing this value; the average value is given by \( \text{avg} = (\sum_{j=1}^{15} h_j d_j)/h \), where \( h_j \) represents the number of pixels in bin \( j \), \( d_j \) is the distance from this bin to the starting point in the circular hue histogram, and \( h = \sum_{j=1}^{15} h_j \); the average color is the average value of the center of gravity divided by 15), the color variation (the circular hue histogram is first linearized by using the center of gravity as the center of the new histogram; the standard deviation of this histogram normalized by the maximal possible standard deviation gives the color variation), the grayness (share of gray valued pixels in the total number of pixels), the average gray value (average value of the gray value histogram, see average color), the average saturation (the sum of saturation values for each pixel divided by the total number of pixels), the background proportion (share of the background in the total number of pixels, where the supposed background is the bin with the highest frequency in the hue or the gray value histogram), the number of regions (a region is a collection of adjacent pixels with the same color hue or gray value), the number of holes (relative to the number of regions, where a hole is a region surrounded entirely by another region). For all the images in the database, the color features described above are computed off-line and stored in the database.

**Matching.** The ranking of the image clusters, employed in the relevance feedback, is straightforward when based on one of the scalar color features. No histogram distance measure is mentioned.

**Relevance feedback.** Let \( I_s \) be the image set after \( s \) reductions (filterings) and let \( F \) denote the set of 10 color features described. The image set is clustered based on an automatically selected feature subset \( F_s \) of \( F \). The images from \( I_s \) are ranked independently for each feature in \( F_s \), and each such ranking is divided into 4 clusters (corresponding to a reduction of 25%) and each cluster centroid is chosen as the cluster representative. The union of these representatives for all rankings forms the representative set of \( I_s \), which will be shown to the user for the next reduction. The choice of feature subset \( F_s \) at stage \( s \) in the retrieval process is based on statistical analysis. For each feature, the variance of the feature values of all images is computed and \( F_s \) is made of the
features with highest variances, that do not highly correlate with each other.

**Applications.** The system was tested with a database of 10000 images, collected from the Web.

### 3.16 ImageRover

**Developer.** Department of Computer Science, Boston University, MA.


For a demo of the system, look at [http://www.cs.bu.edu/groups/ivc/ImageRover/demo.html](http://www.cs.bu.edu/groups/ivc/ImageRover/demo.html).

**References.** [142], [172].

**Features.** The features used for querying are color and texture orientation. The system computes distributions of color and orientation over 6 subimages (the whole image and 5 subregions: the central and corner regions). The result is an image index vector made of $2 \times 6$ subvectors. This dimension is subject to a reduction via a principal component analysis (PCA) for each of the subvector spaces. Image color histograms are computed in the CIELUV color space and each histogram quantizes the color space into 64 bins. The texture direction distribution is calculated using steerable pyramids. At each of the four levels of the pyramid, texture direction and strength for each pixel is calculated resulting in an orientation histogram, quantized to 16 bins.

**Querying.** The user starts a query session by specifying a set of keywords related to the desired images. From the set of images displayed, the user finds and marks one or more images which are similar to what she/he is looking for. Apart from selecting relevant images, the user can deselect one or more of the query images before reiterating a new query. There is no limit to the number of iterations in providing relevance feedback, nor in the number of example images.

**Matching.** Based on relevance feedback from the user, the system selects the appropriate $\tilde{L}_m$ normalized Minkowski metric each time a query is made. The normalization factor $\mu^i_m$, employed by the normalized distance $\tilde{L}_m(x_i, y_i) = L_m(x_i, y_i)/\mu^i_m$, with $x_i$ and $y_i$ being two subvectors of the image index vectors $X$ and $Y$, is the expected value over the entire database: $\mu^i_m = E[\tilde{L}_m(x_i, y_i)]$. It is allowed to use metrics of different orders $m_i$ for each of the image index subvectors. Thus, if $S$ is a set of relevant images indicated by the user, the appropriate value for $m$ of the $i$-th subvector is chosen so as to minimize the distance between relevant images: $m_i = \arg \min_m E[\tilde{L}_m(p_i, q_i)]$, over all $P, Q \in S$.

Then the $k$-nearest neighbor search of the image index vector uses the following weighted distance metric:
\[ d(X, Y) = (w_1, \ldots, w_n)(\tilde{L}_{m_1}(x_1, y_1), \ldots, \tilde{L}_{m_n}(x_n, y_n))^T \]

where \(X, Y\) are the image index vectors and \(w_i\) are relevance weights.

**Indexing.** An optimized kD tree is used and the search algorithm in this structure employs an approximation factor. The user can select through the search accuracy button one of the three values for this approximation factor.

**Result presentation.** Images similar to the query images are shown in decreasing similarity order. Their number is chosen by the user. Each displayed thumbnail image is a hypertext link to the original image, allowing the user to retrieve the desired image from its home website.

**Relevance feedback.** The user indicates the more relevant images, after which the system selects the appropriate \(\tilde{L}_m\), see above.

**Applications.** Image Rover is an image search engine for the WWW.

### 3.17 ImageScape

**Developer.** Department of Computer Science, Leiden University, The Netherlands.

**URL.** [http://www.wi.leidenuniv.nl/home/lim/image.scape.html](http://www.wi.leidenuniv.nl/home/lim/image.scape.html)


**References.** [24], [102].

**Querying.** Using the sketch interface, the user can draw an outline of the desired image. For semantic querying, the user brings icons on a canvas that represent the objects/concepts he is looking for, at the desired position in the image. Examples of object/concept categories include human faces, stone or sand, water, sky, tree or grass, points and lines.

**Features.** Edge maps of the images collected by Web crawlers are obtained using the Sobel operator and a Gaussian blurring filter. A frequency histogram of the \(3 \times 3\) binary pixel patterns occurring in the edge image, which is called trigram vector, is computed for all images. This vector is subjected to a dimensionality reduction using a band-pass filter (see LCPD below). Various other features, used in object matching, are taken at pixel level: color, Laplacian, gradient magnitude, local binary patterns, invariant moments and Fourier descriptors.

**Matching.** The first step of the object matching process uses the \(L_1\) distance on the trigram vectors to retrieve the top 1% matches from the entire database. Among these, 20 matches are selected in a second step, a \(20 \times 20\) template matching, using the most informative pixels to minimize the misdetection rate. These pixels are found as follows. For each object, a large set of positive and negative examples are used in...
finding the set of 256 pixels with the greatest discriminatory power, by maximizing the Kullback relative information combined with a Markov random field.

### 3.18 JACOB (Just A COntent Based query system for video databases)

**Developer.** Computer Science & Artificial Intelligence Lab, University of Palermo, Italy.


**References.** [97].

**Features.** The system makes queries based on color and texture features. Color is represented by means of a histogram in the RGB space. Texture features used are two measures extracted from the grey-level co-occurrence matrix, the maximum probability $\max_{m,n} f(m,n,r,\theta)$, and the uniformity $\sum_m \sum_n (f(m,n,r,\theta))^2$. An 8-dimensional vector is obtained by computing the joint probability $f(m,n,r,\theta)$ for distance $r = 1$ and orientation $\theta = -45^\circ, 0^\circ, 45^\circ, 90^\circ$. Another vector is composed of edge density measures (the fraction of edge pixels in the total number of pixels in the image) along four directions, $-45^\circ, 0^\circ, 45^\circ, 90^\circ$.

**Querying.** The queries may be direct or by example. A direct query is made by inserting a few values representing the color histogram and/or the texture features. For a query by example, the user must give an image.

**Matching.** Two color histograms $H_1, H_2$ are compared using the following distance measure: $d(H_1, H_2) = \sum_{y \in S} \sum_{x \in I(y)} |H_1(y) - H_2(x)| s(y, x)$, where $S$ is the reduced RGB space, $I(y)$ is a small interval centered on the point $y$ and $s$ is a color similarity function. The distance measure used for the texture feature vectors is not mentioned. When performing a query, the user choose a value between 0 and 1 to indicate the relative importance of a feature with respect to the other one. As a result the two distances computed are weighted in a global similarity measure.

**Result presentation.** The system returns the best matching frames in a similarity order. The number of returned frames is chosen by the user.

**Applications.** The matching of images is used for querying video databases.
3.19 LCPD (Leiden 19th Century Portrait Database)

Developer. Department of Computer Science, Leiden University, The Netherlands.


References. [103].

Features. The user has several choices in selecting the feature vector, the pixel value domain used for computing this vector, and the resolution level. There are three options for the pixel domain: the intensity image, the gradient image (obtained by Sobel operators) and the thresholded gradient image. One feature vector is the horizontal/vertical projection vector. For an image with $m \times n$ pixels, this vector has $m + n$ components computed as the average of the row/column pixel values in the selected space. A second feature is the trigram vector, a frequency histogram of the $3 \times 3$ binary pixels patterns in the thresholded gradient image. This 512-length vector can be subjected to a dimensionality reduction and to a component weighting scheme (low weights are applied on either end of the sorted frequency range). A way of reducing the length of the trigram vector is by forming groups of rotation, mirroring and/or intensity invariant binary patterns. By using the RM (Rotation, Mirroring) group, the dimension of the feature vector is reduced to 102 and by forming RIM (Rotation, Intensity, Mirroring) groups to 51. Another method used consists of suppressing the contribution of the black and white patterns (which are among the most common patterns) and the rare patterns. This is called a bandpass filter. A Karhunen-Loeve Transform can also be used for feature vector length reduction.

A similar vector can be constructed in the intensity space. In this case, the feature vector is computed by first thresholding the 8 neighbors of each pixel with its intensity value and counting the number of occurrences of each of the $2^7$ possible patterns of these 8 pixels (the center pixel is not part of the pattern). This results in an 256-length local binary pattern vector (LBP), which can also be subjected to dimensionality reduction.

