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This article gives a tutorial introduction to the ASPIC+ framework for structured argumentation. The philo-
sophical and conceptual underpinnings of ASPIC+are discussed, the main definitions are illustrated with
examples and several ways are discussed to instantiate the framework and to reconstruct other approaches
as special cases of the framework. The ASPIC+ framework is based on two ideas: the first is that conflicts
between arguments are often resolved with explicit preferences, and the second is that arguments are built
with two kinds of inference rules: strict, or deductive rules, whose premises guarantee their conclusion, and
defeasible rules, whose premises only create a presumption in favour of their conclusion. Accordingly, argu-
ments can in ASPIC+ be attacked in three ways: on their uncertain premises, or on their defeasible infences,
or on the conclusions of their defeasible inferences. ASPIC+ is not a system but a framework for specifying
systems. A main objective of the study of the ASPIC+ framework is to identify conditions under which
instantiations of the framework satisfy logical consistency and closure properties.

1. Introduction

This paper presents a tutorial introduction to the ASPIC+ framework for structured argu-
mentation. ASPIC+ is meant to generate abstract argumentation frameworks in the sense
of Dung (1995). Such frameworks are simply directed graphs in which the arguments
(nodes) are related to other arguments by attack or defeat relations (arcs). A ‘calculus
of opposition’ is then applied to a framework to determine sets of acceptable arguments
(extensions). While this abstract calculus is an indispensable component of theories of
argumentation, it says nothing about the structure of arguments or the nature of attack or
defeat, and so provides no guidance for the modelling of actual argumentation problems.
That is to say, how should one model an argument’s constituent reasons and the inferen-
tial steps from these reasons to an argument’s claim, how do these structural properties of
arguments determine attacks between arguments, and in turn, how should preferences be
used to determine whether one argument successfully attacks (defeats) another argument?
Moreover, at the fully abstract level one cannot study properties that one would intuitively
expect to hold of the arguments in extensions; for example that their claims should be
mutually consistent or that if the claims of arguments in an extension deductively imply
some formula, then there should be an argument in that extension that claims that formula
(i.e., the arguments are closed under deductive inference).

The question then arises as to whether one can give a general structured account of
argumentation that is intermediate in its level of abstraction between concrete logics and
the fully abstract level, providing guidance on the structure of arguments, the nature of
attacks, and the use of preferences, while at the same time accommodating a broad range
of instantiating logics and allowing for the study of conditions under which the various
desirable properties are satisfied by these instantiations. The ASPIC+ framework is an
attempt to answer this question in the affirmative.

Historically, the ASPIC+ framework originates from the European ASPIC project that
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ran from 2004 – 2007, which (among other things) aimed to integrate and consolidate the
main approaches to structured argumentation. The first relevant publication was Caminada
and Amgoud (2007), which also introduced the idea of desirable properties (rationality
postulates) for structured argumentation. The ASPIC+ framework as published in this pa-
per was generalised and extended in Prakken (2010), Modgil and Prakken (2013) so as to
capture a broader range of instantiating concrete logics (e.g., Besnard and Hunter (2009)),
other structured general accounts of argumentation (Amgoud and Besnard (2009), Bon-
darenko et al. (1997)), and to account for the use of preferences to decide which attacks
succeed as defeats. Unless indicated otherwise, the version of ASPIC+ presented here is
the one of Modgil and Prakken (2013).

The remainder of this tutorial paper is organised as follows. In Section 2 we motivate
the design choices for ASPIC+; that is to say ASPIC+’s structural account of arguments,
the nature of attacks implied by this account, and the use of preferences. Section 3 then
presents a formal account of ASPIC+ together with illustrative examples. This section
also elaborates on the two key ideas that underpin ASPIC+, namely that conflicts between
arguments are sometimes resolved with explicit preferences, and that arguments are built
with two kinds of inference rules: strict rules, which logically entail their conclusion, and
defeasible rules, which only create a presumption in favour of their conclusion. Sections 4
and 5 then review specific uses of ASPIC+, both as a means to define new argumentation
logics and as a framework for translating and studying existing approaches.

2. ASPIC+ Design choices and Overview

People argue to remove doubt about a claim (Walton 2006, p. 1), by giving reasons
why one should accept the claim and by defending these reasons against criticism. The
strongest way to remove doubt is to show that the claim deductively follows from in-
disputable grounds. A mathematical proof from the axioms of arithmetic is like this: its
grounds are mathematical axioms, while its inferences are deductively sound. So such a
proof cannot be attacked in any way: not on its grounds and not on its inferences. How-
ever, such perfection is not attainable in real life: our grounds may not be indisputable or
they may provide less than conclusive support for their claim.

Suppose we believe that John was in Holland Park some morning and that Holland Park
is in London. Then we can deductively reason from these beliefs, to conclude that John
was in London that morning. So the reasoning cannot be attacked. However, perfection
remains unattainable since the argument is still fallible: its grounds may turn out to be
wrong. For instance, Jan may tell us that he met John in Amsterdam that morning around
the same time. We now have a reason against our belief that John was in Holland Park
that morning, since witnesses usually speak the truth. Can we retain our belief or must we
give it up? The answer to this question determines whether we can accept that John was
in London that morning.