Querying. Querying is done by example. The user first selects a search method (different combinations of pixel domain, feature vector, dimensionality reduction scheme employed and resolution) from the displayed list.

Matching. The similarity between two feature vectors (projections, trigram or LBP vectors) is given by the $L_1$ distance. If two images have different sizes, the similarity score between two projection vectors is given by the minimum $L_1$ distance over all possible x-/y-translations of
one image over the other. Another similarity measure is given by the magnitude of the the average pixel to pixel difference in the intensity or gradient space.

**Indexing.** The POSTGRES database stores for each image the best matches for 30 search methods.

**Result presentation.** Retrieved images are presented in decreasing similarity order.

**Applications.** The system is used to find near copies of Dutch carte de visite studio portraits from a database of 16505 images of photographs taken from 1860 till 1914.

### 3.20 MARS (Multimedia Analysis and Retrieval System)

**Developer.** Department of Computer Science, University of Illinois at Urbana-Champaign, further developed at Department of Information and Computer Science, University of California at Irvine, CA.


**References.** [129].

**Features.** The system supports queries on combinations of low-level features (color, texture, shape) and textual descriptions. Color is represented using a 2D histogram over the HS coordinates of the HSV space. Texture is represented by two histograms, one measuring the coarseness and the other one the directionality of the image, and one scalar defining the contrast. In order to extract the color/texture layout, the image is divided into $5 \times 5$ subimages. For each subimage a color histogram is computed. For the texture of a subimage, a vector based on wavelet coefficients is used. The object in an image is segmented out in two phases. First, a $k$-means clustering method in the color-texture space is applied, then the regions detected are grouped by an attraction based method. This consists of choosing a number of attractor regions and associating each region with the attractor that has the largest attraction to it. The attraction between two regions, $i$ and $j$, is defined as $F_{ij} = M_i M_j / d_{ij}^2$, where $M_i, M_j$ are the sizes of the two regions and $d_{ij}$ is the Euclidean distance between the two regions in the spatial-color-texture space. In the MARS system, five attractors are used: one for each corner of the image (background attractors) and one in the center of the image (the objects attractor). This is consistent with the fact that their database consists of images of single objects. The shape of the boundary of the extracted object is represented by means of Fourier Descriptors (FD).
**Querying.** Complex queries can be formulated using boolean operators. The desired features can be specified either by example (pointing an image database that has such a property) or direct (for example, by choosing colors from a palette or textures from an available set of patterns).

**Matching.** The similarity distance between two color histograms is computed by histogram intersection. The similarity between two textures of the whole image is determined by a weighted sum of the Euclidean distance between contrasts and the histogram intersection distances of the other two components, after a normalization of the three similarities. For computing the texture similarity between two corresponding subimages, the Euclidean distance between the vector representations is used. A weighted sum of the $5 \times 5$ color/texture similarities is used to compute the color/texture layout distance between two images. The similarity measure between two FD shape representations is a weighted sum of the standard deviations of $\text{ratio}(k) = M_2(k)/M_1(k)$ and $\text{shift}(k) = \theta_2(k) - \theta_1(k) - \psi$, $k = -N_c, \ldots, N_c$, where $M_i(k)$ and $\theta_i(k)$ are the magnitude and the phase angle of the FD coefficients, $\psi$ is the difference of the major axis orientations of the two shapes and $N_c$ is the number of FD coefficients.

Each query has a query tree associated. In a query tree, the leaves represent the feature vectors (the terms of the boolean expression defining the query) while the internal nodes correspond to boolean operators or more complex terms indicating a query by object. Individual queries on each of the query terms are made. The tree is evaluated bottom-up: each internal node receives from each child a list of ranked images and combines these lists, after a normalization process, according to the weights on the parent-child links.

**Indexing.** There is no information about indexing data structures used for queries. A new version of the system, WebMARS, is developed where the feature vectors are indexed using hybrid trees, which combine aspects of several indexing trees.

**Result presentation.** Images are listed in order of decreasing similarity.

**Relevance feedback.** Initially, the weights of the edges in the query tree are equal for the children of the same parent and their sum is 1. Based on the relevant images chosen by the user from the query result list, a tree reweighting process takes place.

**Applications.** The database consists of images of ancient African artifacts from the Fowler Museum of Cultural History at UCLA.
3.21 MetaSEEk

Developer. Image and Advanced Television Lab, Columbia University, NY, USA.

URL. http://www.ctr.columbia.edu/metaseek/.

References. [17].

Features. Content-based retrieval can be done on the basis of color and texture. MetaSEEK has a color or texture matching and indexing of its own to cluster query images in a local performance database, used to select target search engines. The actual image matching is forwarded to QBIC, VIR Image Engine, WebSEEK, and the VisualSEEK retrieval engines.

Querying. The user can select a category, provide a key word, provide a URL of an image, or select a shown image. Upon receiving a query, the dispatcher consults the performance database at the MetaSEEK site. This database contains performance scores of past query successes and failures of each supported search option. This is used to select the target search engines to be queried.

Indexing. Query images in the performance database are clustered into several classes on the basis of color, textures, and the combination of both. When the user issues a query with a new image for which no performance scores are available, the system downloads the image, and matches it to the corresponding clusters in order to obtain a list of the most similar clusters. Selected images from the few closest clusters are presented to the user, who can choose one. In this way, new queries are related to the performance of past ones for which performance information is available.

Matching. Color and texture are extracted locally by MetaSEEK for the clustering. Color similarity is computed by calculating the color histogram of an image. Texture is computed by measuring the coarseness, contrast, and presence/absence of directionality of an image. The distance between two feature vectors is the Euclidean distance.

Result presentation. The display component merges and ranks the results from each search option.

Relevance feedback. The user can indicate to like or dislike each of the returned images. This information is used to modify the corresponding entries in the performance database.
3.22 MIR (Multimodal Information Retrieval System)

**Developer.** Center of Excellence for Document Analysis and Recognition, University at Buffalo, NY, USA.


**References.** [161], [162].

**Features.** The MIR system combines various techniques from text processing and image processing in an attempt to derive semantic descriptions of images. By employing natural language processing (NLP) techniques in analyzing image captions, information about the picture’s content is derived. This includes whether there are people in the picture, their names, location and time of the photograph, spatial relationships of the people in the image as well as other visual characteristics (attributes that can assist in face recognition such as gender, hair color, beards, mustaches and glasses). Also, statistical text indexing techniques are used in capturing the general context of the image (such as indoor versus outdoor). The pictures in which the presence of people is detected by NLP, are subjected to a face detection to verify this hypothesis. The face detection algorithm uses a three-contour model representing hair line, and left and right outlines of the face. After extracting edges at different image resolutions by means of a wavelet transform, a graph-matching generates possible face candidates in the image. After the face detection, the face areas are cropped out, and for the rest of the image a color histogram is computed. For the scenery pictures (where no face is detected in the NLP analysis) a color correlation histogram is computed.

If \( f_{ijk} \) is a color triple in the \( 2 \times 2 \times 2 \) quantized HVS space, then \( h_{ijk} \) denotes the number of occurrences of three pixels of these colors as the vertices of a isosceles right triangle with the smaller sides of length \( l \). The color correlation histogram \( f'_{ijk} \) is \( h'_{ijk}/(4 \times h_i) \), where \( h_i \) is the \( i^{th} \) bin of the traditional color histogram.

**Querying.** A query formulation can include a text string, an image, and a topic (selected from a predefined set containing sports, politics, entertainment etc.). The user can also indicate the relative importance of text versus image content, as well as of background versus foreground in an image containing people (the foreground).

**Matching.** The similarity between a query and a database image is a weighted sum of the similarities between different sources of information (text-based and content-based) extracted from the image. Two color correlation histograms are matched using the Euclidean distance.
**Applications.** The system retrieves pictures of people and/or similar scenery in various contexts. Three databases were used in testing the system. The first one consisted of approximately 5000 images with accompanying text provided by United Press International. The second one provided by Kodak consists of consumer photos accompanied by speech annotations. The third one consists of multimodal documents downloaded from the Web.

**3.23 NETRA**

**Developer.** Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA.

**URL.** http://maya.ece.ucsb.edu/Netra/.

A demo of the system is available at http://maya.ece.ucsb.edu/Netra/netra.html.

**References.** [107], [108].

**Features.** Images in the database are segmented into regions of homogeneous color. Of those regions, the following features are extracted: color, texture, shape, and spatial location.

On the basis of a training set of images, the RGB color space is quantized, and represented by a color codebook of 256 colors, the centroids of the quantization cells. The colors of an image region are also quantized, giving a color feature vector $f_c = (c_0, p_0, \ldots, c_n, p_n)$, with $c_i$ the index into the color code book, and $p_i$ the fraction of that color in the region, $p_0 + \cdots + p_n = 1$. The number $n$ is the number of colors used to represent the region, which is different for each region.

Texture is represented by a feature vector $f_t$ containing the normalized mean and standard deviation of a series of Gabor wavelet transforms of the image: $f_t = (\mu_{0,0}, \ldots, \mu_{s,k}, \sigma_{0,0}, \ldots, \sigma_{s,k})$, with $s$ the number of scales, and $k$ the number of directions.

There are three feature vectors used to represent the shape of regions. The first, $f_K$, is based on the curvature function of the contour, giving the curvature at each point on the contour. The second, $f_R$ is based on the centroid distance function, giving at each contour point the distance to the centroid of the region. The third, $f_Z$, is the complex coordinate function, representing each contour point as a complex number with real component equal to the x-coordinate, and the imaginary component equal to the y-coordinate. On 64 samples of each of these functions, the fast Fourier transform (FFT) is applied, of which the real (amplitude) component of the coefficients is used, the numbers $F_{-31}, \ldots, F_{32}$. The feature vectors are as follows: $f_K = (|F_1|, \ldots, |F_{32}|)$, $f_R = (|F_1|, \ldots, |F_{52}|)/|F_0|$, $f_Z = (|F_{-31}|, \ldots, |F_{-1}|, |F_2|, \ldots, |F_{32}|)/|F_1|$. 
Querying. There are 2,500 images from the Corel photo collection, organized in 25 categories, with 100 images in each category. You can select any one of them as the query image. All images in the database have been segmented into homogeneous regions. You can click on one of the regions and select one of the four image attribute color, spatial location, texture, and shape. Instead of using an image example, you can also directly specify the color and spatial location. The spatial location querying tool utilizes two bounding boxes to define the area of interest. The inner box is used to define the preferred area, and the box outside is used to constrain the objects to be within this area. Thus, if the object has any of its bodies exceeding this outside box, they will not be considered.

Matching. Consider two color feature vectors, \( f_c^A \) of region A, and \( f_c^B \) of region B. For each color \( c_i \) in \( f_c^A \), the closest color \( c_k^B \) in \( f_c^B \) is found, and the distance \( d(c_i^A, f_c^B) \) is calculated as the weighted Euclidean distance in RGB space: \( d(c_i^A, f_c^B) = |p_i^A - p_k^B|d(c_i^A, c_k^B) \). The distance between the two color feature vectors is now \( \sum_{i=0}^{n^A} d(c_i^A, f_c^B) + \sum_{i=0}^{n^B} d(c_i^B, f_c^A) \). The distance between two texture feature vectors is the \( L_1 \)-distance. The distance between two shape feature vectors is the Euclidean distance.

Indexing is based on the SS-tree [186]. Color, texture, and shape are indexed separately. The first feature the user specifies is used to retrieve about 100 candidates. Then this feature and the possible other features together are used to order the retrieval result.

Result presentation. The matched images are linearly ordered.

Applications. An initial prototype of NETRA is used in ADL (see above) to search on texture.

3.24 Photobook

Developer. Vision and Modeling Group, MIT Media Laboratory, Cambridge, MA.


References. [132].

Features. Photobook implements three different approaches to constructing image representations for querying purposes, each for a specific type of image content: faces, 2D shapes and texture images. The first two representations are similar in the way that they offer a description relative to an average of a few prototypes by using the eigenvectors of a covariance matrix as an orthogonal coordinate system of the image space. First a preprocessing step is done in order to normalize the input
image for position, scale and orientation. Given a set of training images, \(\Gamma_1, \Gamma_2, \ldots, \Gamma_M\), where \(\Gamma_i\) is a \(n \times n\) array of intensity values, their variation from the average, \(\Psi = \frac{1}{M} \sum_{i=1}^{M} \Gamma_i\), is given by \(\Phi_1 = \Gamma_i - \Psi\). This set of vectors is then subjected to the Karhunen-Loève expansion, the result being a set of \(M\) eigenvectors \(u_k\) and eigenvalues \(\lambda_k\) of the covariance matrix \(C = \frac{1}{M} \sum_{i=1}^{M} \Phi_i \Phi_i^T\). In representing a new image region, \(\Gamma\), only \(M_1 < M\) eigenvectors with the largest eigenvalues are used, thus the point in the eigenimage space corresponding to the new image is \(\Omega = (\omega_1, \omega_2, \ldots, \omega_M)\), where \(\omega_k = u_k^T(\Gamma - \Psi), k = 1, \ldots, M_1 < M\).

In a texture description, an image is viewed as a homogeneous 2D discrete random field, which by means of a Wold decomposition, is expressed as the sum of three orthogonal components. These components correspond to periodicity, directionality and randomness.

In creating a shape description, first a silhouette is extracted and a number of feature points on this are chosen (such as corners and high-curvature points). This feature points are then used as nodes in building a finite element model of the shape. Solving the following eigenvalue problem \(K \phi_i = \omega_i^2 M \phi_i\), where \(M\) and \(K\) are the mass and stiffness matrices, respectively, the modes of the model are computed. These are the eigenvectors, \(\phi_i\), which are next used for determining a feature point correspondence between this new shape and some average shape.

**Querying.** To perform a query, the user selects some images from the grid of still images displayed and/or enters an annotation filter. From the images displayed, the user can select another query images and reiterate the search.

**Matching.** The distance between two eigenimage representations, \(\Omega_1\) and \(\Omega_2\), is \(e_{ij}^2 = \|\Omega_i - \Omega_j\|^2\). Two shapes are compared by calculating the amount of strain energy needed to deform one shape to match the other.

**Indexing.** Prior to any database search, a few prototypes that span the image category are selected. For any image in the database, its distance to the average of the prototypes is computed and stored for future database search. At query time, the distance of the query image to the average is computed and the database is reordered according to this.

**Result presentation.** Images in the database are sorted by similarity with the query images and presented to the user page by page.

**Applications.** The face recognition technology of Photobook has been used by Viisage Technology in a FaceID package, which is used in several US police departments.
3.25 Picasso

Developer. Visual Information Processing Lab, University of Florence, Italy.

URL. http://viplab.dsi.unifi.it/PICASSO.

References. [50], [130].

Features. The Picasso system supports queries based on shape, color regions and their spatial relationships. The system exploits a pyramidal color segmentation of the database images, each level of the pyramid corresponding to a resolution level of the segmentation. At the lowest level, each pixel in the image is identified with one region, while at the highest level of the pyramid the entire image is represented by a single region. Image regions at level \( n \) are determined by iteratively merging adjacent regions from level \( n - 1 \), minimizing the sum of all region energies. The energy \( E_R \) of a region \( R \) is given by \( E_R = \alpha A(R) + \beta D(R) + \gamma \sum_{R_i \in N(R)} 1/D(R \cup R_i) \), where \( A(R) \) is the region’s area, \( D(R) \) is a measure of the uniformity in color of the pixels belonging to the region \( R \), \( N(R) \) denotes the set of regions adjacent to \( R \) and \( \alpha, \beta \) and \( \gamma \) are positive real weights. This way, at the end of the segmentation process, each image is associated with \( N \) segmented images \( I_n, n = 1 \ldots N \), which are represented using a multi-layered graph \( G \). The nodes of \( G \) are the color regions of the \( N \) segmented images. There are two types of connections between these nodes: intralevel links between the nodes corresponding to adjacent regions in a segmented image \( I_n \) and interlevel links between a node corresponding to a region \( R^k_n \) of \( I_n \) and the nodes corresponding to regions of \( I_{n-1} \) that merged to form \( R^k_n \). The description of a color region (graph node) include: a binary 187-dimensional color vector, the position of the region centroid, the region area (the fraction of region pixels in the total number of image pixels) and the region shape (the region is approximated by its best fit ellipse and the features used are the elongation and the major axis orientation). One property of the color vectors that helps in indexing and matching is that the color vector of a region \( R \) is computed as the union of the color vectors of the regions that merged to form \( R \).

In order to allow queries by shape, the objects of interest in each image are bounded with their minimum enclosing rectangle (MER) during the database population step. Edge images (128 \( \times \) 128 in size) of these rectangular areas are extracted through a Canny edge detection. Also, spatial relationships between objects’ MER are represented using 2D strings [32]. The query contours drawn by the user are modeled by B-spline functions.
**Quer
ing.** The system interface allows the user to select the type of search: by color regions or by shape. In the first case, regions can be indicated in two ways: either by drawing contours, which are then filled with colors chosen from a palette, or by loading a database image and tracing the contour of some relevant regions in this image. The user can also adjust the relevance of the region attributes (position, area, elongation and orientation). A query by shape is based on user drawn sketches, while for a query by texture patterns, the user has to pick an image from the database.

**Matching.** In a query by color regions, after a fast selection of the database images that contain all the colors of the query (see **Indexing**), the pyramidal structure of each candidate image is analyzed from top to bottom to find the best matching region for each query region. The matching score between a query region and a candidate image region is given by a weighted sum of distances between the computed region attributes (color, region centroid’s position, area and shape). The similarity score between the query image and a candidate image is obtained by summing all the scores of the matched query regions.

In a shape based query, first images are filtered according to the spatial relationships and positions of the delimited MERs, based on the 2D string representation. 1D elastic matching is applied to the images that have passed this filtering step. If the sketch contains $k$ contours, the systems warps each contour over the candidate image’s shape located in the same relative position as the query contour. The similarity score between the deformed contour and the image object takes into account both the match $M$ between the deformed contour and the edge image and the amount of elastic energy $E$ used to warp the query contour. A gradient descent technique is used in minimizing $E - M$.

**Indexing.** In the color region queries, an expensive matching of the query against all database images is avoided by exploiting the color vectors. Because the color vector of the node in the highest level of the pyramidal color region representation includes colors of all the regions in the pyramid, a color index file is constructed. This contains the color vectors of the highest node of the pyramidal structure of each image and is used in the filtering step of the matching process, when only the images that contain all the colors of the query are selected for further inspection.

**Result presentation.** The query results are presented to the user in decreasing similarity order.
Relevance feedback. A query by sketch can be refined, for example by choosing one of the retrieved images and iterating a query by grey level intensity surface.

Applications. The system is used for the electronic cataloging of paintings and sculptures of museums and galleries in the area of central Italy.

3.26 PicHunter

Developer. NEC Research Institute, Princeton, NJ, USA.

References. [45].

Features. The current version of the system uses color histogram and color spatial distribution along with hidden textual annotations. Besides a 64-bin HSV histogram, two other vectors – a 256-length HSV color autocorrellogram (CORR) and a 128-length RGB color-coherence vector (CCV) – are describing the color content of an image. The first 64 components of CORR represent the number of pixels of a particular color from the 64-quantized HSV color space having neighbors of the same color at distance 1. The rest of the vector is defined in the same way for distances 3, 5 and 7. CCV is made of 64 coherence pairs, each pair giving the number of coherent, and incoherent pixels of a particular discretized color in the RGB space. In order to classify pixels in one of the two categories, the image is first blurred slightly by replacing each pixel value with the average value of the pixels in its $3 \times 3$ neighborhood. Then, pixels are grouped in connected components. A pixel will be classified as coherent if the connected component it belongs to is larger than a fixed threshold. Keywords, selected from a set of 138 words, are associated with each image in the database population step and are represented as a boolean vector.