Maybe we originally believed that John was in Holland Park for a reason. Maybe we
went jogging in Holland Park and we saw John. We then have a reason supporting our
belief that John was in Holland Park that morning, since we know that our senses are
usually accurate. But we cannot be sure, since Jan told us that he met John in Amsterdam
that morning around the same time. Perhaps our senses betrayed us this morning? But then
we hear that Jan has a reason to lie, since John is a suspect in a robbery in Holland Park that
morning and Jan and John are friends. We then conclude that the basis for questioning our
belief that John was in Holland Park that morning (namely, that witnesses usually speak
the truth and Jan witnesses John in Amsterdam) does not apply to witnesses who have a
reason to lie. So our reason in support of our belief is undefeated and we accept it.

If we want to formalise a logic for argumentation, then this simple example already
suggests a number of issues we have to deal with. At least two further important design
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decisions have to be made: how can arguments be built, i.e., how can claims be supported
with grounds, and how can arguments be attacked? We shall see that the answers to these
two questions are related.

First, the claims and beliefs in our example were supported in various ways: in the
first case we appealed to the principles of deductive inference when concluding that John
was in London. ASPIC+ is therefore designed so that arguments can be constructed using
deductive or strict inference rules that license deductive inferences from premises to con-
clusions. However, in the other two cases the reasoning from grounds to claim appealed to
the reliability of, respectively, our senses and witnesses as sources of information. Should
these kinds of support (inferences) from grounds to claims be modelled as deductive?

To help answer this question, consider that our informal example contains three ways
of attacking an argument: 1) Our initial argument that John was in London was attacked
by the witness argument on its ground, or premise, that John was in Holland Park that
morning; 2) We then modified our initial argument by extending it with an additional
argument for the attacked premise, but the extended argument was still attacked (by the
witness argument) on the (now) intermediate conclusion that John was in Holland Park
that morning; 3) Finally, we counterattacked the witness argument not on a premise or
conclusion but on the reasoning from the grounds to the claim: namely, the inference step
from the premise that Jan said he met John in Amsterdam that morning to the claim that
John was in Amsterdam that morning (note that here we regard the principle that witnesses
usually speak the truth as an inference rule).

Now, returning to the question whether all kinds of inference should be deductive, the
second type of attack would not be possible on the deductively inferred intermediate con-
clusion since the nature of deductive support is that it is absolutely watertight: if one
accepts all antecedents of a deductively valid inference rule, then one must also accept
its consequent no matter what, on the penalty of being irrational. If the antecedents of a
deductively valid inference rule are true, then its consequent must also be true. So if we
have reason to believe that the conclusion of a deductive inference is not true, then there
must be something wrong with its premises (which may in turn be the conclusions of sub-
arguments). It is for this very same reason that the third type of attack, on the deductive
inferential step itself, is also not possible.

ASPIC+ is therefore designed to comply with the common-sense and philosophically
argued position (Pollock (1995, p.41); Pollock (2009, p. 173)) advocating the rationality
of supporting claims with grounds that do not deductively entail them. In other words,
the fallibility of an argument need not only be located in its premises, but can also be
located in the inference steps from premises to conclusion. Thus, arguments in ASPIC+

can be constructed using defeasible inference rules, and arguments can be attacked on the
application of such defeasible inference rules, in keeping with the interpretation that the
premises of such a rule presumptively, rather than deductively, support their conclusions,

However, some would argue that the second and third type of attacks can be simulated
using only deductive rules (specifically the deductive rules of classical logic) by augment-
ing the antecedents of these rules with normality premises. For example, with regard to
the second type of attack, could we not say that our argument claiming that John was in
Holland Park that morning since we saw him there has an implicit premise our senses
functioned normally, and that the argument that John was in Amsterdam that morning in
fact attacks this implicit premise, rather than its claim, thus reducing attacks on conclu-
sions to attacks on premises? With regard to the third type of attack, could we not say that
instead of attacking the defeasible inference step from Jan’s testimony to the claim that
John was in Amsterdam, we could model this step as deductive, and then add the premise
that normally witnesses speak the truth, and then direct the attack at this premise? In other
words, can we reduce attacks on inferences to attacks on premises?

In answer to these questions, we first note that some have argued that such deductive
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simulations are prone to yielding counterintuitive results. This is a topic that we will return
to and examine in more detail in Section 4.5. Second, we claim that there is some merit in
modelling the everyday practice of ‘jumping to defeasible conclusions’ and of considering
arguments for contradictary conclusions. This is especially important given that one of the
argumentation paradigm’s key strengths is its characterisation of formal logical modes of
reasoning in a way that corresponds with human modes of reasoning and debate.

The above discussion introduced the notion of fallible premises that can be attacked.
However ASPIC+ also wants to allow you to distinguish premises that are axiomatic
and so cannot be attacked. We discuss the uses of such premises in Section 4, but for
the moment we can summarise by saying that ASPIC+ arguments can be constructed
from fallible and infallible premises (respectively called ordinary and axiom premises
in Section 3), and strict and defeasible inference rules, and that arguments can be
attacked on their ordinary premises, the conclusions of defeasible inference rules, and the
defeasible inference steps themselves. Finally, a key feature of the ASPIC+ framework is
that it accommodates the use of preferences over arguments, so that an attack from one
argument to another only succeeds (as a defeat) if the attacked argument is not stronger
than (strictly preferred to) the attacking argument, according to some given preference
relation. The justified ASPIC+ arguments are then evaluated with respect to the Dung
framework relating ASPIC+ arguments by the defeat relation. Since requirements for
use of preferences in argumentation (and more generally for conflict resolution in
non-monotonic logics) are well established in the literature, we will not here justify the
need for preferences. However, examples are given in the remainder of the paper.