Querying. Retrieval is done with query by example.

Matching. The distance between individual features (color vectors or annotation lists represented as binary vectors) is the $L_1$ distance. These distances are scaled and combined in a global distance. The scaling factors are computed by maximizing the probability of a training set.

Relevance feedback. PicHunter implements a probabilistic relevance feedback mechanism, which tries to predict the target image the user wants based on his actions (the images he selects as similar to the target in each iteration of a query session). A vector is used for retaining each image’s probability of being the target. This vector is updated at each iteration of the relevance feedback, based on the history of the session (images displayed by the system and user's actions in previous iterations). The updating formula is based on Bayes' rule. If the $n$ database images are noted $T_j$, $j = 1, \ldots, n$, and the history of the session
through iteration $t$ is denoted $H_t = \{D_1, A_1, D_2, A_2, \ldots, D_t, A_t\}$, with $D_j$ and $A_j$ being the images displayed by the system and, respectively, the action taken by the user at the iteration $j$, then the iterative update of the probability estimate of an image $T_i$ being the target, given the history $H_t$, is:

$$P(T = T_i | H_t) = P(T = T_i | D_t, A_t, H_{t-1})$$

$$= \frac{P(A_t | T = T_i, D_t, H_{t-1})P(T = T_i | H_{t-1})}{\sum_{j=1}^{n} P(A_t | T = T_j, D_t, H_{t-1})P(T = T_j | H_{t-1})}$$

In computing the probability of a user to take a certain action $A_t$ given the history so far and the fact that the target is indeed $T_i$, namely $P(A_t | T = T_i, D_t, H_{t-1})$, a few models were tested. One approach is to estimate the probability of the user to pick an image $X_a$ from $X_1, \ldots, X_{n_t}$ by

$$p_{\text{softmin}}(A = a | X_1, \ldots, X_{n_t}, T) = \frac{\exp(-d(X_a, T)/\sigma)}{\sum_{i=1}^{n_t} \exp(-d(X_i, T)/\sigma)},$$

and, in the case of choosing any number of images, to assume that each image is selected independently according to a $p_{\text{softmin}}$.

**Result presentation.** While older versions were displaying the $n_t$ images with the highest probability of being the target, in the newer version the images selected for display are determined by minimizing the expected number of future iterations estimated by entropy.

**Applications.** The system was tested with a database gathering images from 45 CD’s of Corel stock photographs.

### 3.27 PicSOM

**Developer.** Laboratory of Computer and Information Sciences, Helsinki University of Technology, Finland.


**References.** [98].

**Features.** The following features are computed for a center region, and four regions along the sides. The average R, G, B values give a 15-dimensional vector. The color moments (mean, variance, skewness) of each color channel give a 45-dimensional vector. The Y-values of the YIQ color representation of every pixel’s 8-neighborhood are examined, and the estimated probabilities for each neighbor being brighter than the center pixel give a 40 dimensional texture feature vector. After applying
the Sobel edge detector, each edge pixel direction is put in a 8-bins histogram, which gives a 40-dimensional vector.

Also, the image was normalized $512 \times 512$ pixels, and the binarized edge image was transformed with the Fourier transform. The magnitude image of the Fourier spectrum was low-pass filtered and decimated by a factor 32, resulting in a 128-dimensional vector.

**Querying.** Querying is an iterative process with relevance feedback. The query begins with a fixed selection of representative images. Query improvement is achieved by relevance feedback.

**Matching.** The matching is based on the Self-Organizing Map (SOM). The SOM consist of a regular grid of units, each having a feature vector. The SOM is fed with all database images by a sequential regression process, which makes that images are ordered on the grid so that similar images are close to each other. To speed up processing, a multi-level SOM is used to represent the image database. A unit in a higher level SOM represents a cluster of similar images. The distance between the units in the SOM is the Euclidean distance between there feature vectors.

**Indexing.** The indexing data structure is in fact the array of the SOM.

**Relevance feedback.** Each SOM level is treated as a two-dimensional matrix formed of values describing the user’s responses to the contents of the seen map units. The matrices are low-pass filtered to spread the responses to the neighboring map units.

**Result presentation.** Starting from the SOM unit having the largest positive convolved response, PicSOM retrieves the representative images associated with the map units. If that image has not already been shown to the user, it is presented in the next round.

### 3.28 PicToSeek

**Developer.** Department of Computer Science, University of Amsterdam, The Netherlands.


A demo of the system is available at [http://zomax.wins.uva.nl:5345/ret_user/](http://zomax.wins.uva.nl:5345/ret_user/).

**References.** [61].

**Features.** Color and shape invariants are defined to be used as features in content based queries independent of camera viewpoint, geometry of the objects and illumination conditions. Under the assumption of a dichromatic reflection model, the effect of various imaging conditions on the different color features is analyzed. (In this model, reflection is used to determine how color clusters are formed in the RGB color space by pixels coming from the same uniformly colored surface of the object.)
Assuming a white illumination and a matte object surface, a basic set of irreducible color invariants is formed by \( \{R/G, B/R, G/B\} \). Also, it is proven that the normalized color model \( rgb \) and a newly defined model \( c_4c_5c_6 \), with \( c_4 = (R - G)/(R + B) \), \( c_5 = (R - B)/(R + B) \) and \( c_6 = (G - B)/(G + B) \), are independent of the viewpoint, illumination direction, illumination intensity and surface orientation of matte objects. The set of color invariants, independent of viewpoint, used in the case of a shiny surfaced object, are \( l_4 = |R - G|/(|R - G| + |B - R| + |G - B|) \), \( l_5 = |R - B|/(|R - G| + |B - R| + |G - B|) \), \( l_6 = |G - B|/(|R - G| + |B - R| + |G - B|) \). Based on the above color invariants, normalized color histograms are computed, \( H_A \) defined on the \( c_4, c_5 \) and \( c_6 \) axes and \( H_B \) on \( l_4, l_5, \) and \( l_6 \) axes. Color invariant gradients are defined using a multi-band approach and a histogram \( H_C \) of \( l_4l_5l_6 \) color edges is computed. That is because the color gradient for \( l_4l_5l_6 \) is the one that measures the presence of material edges (not shadow or highlight edges) in an image.

The shape invariants used are the angle between two color edges (invariant under rigid motion plus scaling) and the cross-ratio (projective invariant) between four color edges originating in the same point. A 1D histogram \( H_D \) is constructed on the discretized angle values, and a similar one \( H_E \) on the cross ratio values. Color and shape invariants are also combined in a 4D histogram \( H_F \) such that \( H_F(i, j, k, l) \) counts the number of color edge maxima points of \((i, j, k)\) color and generating an angle \( l \).

**Querying.** The query image can be selected from the database collected by the system’s Web crawlers or brought in by the user by giving a URL address. Before submitting the query, the user has to select the desired invariance, which indicates to the system how to choose the invariants in computing the similarity. Queries by user-specified feature values are also allowed.

**Matching.** The similarity measure between a query histogram \( H_{ij}^Q \) and a database image histogram \( H_{ij}^I \) is the normalized intersection
\[
d(H_{ij}^Q, H_{ij}^I) = \frac{\sum_{k=1}^{n} \min\{H_{ij}^Q(k), H_{ij}^I(k)\}}{\sum_{k=1}^{n} H_{ij}^Q(k)},
\]
with \( j \in \{A, B, C, D, E, F\} \) and \( n \) is the number of nonzero bins in \( H_{ij}^Q \).

**Result presentation.** The retrieved images are shown without explicit order.

### 3.29 QBIC (Query By Image Content)

**Developer.** IBM Almaden Research Center, San Jose, CA.

Features. Color features computed are: the 3D average color vector of an object or the whole image in RGB, YIQ, Lab, and Munsell color space and a 256-dimensional RGB color histogram. If \( x \) is an \( n \)-dimensional color histogram and \( C = [c_1 c_2 \ldots c_n] \) is a \( 3 \times n \) matrix whose columns represent the RGB values of the \( n \) quantized colors, the average color vector \( x_{\text{avg}} \) is \( Cx \). The texture features used in QBIC are modified versions of the coarseness, contrast, and directionality features proposed by Tamura [169].

The shape features consist of shape area, circularity, eccentricity, major axis orientation and a set of algebraic moment invariants. The major axis orientation and the eccentricity are computed from the second order covariance matrix of the boundary pixels: the major axis orientation as the direction of the largest eigenvector and eccentricity as the ratio of the smallest eigenvalue to the largest one. For the database images, these shape features are extracted for all the object contours, semiautomatically computed in the database population step. In this process, the user enters an approximate object outline, which is automatically aligned with the nearby image edges, using the active contours technique. In this object identification step, the user can also associate text to the outlined objects.

The 18 algebraic moment invariants are the eigenvalues of the matrices
\[
M_{2,2}, M_{2,3} \times M_{3,2}, M_{3,3}, M_{3,4} \times M_{4,3}, M_{4,4}, M_{4,5} \times M_{5,4},
\]
where the elements of \( M_{i,j} \) are scaled factors of the central moments.

QBIC also implemented a method of retrieving images based on a rough user sketch. For this purpose, images in the database are represented by a reduced binary map of edge points. This is obtained as follows: first, the color image is converted to a single band luminance; using a Canny edge detector, the binary edge image is computed and is next reduced to size 64 \( \times \) 64. Finally this reduced image is thinned.

Querying. QBIC allows queries based on example images, user-constructed sketches or/and selected color and texture patterns. In the last case, the user chooses colors or textures from a sampler. The percentage of a desired color in an image is adjusted by moving sliders.

Matching. For the average color, the distance between a query object and database object is a weighted Euclidean distance, where the weights are the inverse standard deviation for each component over the samples in the database. In matching two color histograms, two distance measures are used: one low-dimensional, easy to compute (the average color distance) and one much more computationally expensive (the quadratic histogram distance). The first one (which is computed for all the images in the database) acts as a filter, limiting the expensive matching com-
putation to the small set of images retrieved by the first matching. The average color distance is 
\[ d_{\text{avg}}^2(x, y) = (x_{\text{avg}} - y_{\text{avg}})^t(x_{\text{avg}} - y_{\text{avg}}). \]
The histogram quadratic distance is given by 
\[ d_{\text{hist}}^2(x, y) = (x - y)^t A(x - y), \]
where the symmetric color similarity matrix \( A \) is given by 
\[ a_{ij} = 1 - d_{ij}/d_{\text{max}}, \]
with \( d_{ij} \) being the \( L_2 \) distance between the colors \( i \) and \( j \) in the RGB space and \( d_{\text{max}} = \max_{i,j} d_{ij} \). The texture distance is a weighted Euclidean distance, with the weighting factors being the inverse variances for each of the three texture components over the entire database. Two shapes are matched also by a similar weighted Euclidean distance between shape feature vectors.

In a query by sketch, after reducing the binary sketch image drawn by the user to size \( 64 \times 64 \), a correlation based matching is performed, a kind of template matching. This is done by partitioning the user sketch into \( 8 \times 8 \) blocks of \( 8 \times 8 \) pixels and find the maximum correlation of each block of the sketch within a search area of \( 16 \times 16 \) pixels in the image database (this is done by shifting the \( 8 \times 8 \) block in the search area). This local correlation score is computed on the pixel level using logical operations.

The matching score of a database image is the sum of the correlation scores of all local blocks.

**Indexing.** QBIC was one of the first systems that applied multidimensional indexing to enhance the speed performance of the system. The average color and the texture features (both 3D vectors) are indexed using \( R^* \)-trees. The 18-dimensional moment-based shape feature vector is first reduced using the KL transform and then indexed by using \( R^* \)-trees.

**Result presentation.** The best matches are presented in decreasing similarity order with (optionally) the matching score aside.

**Relevance feedback.** Any retrieved image can be used as a seed for a subsequent query by example.

### 3.30 Quicklook2

**Developer.** CNR Institute of Multimedia Information Technologies, Milan, Italy.

**URL.** [http://www.itim.mi.cnr.it/Linee/Linea1/Sottolinea3/](http://www.itim.mi.cnr.it/Linee/Linea1/Sottolinea3/).

**References.** [37].

**Features.** Besides text descriptors, Quicklook2 uses the following content-based features. The color histogram of 64 bins. The color coherence vector in Lab color space, quantized into 64 colors, where pixels are coherent if they belong to a large similarly colored region; the image is first blurred by averaging a \( 3 \times 3 \) neighborhood. The percentage of skin-
colored pixels. The ‘spatial chromaticity histogram’: bin \( i \) gives the ratio \( h(i) \) of pixels having color \( i \), the relative coordinates of the baricenter \( b(i) \) of these pixels, and the standard deviation \( \sigma(i) \) of these pixels’ distance to the baricenter. The co-occurrence of colors in Lab color space, quantized into 11 colors: red, orange, yellow, green, blue, purple, pink, brown, black, gray, white. The moments of inertia (mean, variance, skewness, kurtosis) of the color distribution in Lab space. Contrast information at Canny edge pixels: the percentage of low, medium, and high contrast pixels, the thresholds on the gradient strengths corresponding to medium and high contrast, the number of connected regions with high contrast contours, and the percentage of medium contrast edge pixels connected to high contrast edges. Texture features based on the ‘neighborhood gray tone difference matrix’ [10]: coarseness, contrast, busyness, complexity, and strength. The mean and variance of the absolute values of the Daubechies wavelet transform coefficients of the luminance of the subimages at the first three levels of resolution. The histogram of 72 bins of directions of high gradient pixels on Canny edges. The Hu moment invariants [84]. After quantization into 11 colors: the number of color regions, the distribution of these regions around the center, \( x \), and \( y \) axis.

**Querying.** The user initially selects a query image. The features of this image are taken for the first search. The user can than indicate which images are relevant. From these relevant image a new query feature vector is composed, see below.

**Matching.** The distance between two spatial chromaticity histograms \( h_1, h_2 \) of length \( k \) is defined as
\[
\sum_{i=1}^{k} \min\{h_1(i), h_2(i)\}(1 - d(b_1(i), b_1(i))\sqrt{2}/2) + \\
\min\{\sigma_1(i), \sigma_2(i)\}/\max\{\sigma_1(i), \sigma_2(i)\}.
\]

The distance measure for any of the other features is the \( L_1 \) distance. Each distances measure \( d_j \) is normalized by a factor \( \mu_j + K\sigma_j \), with \( \mu_j \) and \( \sigma_j \) the average and the standard deviation over all images, and \( K \), which affects the number of outliers, set to 3. The total distance between two images is a weighted sum of the feature distance measures \( d_j \).

**Indexing.** In a preprocessing step, the distance of all database objects to \( m \) reference objects are computed. At query time, the distances \( d_i \), \( i = 1, \ldots, m \) of the query to these reference objects is also computed. With an SQL query, those database objects are retrieved that lie within some range from each \( d_i \). After this filtering, these database objects are compared to the query directly.

**Result presentation.** The results are listed in decreasing order of similarity.
Relevance feedback. The innovative part of the system is the relevance feedback method. After the relevant images are selected, each of their features contributes to the new query feature vector if its distance to the average over the relevant images’ feature is sufficiently large (three times the standard deviation). The new query feature vector is the average of the contributing features.

3.31 Shoebox

Developer. AT&T Laboratories, Cambridge, UK. The development was started at Olivetti and Oracle Research Laboratory.
URL. http://www.uk.research.att.com/dart/shoebox/.
References. [115].
Features. The images are annotated by keywords using speech recognition. The automatic features extracted are the average color in HSV color space, and the variances in each of the color channels of regions. The regions are either resulting from color segmentation, or a fixed partitioning of the image, or the overlay of both.
Querying. Querying can be done with the spoken annotations. Another way is to select a region from an image in the database to find similar images.
Matching. The Euclidean distance between feature vectors for use with the M-tree. For use with a B-tree, the feature space is quantized, and the corresponding values are used in an inverted index.
Indexing. Both the B-tree and the M-tree are used for indexing.
Result presentation. When querying with regions, the system can highlight those regions in the resulting images that match the query region.
Applications. The system is meant as a tool to manage personal photo collections.
Performance. The M-tree indexing outperforms the B-tree indexing.

3.32 SIMBA (Search Images By Appearance)

Developer. Institute for Pattern Recognition and Image Processing, Freiburg University, Germany.
URL. http://simba.informatik.uni-freiburg.de/. A demo is available at the same address.
References. [150].
Features. The system uses a histogram of a function $f$ of transformed local pixel patterns of image $I(x, y)$, taken over all rigid motions $g$. For example, $f(I)$ could be $I(0,1) \cdot I(2,0)$, and the histograms could be
constructed of the values $g_{t_0,t_1,\phi}(I(0,1)) \cdot g_{t_0,t_1,\phi}(I(2,0))$, $t_0 = 0, \ldots, n$, $t_1 = 0, \ldots, m$, $\phi = 0, P - 12\pi/P$. This is based on the observation that the integration over all transformations $g$ (Haar integral) of $f(g(I))$ makes $f$ invariant under these transformations. The histogram is used rather than the integral, to keep more local information. By combining different functions $f$ and different color layers (RGB in the online demo, however, also HSV, luminance and chromaticities are supported) a multidimensional histogram is built. A fuzzy version of the histogram was developed to get rid of the discontinuities of the histogram operator at bin boundaries. The evaluation of the features is speeded up by Monte Carlo estimation instead of a full calculation.

**Querying.** The user is presented with a selectable number (1-25) of random images from the database. By selecting one of these, a query for similar images is started. Alternatively, the user can specify a URL for his own query image, whose size must be comparable to the size of the database images (384x256).

**Matching.** The system provides histogram intersection (used in the demo), as well as $\chi^2$, $L_1$, and $L_2$ distances for matching.

**Indexing.** No indexing data structure is used.

**Result presentation.** The results of a query are shown in decreasing order of match row by row. The user may specify resolution and number of rows/columns for the results, before starting a query. The result display can be used for a new query by clicking on one of the displayed images (to come iteratively closer to the desired image type) or by specifying a new URL.

### 3.33 SMURF (Similarity-based Multimedia Retrieval Framework)

**Developer.** Center for Geometry, Imaging, and Virtual Environments, Institute of Information and Computing Sciences, Utrecht University, The Netherlands.

**URL.** [http://give-lab.cs.uu.nl](http://give-lab.cs.uu.nl).

**References.** [180].

**Features.** It is a framework that incorporates color, texture, and shape, but the system is primarily oriented towards shape-based retrieval research. In particular there are demo’s for polyline matching, and weighted point set matching.

**Querying.** The search is started by selecting an image from a random selection. The user can select a new image from the search results so as to narrow down to the target images.
Matching. Matching of two polylines is done by computing the area between the two corresponding turning angle functions, and minimizing over rotations (vertical shift of the function), and starting position (horizontal shift). The weighted point set matching is done with a pseudometric, the Proportional Transportation Distance. Unlike the Earth Movers Distance, it obeys the triangle inequality for sets of unequal weight, which is essential for the indexing method used.