3. The framework defined: Special case with ‘ordinary’ negation

In what follows we briefly review Dung’s abstract argumentation theory, and then the
ASPIC+ framework. Note that in this section we present a special case of ASPIC+, in
which conflict is based on the standard classical notion of negation, and then in Section 5
we replace negation by a more general notion of conflict between formulae.

3.1. Abstract argumentation

As briefly discussed in Section 1, ASPIC+ was explicitly designed to be intermediate in
abstraction between concrete logics and Dung’s abstract argumentation frameworks; the
idea being that logics conforming to the ASPIC+ framework define ASPIC+ arguments
and defeats that then comprise a Dung framework. We therefore first briefly review the
main concepts from Dung’s abstract argumentation theory.

An abstract argumentation framework (AF ) is a pair (A,D), where A is a set of argu-
ments and D ⊆ A × A is a binary relation of defeat. We say that A strictly defeats B if
A defeats B while B does not defeat A. A semantics for AFs returns sets of arguments
called extensions, which are internally coherent and defend themselves against attack.

Definition 3.1: Let (A,D) be a AF. For any X ∈ A, X is acceptable with respect to
some S ⊆ A iff ∀Y s.t. (Y,X) ∈ D implies ∃Z ∈ S s.t. (Z, Y ) ∈ D. Let S ⊆ A be
conflict free, i.e., there are no A,B in S such that (A,B) ∈ D. Then:

• S is an admissible extension iff X ∈ S implies X is acceptable w.r.t. S;
• S is a complete extension iff X ∈ S whenever X is acceptable w.r.t. S;
• S is a preferred extension iff it is a set inclusion maximal complete extension;
• S is the grounded extension iff it is the set inclusion minimal complete extension;
• S is a stable extension iff it is preferred and ∀Y /∈ S, ∃X ∈ S s.t. (X,Y ) ∈ D.
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For T ∈ {complete, preferred, grounded, stable}, X is sceptically or credulously justified
under the T semantics if X belongs to all, respectively at least one, T extension.

3.2. Argumentation systems, knowledge bases, and arguments

To use ASPIC+, you need to provide the following information. You must choose a logical
language L closed under negation ¬ (which we later replace with a more general notion
of conflict). You must then provide two (possibly empty) sets of strict (Rs) and defeasible
(Rd) inference rules. If you provide a non-empty set of defeasible rules, you then need to
also specify which well-formed formulas in L correspond to (i.e., name) which defeasible
rule in Rd. To do the latter requires specifying a partial function n from Rd to L. These
names can then by used when attacking arguments on defeasible inference steps. Infor-
mally, n(r) is a wff in L which says that the defeasible rule r ∈ R is applicable, so that
an argument claiming ¬n(r) attacks the inference step in the corresponding rule1.

The above is summarised in the following formal definition:

Definition 3.2: [Argumentation systems] An argumentation system is a triple
AS = (L,R, n) where:

• L is a logical language closed under negation (¬).
• R = Rs ∪Rd is a set of strict (Rs) and defeasible (Rd) inference rules of the form ϕ1,

. . . , ϕn→ ϕ and ϕ1, . . . , ϕn⇒ ϕ respectively (where ϕi, ϕ are meta-variables ranging
over wff in L), andRs ∩Rd = ∅.

• n is a partial function such that n : Rd −→ L.

We write ψ = −ϕ just in case ψ = ¬ϕ or ϕ = ¬ψ (we will sometimes informally say
that formulas ϕ and −ϕ are each other’s negation).

It is important to stress here that ASPIC+’s strict and defeasible inference rules are not
object-level formulae in the language L, but are meta to the language, allowing one to de-
ductively, respectively defeasibly, infer the rule’s consequent from the rule’s antecedents.
Such inference rules may range over arbitrary formulae in the language, in which case
they will, as usual in logic, be specified as schemes. For example, a scheme for strict in-
ference rules capturing modus ponens for the material implication of classical logic can
be written as α, α ⊃ β → β2, where α and β are metavariables for wff in L. Alternatively,
strict or defeasible inference rules may be domain-specific in that they reference specific
formulae, as in the defeasible inference rule concluding that an individual flies if that in-
dividual is a bird: Bird ⇒ Flies . We will further discuss these distinct uses of inference
rules in Section 4.

If you want to use ASPIC+, then an argumentation system is not all you have to specify:
you must also specify from which body of information the premises of an argument can be
taken. We call this a knowledge base, and as discussed in Section 2, distinguish ordinary
premises, which are uncertain and so can be attacked, and premises that are axioms, hence
certain, and so cannot be attacked.

Definition 3.3: [Knowledge bases] A knowledge base in an AS = (L,R, n) is a set
K ⊆ L consisting of two disjoint subsetsKn (the axioms) andKp (the ordinary premises).

ASPIC+ leaves you fully free to choose your language, what is an axiom and what is an
ordinary premise and how you specify your strict and defeasible rules. However some care
needs to be taken in making these choices, to ensure that the result of argumentation is
guaranteed to be well-behaved. By ‘well-behaved’ we mean that the desirable properties

1n is a partial function since you may want to enforce that some defeasible inference steps cannot be attacked.
2In this paper we use ⊃ to denote the material implication connective of classical logic.
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proposed by Caminada and Amgoud (2007) are satisfied; for example, that the conclu-
sions of arguments in the same extension are mutually consistent (we will define below
what this means) and are closed under application of strict inference rules (whatever you
can derive from your conclusions of arguments in an extension, with strict rules alone,
is already a conclusion of an argument in that extension). In Section 4 we present some
theorems which tell you how you can make your choices in such a way that the result
is guaranteed to be well-behaved. These theorems will talk about two notions of consis-
tency, namely, direct and indirect consistency. Indirect consistency is defined in terms of
the closure of a set of well-formed formulas under application of strict inference rules.
Informally, the strict closure of a set of wff is the set itself plus everything that can be
derived from it when only applying strict rules.