Indexing. The triangle inequality and similarity of similarity measures is used to make the search more efficient. This is based on the following observation. Consider a shape or point set $A_1$ that closely matches a query $A_q$: $d(A_1, A_q)$ is small. Let $A_r$ be some reference shape, called vantage object. If the triangle inequality holds, $d(A_r, A_q) \leq d(A_r, A_1) + d(A_1, A_q)$, then we know that $d(A_r, A_q) - d(A_r, A_1)$ is small as well. We can measure the distance between a database shape $A_1$ and a query $A_q$ by comparing their distances from a vantage object $A_r$. The computation of the latter distances can be done off-line for all $A_i$. So at run-time the computation of a single $d(A_r, A_q)$ yields all $A_i$ that resemble $A_r$ as much as $A_q$, including those that resemble $A_q$. Using multiple vantage objects, say $m$, increases precision, recall is always 100%. A similar approach was taken in FIDS [19]. In SMURF, the search is done with an optimal approximate $k$-nearest neighbor search in the $m$-dimensional 'vantage space' of distances. In this way, the number of expensive similarity measures between shapes is reduced to $m$. The search further only takes cheap distance computations in vantage space.

Result presentation. The results are shown in decreasing order of match score.

Applications. The polyline matching is applied to about 70,000 polylines from a collection of hieroglyphics that is used as a font for a hieroglyphic text processor. The weighted point set matching is used for searching in a collection of 1100 fish contours.

3.34 SQUID (Shape Queries Using Image Databases)


References. [119].

Features. The boundary contour extracted from an image is represented by three global shape parameters (eccentricity, circularity and aspect ratio of the Curvature Scale Space image) and a descriptor ob-
tained from the CSS image. The CSS image of a closed planar curve, \( \Gamma \), is computed by repeatedly convolving its natural parameterization, \( \{(x(u), y(u)) \mid u \in [0, 1]\} \), with a Gaussian function of increasing standard deviation \( \sigma \) and representing the curvature zero-crossing points (inflection points) of the resulting curve, \( \Gamma_\sigma = \{(x(u) * g(u, \sigma), y(u) * g(u, \sigma)) \mid u \in [0, 1]\} \), in the \((u, \sigma)\) plane. The shape descriptor is made of the maxima of the CSS image contours.

**Querying.** The user selects one of the displayed object boundaries in order to generate a query for similar contours.

**Matching.** First, from the database are chosen those models whose global parameters are sufficiently close to the query global parameters. To these images a CSS matching algorithm is applied. This consists of first finding a circular shift of one of the two sets of maxima so that they best match the other set and then computing the matching score as the sum of the Euclidean distances between the matched pairs plus the vertical coordinates of the unmatched maxima.

**Result presentation.** The system displays the first \( n \) matched images in decreasing similarity order. Under each retrieved image, an integer match value is shown.

**Applications.** The system database consists of 1100 images of marine creatures on a uniform background.

### 3.35 Surfimage

**Developer.** INRIA, Rocquencourt, France.


**References.** [124].

**Features.** Surfimage gives the possibility of combining various low-level and high-level features. The low-level features are RGB color histogram, edge-orientation histogram computed after applying a Canny edge detector, texture signature derived from the gray-level co-occurrence matrix, Fourier transform, and Wavelet transform. High-level features include eigenimages (see Photobook), deformable intensity surfaces, and intensity surface curvature histogram. The latter is a normalized histogram of

\[
S_I(p) = \frac{1}{2} - \frac{1}{\pi} \arctan \frac{k_1(p) + k_2(p)}{k_1(p) - k_2(p)}
\]

at each point \( p = (x, y, I(x, y)) \) over the entire image, where \( k_1, k_2 \) are the principal curvature values.

**Querying.** The user selects image features and appropriate similarity measures from the lists displayed and specifies weights to define the importance of each feature in the retrieval. He also can select a database.
Matching. Various similarity metrics are implemented in Surfimage. Among them are standard metrics, such as the $L_p$ distances (most often used are $L_1$ and $L_2$), the cosine metric
\[ d_{\cos}(x, y) = 1 - \frac{x \cdot y}{\|x\| \|y\|}, \]
or statistical metrics such as the Hellinger metric
\[ d_H(x, y) = 1 - \sum_{i=1}^{n} \sqrt{\frac{x_i y_i}{\|x\| \|y\|}}, \]
where $\|x\|$ is the $L_2$ norm and $|x|$ is the $L_1$ norm of the vector $x$. For histograms the intersection metric is used.

In the case of choosing more than one feature for the query, the corresponding similarity measures are combined in a final weighted measure. Before this, some of the distance measures are normalized so that they have values in [0, 1]. If $\mu_i$ and $\sigma_i$ are the mean and standard deviation of the distance $d$ for the feature $i$, this distance is normalized to:
\[ d_n(x^i, y^i) = \frac{d(x^i, y^i) - (\mu_i - 3\sigma_i)}{6\sigma_i}. \]

Relevance feedback. Surfimage has a relevance feedback mechanism, which takes into consideration both relevant and nonrelevant examples from the user, in a statistical approach that estimates the distribution of relevant images.

3.36 SYNAPSE (SYNtactic APpearance Search Engine)

Developer. Center for Intelligent Information Retrieval, University of Massachusetts, Amherst, MA.

URL. http://hobart.cs.umass.edu/~mmedia/.

A demo of the system is available at the address http://cowarie.cs.umass.edu/~demo/Demo.html.

References. [111].

Features. Queries are made on the visual appearance of the objects in the image, defined as the shape of the intensity surface and represented using the outputs of a set of Gaussian derivative filters. More precisely, each image is filtered at uniformly sampled points with Gaussian derivative up to the order 2. Thus, for each sampled point $p = (x, y)$ of intensity $I(p)$, the so-called 2-jet at this point is given by the vector
\[ J^2[I](p, \sigma) = \{I_x(p), I_{x,\sigma}(p), I_y,\sigma(p), I_{x^2,\sigma}(p), I_{xy,\sigma}(p), I_{y^2,\sigma}(p)\}, \]
where $I_{x^i,y^j,\sigma}(p)$ is the image convoluted with the $(i, j)$-th partial derivative of the Gaussian function of scale
\[ \sigma: I_{x^i,y^j,\sigma}(p) = I(p) * \sigma^{i+j} \partial^{i+j} G(p, \sigma)/\partial x^i \partial y^j, \]
where $i, j \in \{0, 1, 2\}$. 
From this vector, four differential invariants are computed: $d_1^2 = I_x^2 + I_y^2$, $d_2^2 = I_x^2 + I_y^2$, $d_3^2 = I_x^2 I_y^2$, $d_4^2 = I_x^2 I_y^2$. Computing these four invariants at three different scales, $\sigma_1, \sigma_2, \sigma_3$, a multi-scale invariant vector $D$ is generated for each sampled point $p$. Along with each multi-scale invariant vector $D$, the coordinates $(x, y)$ of the corresponding sampled point and the number $i$ of the image are also stored.

**Querying.** Querying is done by example.

**Matching.** Matching is done in two phases. First, for every invariant vector $D_n$ of the query image, a number of invariant vectors stored in the database are found so that they lie in the range $[D_n - t, D_n + t]$. This is done by finding for each component $D_n(j)$ a list of invariant vectors, whose $j$-component lies in the interval $[D_n(j) - t(j), D_n(j) + t(j)]$ and intersecting the lists.

In the second phase, a spatial check is performed on the list of candidate images. For each sampled point $q_m$ of the query image, the number $S_m$ of query points whose Euclidean distance to the $q_m$ is within a threshold factor of the Euclidean distance of their corresponding points in the candidate image. The score of the candidate image is given by $\max_m S_m$.

**Indexing.** An index is created on each of the 12 coordinates of the invariant vector $D$. Instead of storing each invariant vector in one record of the form $(i, x, y, D)$, 12 smaller tables (inverted file lists), each with 4 columns $(D(p), i, x, y)$, are generated. Each inverted file list is stored in a binary tree sorted on the first column.

**Result presentation.** Images are showed in decreasing similarity score.

**Relevance feedback.** The search can be refined by marking the relevant images found among the results of a query and reiterate the query.

### 3.37 TODAI (Typographic Ornament Database And Identification)

**Developer.** Electrical Engineering Department, EPFL, Switzerland, and later the Intelligent Systems Laboratory, Halmstad University, Sweden.


**References.** [114].

**Features.** The image is first decomposed into six orientation images. Each orientation image is result of applying a filter that passes edges with a specified orientation. Thus, an orientation image contains information about the presence in the original image of linear structure in the
direction of the pass orientation. The projection of the orientation image in the direction of the pass orientation is called an orientation radiogram. Six fixed directions are chosen to make radiograms. Each radiogram is represented by a feature vector of the real parts and the absolute values of the imaginary parts of the first ten Fourier coefficients. The absolute value operation provides invariance to flipping of the image.

**Querying.** The user can specify the location of a query image. Additional criteria such as the size, use and nature of the ornament can be indicated. There is a possibility to make an advanced search combining keywords and the image content.

**Matching.** The similarity between two images is the sum of the Euclidean distances of the six feature vectors.

**Result presentation.** The best match is shown, the user can browse through the list of next matches.

**Applications.** The system is used in Passe-Partout, the International Bank of Printers’ Ornaments, which stores 2316 images.

### 3.38 VIR Image Engine

The VIR Image Engine is an extensible framework for building content based image retrieval systems.

**Developer.** Virage Inc.


**References.** [13].

**Features.** A basic concept is that of a *primitive*, which denotes a feature’s type, computation and matching distance. Five abstract data types are defined: global values and histograms, local values and histograms, and graphs. The VIR Image Engine provides a set of general primitives, such as global color, local color, texture and shapes. Apart from these, various domain specific primitives can be created when developing an application. When defining such a primitive, the developer supplies a function for computing the primitive’s feature data from the raw image.