Definition 3.4: For any S ⊆ L, let the closure of S under strict rules, denotedCl(S), be
the smallest set containing S and the consequent of any strict rule inRs whose antecedents
are in Cl(S). Then a set S ⊆ L is

• directly consistent iff @ ψ, ϕ ∈ S such that ψ = −ϕ
• indirectly consistent iff Cl(S) is directly consistent.

We call the combination of an argumentation system and a knowledge base an argu-
mentation theory:

Definition 3.5: [Argumentation theory] An argumentation theory is a tuple AT =
(AS,K) where AS is an argumentation system and K is a knowledge base in AS.

ASPIC+ arguments are now defined relative to an argumentation theoryAT = (AS,K),
and chain applications of the inference rules from AS into inference trees, starting with
elements from the knowlege base K. In what follows, for a given argument, the function
Prem returns all the formulas ofK (called premises) used to build the argument, Conc re-
turns its conclusion, Sub returns all its sub-arguments, DefRules returns all the defeasible
rules of the argument and TopRule returns the last inference rule used in the argument.

Definition 3.6: [Argument] An argument A on the basis of an argumentation theory
with a knowledge base K and an argumentation system (L,R, n) is:

(1) ϕ if ϕ ∈ K with: Prem(A) = {ϕ}, Conc(A) = ϕ, Sub(A) = {ϕ}, DefRules(A)
= ∅, TopRule(A) = undefined.

(2) A1, . . . An → ψ if A1, . . . , An are arguments such that there exists a strict rule
Conc(A1), . . . ,Conc(An)→ ψ inRs.
Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An),
Conc(A) = ψ,
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A}.
DefRules(A) = DefRules(A1) ∪ . . . ∪DefRules(An),
TopRule(A) = Conc(A1), . . .Conc(An)→ ψ

(3) A1, . . . An ⇒ ψ if A1, . . . , An are arguments such that there exists a defeasible
rule Conc(A1), . . . ,Conc(An)⇒ ψ inRd.
Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An),
Conc(A) = ψ,
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A},
DefRules(A) = DefRules(A1) ∪ . . . ∪ DefRules(An) ∪
{Conc(A1), . . .Conc(An)⇒ ψ},
TopRule(A) = Conc(A1), . . .Conc(An)⇒ ψ.

Example 3.7 Consider a knowledge base in an argumentation system with L consisting
of p, q, r, s, t, u, v, w, x, d1, d2, d3, d4, d5, d6 and their negations, with Rs = {s1, s2} and
Rd = {d1, d2, d3, d4, d5, d6}, where
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d1: p⇒ q d4: u⇒ v s1: p, q → r
d2: s⇒ t d5: v, x⇒ ¬t s2: v → ¬s
d3: t⇒ ¬d1 d6: s⇒ ¬p

Moreover, Kn = {p} and Kp = {s, u, x}. Note that in presenting the example, we have
informally used names di to refer to defeasible inference rules. We now define the n
function that formally assigns wff di to such rules, i.e., for any rule informally referred to
as di, we have that n(di) = di, so that ‘n(d1) = d1’ is a shorthand for n(p⇒ q) = d1. In
further examples we will often specify the n function in the same way.1

An argument for r (i.e., with conclusion r) is displayed in Figure 1, with the premises at
the bottom and the conclusion at the top of the tree. In this and the next figure, the type of a
premise is indicated with a superscript and defeasible inferences, underminable premises
and rebuttable conclusions are displayed with dotted lines. The figure also displays the
formal structure of the argument. We have that

q

r

pn

pn

d1

s1

A1A2A3

A  : p1

A   :2 A   1)q

A   :3 A   ,  1 A     2! r

Figure 1. An argument

Prem(A3) = {p} DefRules(A3) = {d1}
Conc(A3) = r TopRule(A3) = s1
Sub(A3) = {A1, A2, A3}

The distinction between two kinds of inference rules and two kinds of premises moti-
vates a distinction into four kinds of arguments.

Definition 3.8: [Argument properties] An argument A is strict if DefRules(A) = ∅;
defeasible if DefRules(A) 6= ∅; firm if Prem(A) ⊆ Kn; plausible if Prem(A) ∩Kp 6= ∅.
We write S ` ϕ if there exists a strict argument for ϕ with all premises taken from S, and
S |∼ ϕ if there exists a defeasible argument for ϕ with all premises taken from S.

Example 3.9 In Example 3.7 the argument A1 is both strict and firm, while A2 and A3

are defeasible and firm. Furthermore, we have that K ` p, K |∼ q and K |∼ r.

3.3. Attack and defeat

Recall that ASPIC+ is meant to generate Dung-style abstract argumentation frameworks,
that is, a set of arguments with a binary relation of defeat. Having defined arguments
above, we now define the attack relation and then, as discussed in Section 2, we apply
preferences to determine the defeat relation (in fact Dung called his relation “attack” but
we reserve this term for the basic notion of conflict, to which we then apply preferences).

1In our further examples we will often leave the logical language L and the n function implicit, trusting that they will be
obvious.
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3.3.1. Attack

We now first present the three ways in which arguments in ASPIC+ can be in conflict,
that is, three kinds of attack. In short, arguments can be attacked on a conclusion of a
defeasible inference (rebutting attack), on a defeasible inference step itself (undercutting
attack), or on an ordinary premise (undermining attack). As discussed in Section 2, that
arguments cannot be attacked on their strict inferences goes without saying. We also dis-
cussed why arguments cannot be attacked on the conclusions of strict inferences: if the
antecedents of a deductively valid inference rule are true, then its consequent must also
be true no matter what. So if we have reason to believe that the conclusion of a deductive
inference is not true, then there must be something wrong with the claims from which it
is drawn. In Section 4.2 we will give a second reason why arguments cannot be attacked
on conclusions of strict inferences. In short, this is because if we allow such attacks, then
consistency and strict closure of conclusions cannot be guaranteed.

To define undercutting attack, the function n of an AS is used, which assigns to ele-
ments of Rd a well-formed formula in L. Recall that informally, n(r) (where r ∈ Rd)
means that r is applicable. Then an argument using r is undercut by any argument with
conclusion −n(r).

Definition 3.10: [attacks] A attacks B iff A undercuts, rebuts or undermines B, where:

• A undercuts argument B (on B′) iff Conc(A) = −n(r) for some B′ ∈ Sub(B) such
that B′’s top rule r is defeasible.

• A rebuts argument B (on B′) iff Conc(A) = −ϕ for some B′ ∈ Sub(B) of the form
B′′1 , . . . , B

′′
n ⇒ ϕ.

• Argument A undermines B (on ϕ) iff Conc(A) = −ϕ for an ordinary premise ϕ of B.

This definition allows for a distinction between direct and indirect attack: an argument
can be indirectly attacked by directly attacking one of its proper subarguments. This dis-
tinction will turn out to be crucial for a proper application of preferences to resolve attacks.

Example 3.11 In our running example argument A3 cannot be undermined, since all its
premises are axioms. A3 can potentially be rebutted on A2, with an argument for ¬q.
However, the argumentaton theory of our example does not allow the construction of such
a rebuttal. Likewise,A3 can potentially be undercut onA2, with an argument for ¬d1. Our
example does allow the construction of such an undercutter, namely:

B1: s
B2: B1 ⇒ t
B3: B2 ⇒ ¬d1

Argument B3 has an ordinary premise s, so it can be undermined on B1 with an argument
for ¬s:

C1: u
C2: C1 ⇒ v
C3: C2 → ¬s

Note that since C3 has a strict top rule, argument B1 does not in turn rebut C3.
ArgumentB3 can potentially be rebut or undercut on eitherB2 orB3, since both of these

subarguments of B3 have a defeasible top rule. Our argumentation theory only allows for
a rebutting attack on B2:

C1: u
C2: C1 ⇒ v
D3: x
D4: C2, D3 → ¬t
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All relevant arguments and attacks are displayed in Figure 2.

sp

q

t¬

r

pn

C1

d1¬

C2C3

d2

d3
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B3B2B1

v

up

s¬
s2

d4

d5

v

up

d4

x
D3

D4

pn

d1

s1

A1A2A3

p

Figure 2. An argument

3.3.2. Defeat

The attack relation tells us which arguments are in conflict with each other: if two
arguments are in conflict then they cannot both be justified. However, Definition 3.1’s
notion of the acceptability of arguments is based on the notion that one argument can
be used as a counter-argument to another. In general, an argument A can be used as a
counter-argument to B, if A successfully attacks, i.e., defeats, B. Whether an attack from
A to B (on its sub-argument B′) succeeds as a defeat, may depend on the relative strength
of A and B′, i.e., whether B′ is strictly stronger than, or strictly preferred to A. Note
that only the success of undermining and rebutting attacks is contingent on preferences;
undercutting attacks succeed as defeats independently of any preferences (see Modgil and
Prakken (2013) for a discussion as to why this is the case).

Where do these preferences come from? Again, ASPIC+ allows you to make any choice
you like. All that ASPIC+ as a framework wants is that you as a user give a binary ordering
� on the set of all arguments that can be constructed on the basis of an argumentation
theory. Then, as usual, ifA � B andB � A thenB is strictly preferred toA (denotedA ≺
B). Also, ifA � B andB � A thenA ≈ B. We will later identify some conditions under
which argument orderings are well-behaved in that they promote consistency and strict
closure of conclusions. We will also define two example argument orderings that satisfy
these conditions. However, for now all we need for defining ASPIC+’s defeat relation is
the attack relation and a preference ordering over arguments.

How should the preference ordering be applied to resolve attacks? At first sight, it would
seem that ASPIC+ can be taken to generate a so-called preference-based argumentation
framework (PAF) in the sense of Amgoud and Cayrol (2002), that is, a triple consisting
of the set of arguments, the attack relation and the argument ordering. That A defeats
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B could then be defined as A attacks B and A 6≺ B. However, this does not work, for
two reasons. First, PAFs do not recognise that undercutting attacks succeed irrespective
of preferences. More seriously, PAFs cannot express how and at which points arguments
attack each other, and yet this is crucial for a proper application of preferences to attack
relations. Modgil and Prakken (2013), Prakken (2012) have shown that the use of PAFs
leads to violation of the rationality postulates of subargument closure and consistency (see
further Section 4.2 below) in cases where ASPIC+ with the following definition satisfies
these postulates.

Definition 3.12: [Successful rebuttal, undermining and defeat]

• A successfully rebuts B if A rebuts B on B′ and A 6≺ B′.
• A successfully undermines B if A undermines B on ϕ and A 6≺ ϕ.
• A defeats B iff A undercuts or successfully rebuts or successfully undermines B.