**Querying and Result presentation.** The VIR Image Engine provides a set of GUI tools necessary for the development of a user interface. These include facilities for image insertion, image query, weight adjustment for re-query, inclusion of keywords, and support for several popular image file formats. Another available component, the query canvas, allows queries-by-sketch; it consists of a bitmap editor where the user can sketch a picture with drawing tools and color it using the colors from a palette. Also, the user can bring onto the canvas an image from an
existing collection and modify it using the same drawing tools. Queries can be performed on various user-defined combinations of primitives.

**Matching.** When defining a new primitive, a function for computing the similarity between two sets of feature data previously extracted must also be supplied by the developer. When comparing two images, for each primitive in the current query combination, a similarity score is computed using the distance function defined within the primitive. These individual scores are combined in an overall score using a set of weights in a way characteristic to the application. This score is then stored in a score structure, which contains also the individual similarity scores for each primitive. This allows a quick recomputation of the overall score for a new set of weights.

**Relevance feedback.** A sort of relevance feedback is obtained by searching for matches to a fixed query image for different sets of weights.

**Indexing.** The storage of feature data for all primitives is the responsibility of the application developer.

**Applications.** The system was integrated into databases from Sybase, Object Design, and Objectivity, and added as a component to the Oracle DBMS. The AltaVista Photofinder and Illustra's Visual Intelligence system are two applications of Virage technology.

### 3.39 VisualSEEk

**Developer.** Image and Advanced Television Lab, Columbia University, NY.


**References.** [158].

**Features.** In the database population step, each image is automatically decomposed into regions of equally dominant colors. For each region, feature properties and spatial properties are retained for the subsequent queries. A query consists of finding the images that contain the most similar arrangements of similar regions.

The color region extraction uses the back-projection technique. The first step is the selection of a color set. This is a 166-dimensional binary vector $c$, which defines a selection of 166 colors in the HSV color space. From a given image $I$, another image $B$ is generated by $B[x,y] = \max_j a[k,j]c[j]$, where $k \in \{0, \ldots, 165\}$ is the index of the color of the pixel $(x, y)$ in the image $I$ and $a[k,j]$ is the similarity between two colors (with the indices $k$ and $j$) in the HSV space. Next the image $B$ is filtered and spatially localized color regions are extracted. Along with the color set used for back-projection, the region centroid,
area (defined as the number of pixels in the region) and the width and height of the minimum bounding rectangle are also stored.

**Querying.** To start a query, the user sketches a number of regions, positions and dimensions them on the grid and selects a color for each region. Also, the user can indicate boundaries for location and size and/or spatial relationships between regions. After the system returns the thumbnail images of the best matches, the user is allowed to search by example using the returned images.

**Matching.** To find the matches of a query image with a single region, queries on color set, region absolute location, area and spatial extent are first done independently. The color set similarity is computed by \(d(c_q, c_t) = (c_q - c_t)^T A (c_q - c_t)\), where \(c_q, c_t\) are two color sets and \(A = (a[i,j])\) is the color similarity matrix. If the user has defined spatial boundaries for the query region, then its distance to a target region is 0 if the target region centroid falls inside this boundaries, and is given by the Euclidean distance between the centroids otherwise. The distance in area between two regions is the absolute value of the difference, while the distance between the minimum bounding rectangles, \((w_q, h_q)\) and \((w_t, h_t)\), of two regions is the \(L_2\) metric. The results of these queries are intersected and from the obtained candidate set, the best matching images are taken by minimizing a total distance given by the weighted sum of the four distances mentioned.

If the query image consists of a number of regions, in absolute or relative location, then for each region positioned in absolute location, a query like that described above is made, and for regions positioned by relative location individual queries on all attributes except location are performed. For the intersection of all this query results, the relative spatial relations specified by the user are evaluated using 2D string representation [32].

**Indexing.** The color set distance can be written as \(d(c_q, c_t) = \mu_q + \mu_t - 2c_q^T r_t\), where \(\mu_q = c_q^T A c_q\), \(\mu_t = c_t^T A c_t\) and \(r_t = A c_t\). For each target region, \(\mu_t\) and \(r_t[m]\), \(m \in \{0, \ldots, 165\}\), are indexed individually. The centroids of the image regions are indexed using a quadtree. For the indexing of the minimum bounding rectangles, R-tree are used.

**Result presentation.** The results of a query are displayed in decreasing similarity order. Under each retrieved image, the distance to the query image is indicated.

**Performance.** Another system, SaFe [152], was developed in order to improve the performances of VisualSEEk. SaFe was suppose to extend the query capabilities to other features, such as texture, and to incorporate more powerful spatial indexing techniques. There is no indication
that this has been done. The two systems seems to differ only in the user interface.

### 3.40 WebSEEk

**Developer.** Image and Advanced Television Lab, Columbia University, NY.

**URL.** [http://www.ctr.columbia.edu/WebSEEk/](http://www.ctr.columbia.edu/WebSEEk/).

**References.** [152].

**Features.** WebSEEk makes text-based and color based queries through a catalogue of images and videos collected from the Web. Color is represented by means of a normalized 166-bin histogram in the HSV color space, see VisualSEEk.

**Querying.** The user initiates a query by choosing a subject from the available catalogue or entering a topic. The results of the query may be used for a color query in the whole catalogue or for sorting the result list by decreasing color similarity to the selected item. Also, the user has the possibility of manually modifying an image/video color histogram before reiterating the search.

**Matching.** The distance between a query color histogram $h_q$ and a target histogram $h_t$ is given by $d(h_q, h_t) = (h_q - h_t)^t A (h_q - h_t) \approx \mu_q + \mu_t - 2 \sum_{k \text{ with } h_q[k] \geq \tau} h_q[k] r_t[k]$, where $A = (a[i, j])$ is a color similarity matrix, $\mu_q = h_q^t A h_q$, $\mu_t = h_t^t A h_t$, $r_t = A h_t$ and $\tau$ defines a threshold for choosing the most significant colors in the approximated distance.

**Indexing.** For all the database images, $\mu_t$ and $r_t[k], k \in \{0, \ldots, 165\}$ are computed and indexed individually.

**Result presentation.** Images retrieved are displayed page by page in a descending similarity order. A manipulation (union, intersection, subtraction) of the search result lists, in order to reiterate a query, is possible.

**Relevance feedback.** The user has the possibility of selecting positive and negative examples from the result of a query in order to reformulate the query. If the set of relevant images is denoted by $I_r$ and the set of nonrelevant images is $I_n$ then the new query histogram at the $(k + 1)$th feedback iteration is computed by $h_q^{k+1} = ||\alpha h_q^k + \beta \sum_{i \in I_r} h_i - \gamma \sum_{j \in I_n} h_j||$.

### 3.41 WebSeer

**Developer.** Department of Computer Science, University of Chicago, Illinois, USA.

**References.** [164].
Features. The images collected from the Web are submitted to a number of color tests in order to separate photographs from drawings. Some simple tests measure the number of different colors in the image, the fraction of pixels which have one of the $N$ most frequent colors for a given threshold $N$, the fraction of pixels with transition value (the largest $L_1$ distance between a pixel and one of its neighbors in the RGB space) greater than a threshold $T$, the fraction of pixels with saturation level (the difference between the maximum and the minimum value of the RGB color bands) greater than a threshold $T$, and the ratio of the image dimensions. A more elaborate test creates first an average color histogram for graphics, $H_g$, and one for photographs, $H_p$, using two large sets of images. Defining the correlation between two normalized RGB histograms, $A$ and $B$, as $C(A,B) = \sum_{i=0}^{15} \sum_{j=0}^{15} \sum_{k=0}^{15} A_{i,j,k} B_{i,j,k}$, an image with a color histogram $H_i$ gains a score to the test equal to $s = C(H_i, H_p) / (C(H_i, H_p) + C(H_i, H_g))$. Two similar tests are also made using the farthest neighbour histograms and the saturation histograms instead of the color histograms.

Images determined to be photographs are subjected to a face detector based on a neural network. Keywords are extracted from the image file name, captions, hyperlinks, alternate text and HTML titles.

Querying. The user gives keywords describing the contents of the desired images, and optionally specifies some image characteristics such as dimensions, file size or whether he is looking for photographs or drawings. In the case the user is looking for people, he must indicate the number of faces as well as the size of the portrait.

Matching. To classify an image as photograph or graphics, the color tests are combined using multiple decision trees constructed using a training set of hand-classified images. They are binary trees whose internal nodes contain the next test the image should be submitted to and a threshold to direct the search by comparing the test result with the threshold. In each leaf we find a probability estimate that the image is a photograph. Computing the mean of the results got from all decision trees and comparing this with a threshold, a decision is taken whether the image falls in one category or the other.

Result presentation. The thumbnails of the resulting images are displayed by decreasing size of the face in the case of searching for portraits. Otherwise, there is no explicit order of the retrieved images. The user has access to the Web page where the image was collected from, through a page icon aside the displayed thumbnail.
3.42 WISE (Wavelet Image Search Engine)

Developer. Department of Computer Science, Stanford University.

URL. http://www-db.stanford.edu/~wangz/project/imsearch/.

A demo of the system is available at http://bergman.stanford.edu/~zwang/project/imsearch/WBIIS.html.

References. [183].

Features. The system, also called WBIIS (Wavelet-Based Image Indexing and Searching), performs queries on color layout information encoded using Daubechies wavelet transforms. In a preprocessing step, the image is rescaled to 128 $\times$ 128 pixels and converted from RGB color space representation to another color space. This color space, defined by $C_1 = (R+G+B)/3$, $C_2 = (R+(\text{max } - B))/2$, $C_3 = (R+2\times(\text{max } - G) + B)/4$, with $\text{max}$ the maximum possible value for each RGB color component, is selected because of its similarity to the opponent color axes used by the human visual system. On each of the three color components, a 4-layer 2D fast wavelet transform using Daubechies wavelets is applied. From the resulting 128 $\times$ 128 matrices, denoted as $W_{C_1}$, $W_{C_2}$, and $W_{C_3}$, each 16 $\times$ 16 upper left corner is stored as part of the feature vector (the 8 $\times$ 8 upper left corner, representing the lowest frequency bands in the wavelet transforms, accounts for object configurations in the image, while the three surrounding 8 $\times$ 8 submatrices represent detail information). Also, the standard deviation, $\sigma_{C_i}$, of the 8 $\times$ 8 upper left corner of $W_{C_i}$ is computed and stored as part of the feature vector.

Querying. Querying is done by example, where the query image is either a database image or a hand drawn sketch. Also low resolution images or partial images (images that contain non-specified areas represented by black rectangles) can be query images to the system.

Matching. The matching process is performed in two steps. In the first step, the standard deviations computed for the query image, $\sigma_{C_1}^q$, are compared with the corresponding values, $\sigma_{C_1}^i$, stored for each database image. If the acceptance criterion, $(\sigma_{C_1}^q \beta < \sigma_{C_1}^i) \lor (\sigma_{C_2}^q \beta < \sigma_{C_2}^i) \lor (\sigma_{C_3}^q \beta < \sigma_{C_3}^i)$, with the threshold $\beta$ usually set to 0.5, is not achieved, the distance between the two images is set to 1. In the second step, the images that passed the first matching phase are compared to the query using a weighted Euclidean distance between wavelet transform coefficients: $\sum_{m=1}^{2} \sum_{n=1}^{2} w_{mn} \sum_{i=1}^{3} (w_{C_i} d_E(W_{C_i,m,n}, W_{C_i,m,n}^q))$, where $W_{C_1,1,1}$ and $W_{C_1,1,2}, W_{C_1,2,1}, W_{C_1,2,2}$ denotes the 8 $\times$ 8 upper left corner and, respectively, the three surrounding 8 $\times$ 8 submatrices of $W_{C_1}$, and with $d_E$ the Euclidean distance. By raising $w_{C_2}$ or $w_{C_3}$ the importance of color variation in the image is emphasized, while raising
$w_{2,1}, w_{1,2}$ or $w_{2,2}$ the vertical, horizontal, or diagonal edge details in the image are emphasized.

**Result presentation.** The first few matches are presented in decreasing similarity order.

**Applications.** The system is used at Stanford University Library to assist teaching and research projects in liberal art departments.
<table>
<thead>
<tr>
<th>Keywords</th>
<th>*</th>
<th>*</th>
<th>*</th>
<th>*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face Detection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layout</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Elementary descriptors</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Bounding box/ellipse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elastic models</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Fourier descriptors | | | | | | *
| Template matching | | | | | | *
| Edge direction histogram | | | | | | |
| Shape | | | | | | |
| Other | | | | | | |
| Edge statistics | * | * | * | | |
| Local binary patterns | | | | | | *
| Random fields | | | | | | *
| Atomic texture features | * | * | * | | | | |
| Wavelet, Gabor, Fourier | | * | | * | | | * | | *
| Texture | | | | | | |
| Other | | | | | | |
| Edge statistics | * | * | * | | |
| Local binary patterns | | | | | | *
| Random fields | | | | | | *
| Atomic texture features | * | * | * | | | | |
| Wavelet, Gabor, Fourier | | * | | * | | | * | | *
| Color | | | | | | |
| Other | | | | | | |
| Dominant colors | * | * | * | * | | |
| Region histogram | * | * | | | | |
| Color coherence vector | | | | | | |
| Color moments | * | | | * | | |
| Correlation histogram | | | | | | |
| Global/subimage histogram | | | * | | * | | * | | |
| Eigen image | | | | | | |

<table>
<thead>
<tr>
<th>System</th>
<th>AML</th>
<th>AMORE</th>
<th>ASSERT</th>
<th>BDLT</th>
<th>Blobworld</th>
<th>CANDID</th>
<th>Cherst</th>
<th>CBVQ</th>
<th>Chabot</th>
<th>CHROMA</th>
<th>DrawSearch</th>
<th>FID</th>
<th>FIR</th>
<th>FOCUS</th>
<th>ImageRETO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>-----------</td>
</tr>
<tr>
<td>System</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>ImageRover</td>
<td></td>
</tr>
<tr>
<td>ImageScape</td>
<td></td>
</tr>
<tr>
<td>JACOB</td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>LCPD</td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>MARS</td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MetaSEEk</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIR</td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NETRA</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photobook</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Picasso</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PicHunter</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PicSOM</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PicToSeek</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QBIC</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quicklook</td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoebox</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIMBA</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMURF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SQUID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surfimage</td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYNAPSE</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TODAI</td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VisualSEEk</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Table 5.1. Overview of systems and their search features.

<table>
<thead>
<tr>
<th>Feature</th>
<th>WebSEEk</th>
<th>WebSeer</th>
<th>WISE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 local probability</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 number of regions with that color</td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>3 DCT of chromaticity</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 generalized Hough transform</td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>5 greyness, background proportion</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>6 number of regions, number of holes</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>7 Laplacian</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>8 projection histogram</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>9 angles between edges, and cross ratios of them</td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>10 spatial chromaticity histogram</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>11 color channel variance</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>12 histogram of polynomial of local intensities</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>13 weighted point sets, polylines</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>14 intensity surface curvature histogram</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>15 multiscale intensity surface derivatives</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>16 curvature scale space</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>17 farthest neighbor histogram</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
</tbody>
</table>
4. Summary and Conclusions

The features used in the systems discussed in this chapter are listed in Table 5.1. The features are classified into the low level classes color, texture, and shape, and the higher level classes layout and face detection. The use of keywords is also listed.

We have tried to group the low level features into meaningful categories. For example, various forms of choosing important colors are grouped into ‘dominant colors’. The ‘eigen image’ is listed under color, because it is a feature derived from the global image color values, rather than local patterns as in texture. The ‘atomic texture features’ are features such as contrast, anisotropy, density, randomness, directionality, softness, and uniformity, often variations of the Tamura features [169], and often derived from a co-occurrence matrix of pixel values. The ‘edge statistics’ include the edge image histogram, edge orientation histogram, and others. Recall that we consider edge orientation over all pixels as texture, but edge orientation at only region contours as shape information, see section 2. The ‘elementary shape descriptors’ are features such as centroid, area, major axis orientation, eccentricity, circularity, and features derived from algebraic moments. The feature ‘layout’ is the absolute or relative spatial position of the color, texture, or shape features. Taking color histograms per fixed subimage is a simple way of exploiting spatial layout; considering the relative position (constellation) of regions is more complex.

Of the 42 systems in the table, 33 use any kind of color features, 25 use texture, 21 use shape, 16 layout, and 4 use face detection. Perhaps the reason for this order of frequencies of usage is their complexity and, coupled to that, effectiveness. The simpler the features can be extracted, the easier it is to implement it in the system, and the easier it is to use that feature class in the right way. For example, color features are often found effective, because good color features are not very difficult to design and implement. However, shape features that are for example robust against noise and occlusion, are more involved. As a result, only overly simple features such as area are used, which is often little effective.

Most systems are products of research, and therefore emphasize one aspect of content-based retrieval. Sometimes this is the sketching capability in the user interface, sometimes it is the new indexing data structure, etc. Some systems exist in a research version and in a commercial or production version. The commercial version is usually less advanced, and shows more standard searching capabilities.

A number of systems provide a user interface that allows more powerful query formulation than is useful in the demo system. For example, if a user can paint a cartoon, but the database contains only airplanes,
the system will always retrieve images of airplanes. For such a limited
database, no powerful sketching interface is needed. Also, because most
workstations have a mouse, but easy sketching needs a pencil, such a
painting tool is often of little use. Drawing polygonal shapes with a
mouse works well, however.

Most systems use color and texture features, few systems use shape
feature, and still less use layout features. The retrieval on color usually
yield images with similar colors. Retrieval on texture does not always
yield images that have clearly the same texture, unless the database
contains many images with a dominant texture. Searching on shape
gives often surprising results. Apparently the shape features used for
matching are not the most effective ones.

Indexing data structures are often not used. Indeed, for small collec-
tions of images, an indexing data structure is not needed, and a linear
search can be sufficiently fast. Contemporary computers can perform
simple matching of hundreds of images in near real time.

It is difficult to evaluate how successful content-based image retrieval
systems are, in terms of effectiveness, efficiency, and flexibility. Of course
there are the notions of precision (the ratio of relevant images to the
total number of images retrieved) and recall (the percentage of relevant
images among all possible relevant images). Many articles about systems
give figures about precision and recall. Most of them are good, but
hard to verify. One reason is that many hyperlinks on the Web are
not active anymore, a design flaw of the Web. However, there are also
considerations intrinsic to retrieval systems.

If the database only contains fighting airplanes, and the user can only
ask for images similar to a chosen fighting airplanes, the system will
successfully return fighting airplanes. If the domain is so narrow, it may
make more sense to look for dissimilar images than for similar images.
On the other hand, if the database is very diverse and contains only a
single image of a chicken, asking for images similar to that chicken will
not result in other chicken images. The larger the collection of images,
the more chance that it contains an image similar to the query image.
The Web is a large enough test set, and free of charge, reason why some
image retrieval systems exploit webcrawlers. Having a specific object in
mind, looking for images with similar objects is a frustrating experience,
however. Indeed, before you learn to walk, you crawl first.

It is widely recognized that most current content-based image retrieval
systems work with low level features (color, texture, shape), and that
next generation systems should operate at a higher semantic level. One
way to achieve this is to let the system recognize objects and scenes.
Although this is difficult in general, it should be feasible for specific
domains. For example, body plans have been used to recognize animals and people [57]. Once separate entities in images are recognized, the way to semantic reasoning lies open.