The success of rebutting and undermining attacks thus involves comparing the conflict-
ing arguments at the points where they conflict; that is, by comparing those arguments
that are in a direct rebutting or undermining relation with each other. The definition of
successful undermining exploits the fact that an argument premise is also a subargument.

Example 3.13 In our running example two argument orderings are relevant for whether
attacks are successful: between B1 and C3 and and between B2 and D4. Note that the
undercutting attack of B3 on A2 (and thereby on A3) succeeds as a defeat irrespective of
the argument ordering betweenB3 andA2. The undermining attack of C3 onB1 succeeds
if C3 6≺ B1. If B2 ≈ D4 or their relation is undefined then these two arguments defeat
each other, while D4 strictly defeats B3. If D4 ≺ B2 then B2 strictly defeats D4 while if
B2 ≺ D4 then D4 strictly defeats both B2 and B3.

Let us now put all these elements together; that is the arguments and attacks defined on
the basis of an argumentation theory, and a preference ordering over the arguments:

Definition 3.14: Let AT be an argumentation theory (AS,KB). A structured argu-
mentation framework (SAF) defined by AT , is a triple 〈A, C, � 〉 where

• A is the smallest set of all finite arguments constructed from KB in AS satisfying
Definition 3.6;

• � is an ordering on A;
• (X,Y ) ∈ C iff X attacks Y .

Example 3.15 In our running exampleA = {A1, A2, A3, B1, B2, B3, C1, C2, C3, D3, D4},
while C is such that B3 attacks both A2 and A3, argument C3 attacks all of B1, B2, B3,
argument D4 attacks both B2 and B3 and, finally, B2 attacks D4.

3.4. Generating Dung-style abstract argumentation frameworks

We are now ready to instantiate a Dung framework with ASPIC+ arguments and the AS-
PIC+ defeat relation.

Definition 3.16 Argumentation frameworks: An abstract argumentation framework
(AF) corresponding to a SAF = 〈A, C, � 〉 is a pair (A, D) such that D is the defeat
relation on A determined by 〈A, C, � 〉.

The justified arguments of the above defined AF are then defined under various seman-
tics, as in Definition 3.11. Now one way to define the justification status of a statement is

1Note that in Modgil and Prakken (2013) we motivate the use of the ASPIC+ attack relation to define conflict-free sets,
and then only use the ASPIC+ defeat relation to determine the acceptability of arguments. It turns out that under certain
conditions, this way of evaluating the status of arguments is equivalent to Definition 3.1’s use of the defeat relation for both
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as follows:

Definition 3.17: A wff ϕ ∈ L is sceptically justified if ϕ is the conclusion of a scep-
tically justified argument, and credulously justified if ϕ is not sceptically justified and is
the conclusion of a credulously justified argument.

Example 3.18 In our running example, if D4 strictly defeats B2, then we have
a unique extension in all semantics which at least contains the set S =
{A1, A2, A3, C1, C2, C3, D3, D4}. If in additionC3 does not defeatB1, then the extension
also contains B1. In both cases this yields that wff r is sceptically justified.

Alternatively, if B2 strictly defeats D4, then the status of r depends on whether C3

defeats B1. If it does, then we again have a unique extension in all semantics consisting
of the set S, so r is sceptically justified. By contrast, if C3 does not defeat B1, we obtain
a unique extension with A1, B1, B2, B3, C1, C2, C3 and D3, so r is neither sceptically
nor credulously justified.

Finally, if B2 and D4 defeat each other, then the outcome again depends on whether C3

defeats B1. If it does, then the situation is as in the previous case – a unique extension S
– but if C3 does not defeat B1, then the grounded extension consists of A1, B1, C1-C3,
D3. So in the latter case, in grounded semantics r is neither sceptically nor credulously
justified. However, in preferred and stable semantics we then obtain two alternative exten-
sions: the first contains D4 while the second instead contains B2 and B3 and so excludes
A2 and A3. So in the latter case r is credulously, but not sceptically justified under stable
and preferred semantics.

3.5. More on argument orderings

A well studied use of preferences in the non-monotonic logic literature is based on the
use of priority orderings over formulae in the language or defeasible inference rules. If
ASPIC+ is to be used as a framework for giving argumentation-based characterizations of
non-monotonic formalisms augmented with priorities, then it needs to provide an account
of how these priority orderings can be ‘lifted’ to preferences over arguments. Now the first
thing to note is that if your use of ASPIC+ involves using defeasible inference rules and
ordinary premises, then both may come equipped with priority orderings ≤ onRd and ≤′
on Kp. We assume that these priority orderings are distinct to allow for the ontological
nature of the rules and premises to be distinct. For example, the ordinary premises may
represent the content of percepts from sensors or of witness testimonies, whose priority
ordering reflects the relative reliability of the sensors, respectively witnesses. The defea-
sible rules may, for example, be prioritized based on probabilistic strength, on temporal
precedence (defeasible rules acquired later are preferred to those acquired earlier), on the
basis of principles of legal precedence, and so on. The challenge is to then define a pref-
erence over arguments A and B based on the priorities over their constituent ordinary
premises and defeasible rules.

We now define two argument preference orderings, called the weakest-link and last-
link orderings. These orderings are in turn based on priority orderings ≤ on Rd and ≤′
on Kp, where as usual, X <(′) Y iff X ≤(′) Y and Y �(′) X (note that we may rep-
resent orderings in terms of the strict counterpart they define). However, these priorities
relate individual defeasible rules, respectively ordinary premises, whereas when compar-
ing two arguments, we want to compare them on the (possibly non-singleton) sets of
rules/premises that these arguments are constructed from. So, to define these argument
preferences, we need to first define a set ordering Es over sets of rules/premises (where
Γ �s Γ′ iff Γ Es Γ′ and Γ 5s Γ′)

determining conflict freeness and acceptability of arguments.
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Note that for any sets of defeasible rules/ordinary premises Γ and Γ′, we intuitively
want that:
1) if S is the empty set, it cannot be that S Es S

′ (hence it cannot be that S �s S
′);

2) if S′ is the empty set, it must be that S Es S
′ (and hence, given 1), S �s S

′ ) for any
non-empty S .
In other words, arguments that have no defeasible rules (ordinary premises) are, mod-
ulo the premises (rules), strictly stronger than (preferred to) arguments that have defea-
sible rules (ordinary premises). Hence the following definition explicitly imposes these
constraints, and then gives two alternative ways of definingEs; the so called Elitist and
Democratic ways (i.e., s = Eli and Dem respectively). Eli compares sets on their mini-
mal and Dem on their maximal elements.

Definition 3.19: [Orderings Es] Let Γ and Γ′ be finite sets1. Then Es is defined as
follows:

(1) If Γ = ∅ then Γ 5s Γ′ ;
(2) If Γ′ = ∅ and Γ 6= ∅ then Γ Es Γ′ ;

else, assuming a preordering ≤ over the elements in Γ ∪ Γ′, then if :
(3) s = Eli:

Γ EEli Γ′ if ∃X ∈ Γ s.t. ∀Y ∈ Γ′, X ≤ Y .
else, if:

(4) s = Dem:
Γ EDem Γ′ if ∀X ∈ Γ, ∃Y ∈ Γ′, X ≤ Y .

Note that one can directly define Γ �s Γ′ in terms of the strict counter-part < of ≤,
replacing Es by �s and ≤ by < in (3) and (4) of the above definition.

Henceforth, we will assume that EEli is used to compare sets of rules/premises.
Now the last-link principle prefers an argument A over another argument B if the last

defeasible rules used in B are less preferred (Es) than the last defeasible rules in A or, in
case both arguments are strict, if the premises of B are less preferred than the premises of
A. The concept of ‘last defeasible rules’ is defined as follows.

Definition 3.20: [Last defeasible rules] Let A be an argument.

• LastDefRules(A) = ∅ iff DefRules(A) = ∅.
• If A = A1, . . ., An ⇒ φ, then LastDefRules(A) = {Conc(A1), . . ., Conc(An)⇒ φ},

else LastDefRules(A) = LastDefRules(A1) ∪ . . . ∪ LastDefRules(An).

A simple example with more than one last defeasible rule is with K = {p; q}, Rs =
{r, s → t} and Rd = {p ⇒ r; q ⇒ s}. Then for the argument A for t we have that
LastDefRules(A) = {p⇒ r; q ⇒ s}.

The above definition is now used to compare pairs of arguments as follows:

Definition 3.21: [Last link principle] Let A and B be two arguments. Then A � B iff:

(1) LastDefRules(A) Es LastDefRules(B); or
(2) LastDefRules(A) and LastDefRules(B) are empty and Prem(A) Es Prem(B).

Note that although A ≺ B holds in the case that A � B and B � A according to
Definition 3.21, one can directly define A ≺ B in terms of �s, by replacing � by ≺ and
Es by �s in the above definition.

Example 3.22 Suppose in our running example that u <′ s, x <′ s, d2 < d5 and
d4 < d2. Applying the last-link ordering, we must, to check whether C3 defeats B1,

1Notice that it suffices to restrict � to finite sets since ASPIC+ arguments are assumed to be finite (in Definition 3.14) and
so their sets of ordinary premises/defeasible rules must be finite.
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compare LastDefRules(C3) = {d4} with LastDefRules(B1) = ∅. Clearly, {d4} /Eli ∅,
so C3 ≺ B1, so C3 does not defeat B1. Next, to check the conflict between B2 and D4 we
compare LastDefRules(B2) = {d2} with LastDefRules(D4) = {d5}. Since d2 < d5 we
have that LastDefRules(B2) /Eli LastDefRules(D4), so D4 strictly defeats B2.

The weakest-link principle considers not the last but all uncertain elements in an ar-
gument. In the following definition, Premp(A) = Prem(A) ∩ Kp.
Definition 3.23: [Weakest link principle] Let A and B be two arguments. Then A � B
iff

(1) If both B and A are strict, then Premp(A) Es Premp(B), else;
(2) If both B and A are firm, then DefRules(A) Es DefRules(B), else;
(3) Premp(A) Es Premp(B) and DefRules(A) Es DefRules(B)

Note that in same way as in Definition 3.21 one can directly define A ≺ B under the
weakest link principle, in terms of �s.

Example 3.24 If in our running example we apply the weakest-link ordering, then
we must, to check whether C3 defeats B1, first compare Premp(C3) = {u} with
Premp(B1) = {s}. Since u <′ s we have that Premp(C3) /Eli Premp(B1). Then we
must compare DefRules(C3) = {d4} with DefRules(B1) = ∅. We have as above that
{d4} /Eli ∅. So C3 ≺ B1 and so C3 does not defeat B1. Next, to check the conflict be-
tween B2 and D4 we must first compare Premp(B2) = {s} with Premp(D4) = {u, x}.
Since both u <′ s and x < s′ we have that Premp(D4) /Eli Premp(B2). We must then
compare DefRules(B2) = {d2} with DefRules(D4) = {d4, d5}. Since d4 < d2 we now
have that DefRules(D4) /Eli DefRules(B2). So D4 ≺ B2 and B2 strictly defeats D4.

We next discuss with two examples when the last-, respectively, weakest-link ordering
may be more suitable. Consider first the following example on whether people misbehav-
ing in a university library may be denied access to the library.1

Example 3.25 Let Kp = {Snores; Professor},Rd =

{Snores ⇒d1 Misbehaves;
Misbehaves ⇒d2 AccessDenied ;
Professor ⇒d3 ¬AccessDenied}.

Assume that Snores <′ Professor and d1 < d2, d1 < d3, d3 < d2, and consider the
following arguments.

A1: Snores B1: Professor
A2: A1 ⇒ Misbehaves B2: B1 ⇒ ¬AccessDenied
A3: A2 ⇒ AccessDenied

Let us apply the ordering to the arguments A3 and B2. The rule sets to be compared are
LastDefRules(A3) = {d2} and LastDefRules(B2) = {d3}. Since d3 < d2 we have that
LastDefRules(B2) /Eli LastDefRules(A3), hence B2 ≺ A3. So A3 strictly defeats B2

(i.e., A3 defeats B2 but B2 does not defeat A3). We therefore have that A3 is justified in
any semantics, so we conclude AccessDenied .

With the weakest-link principle the ordering between A3 and B2 is different. Both
A and B are plausible and defeasible so we are in case (3) of Definition 3.23. Since
Snores <′ Professor , we have that Premp(A3) �Eli Premp(B2). Furthermore, the rule
sets to be compared are now DefRules(A3) = {d1, d2} and DefRules(B2) = {d3}. Since
d1 < d3 we have that DefRules(A3) �Eli DefRules(B2). So now we have that A3 ≺ B2.
Hence B2 now strictly defeats A3 and we conclude instead that ¬AccessDenied .

1In all examples below, sets that are not specified are assumed to be empty.
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Which outcome in this example is better? Some have argued that the last-link ordering
gives the better outcome since the conflict really is between the two legal rules about
whether someone may be denied access to the library, while d1 just provides a sufficient
condition for when a person can be said to misbehave. The existence of a conflict on
whether someone may be denied access to the library is in no way relevant for the issue
of whether a person misbehaves when snoring. More generally, it has been argued that for
reasoning with legal (and other normative) rules the last-link ordering is appropriate.

However, an example can be given of exactly the same form but with the legal rules re-
placed by empirical generalisations, and in that case intuitions seem to favour the weakest-
link ordering:

Example 3.26 Let Kp = {BornInScotland ; FitnessLover},Rd =

{BornInScotland ⇒d1 Scottish;
Scottish ⇒d2 LikesWhisky ;
FitnessLover ⇒d3 ¬LikesWhisky}.

Assume that BornInScotland <′ FitnessLover and d1 < d2, d1 < d3, d3 < d2, and
consider the following arguments.

A1: BornInScotland B1: FitnessLover
A2: A1 ⇒ Scottish B2: B1 ⇒ ¬LikesWhisky
A3: A2 ⇒ LikesWhisky

This time it seems reasonable to conclude ¬LikesWhisky , since the epistemic uncertainty
of the premise and d1 of A3 should propagate to weaken A3. And this is the outcome
given by the weakest-link ordering. So it could be argued that for epistemic reasoning the
weakest-link ordering is appropriate.

4. Ways to use the framework

As should be clear by now, ASPIC+ is not a system but a framework for specifying sys-
tems. ASPIC+ leaves you fully free to make choices as to the logical language, the strict
and defeasible inference rules, the axioms and ordinary premises in your knowledge base,
and the argument preference ordering. In this section we discuss various more or less
principled ways to make your choices, and then show specific uses of ASPIC+.

4.1. Choosing strict rules, axioms and defeasible rules

4.1.1. Domain specific strict inference rules

When designing your ASPIC+ system, you can specify domain specific strict inference
rules, as illustrated by the following example (based on Example 4 of Caminada and
Amgoud 2007) in which the strict inference rules capture definitional knowledge, namely,
that bachelors are not married.1

Example 4.1 LetRd = {d1, d2} andRs = {s1, s2}, where:

d1 = WearsRing ⇒ Married s1 = Married → ¬Bachelor
d2 = PartyAnimal ⇒ Bachelor s2 = Bachelor → ¬Married

1In the examples that follow we may use terms of the form si, di or fi, to identify strict or defeasible inference rules or
items from the knowledge base. We will assume that the di names are those assigned by the n function of Definition 3.2;
sometimes we will attach these names to the⇒ symbol. Note that the si and fi names have no formal meaning and are for
ease of reference only.
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Finally, let Kp = {WearsRing ,PartyAnimal}. Consider the following arguments.

A1: WearsRing B1: PartyAnimal
A2: A1 ⇒ Married B2: B1 ⇒ Bachelor
A3: A2 → ¬Bachelor B3: B2 → ¬Married

We have that A3 rebuts B3 on its subargument B2 while B3 rebuts A3 on its subargument
A2. Note that A2 does not rebut B3, since B3 applies a strict rule; likewise for B2 and A3.

Notice that in the above example, the rules s1 and s2 are ‘transpositions’ of each other,
andRs is ‘closed under transposition’, in the sense that:

Definition 4.2: LetAT = (AS,K) be an argumentation theory. ThenAT is closed under
transposition iff if φ1, . . . , φn → ψ ∈ Rs, then for i = 1 . . . n, φ1, . . . , φi−1,−ψ, φi+1,
. . . , φn → −φi ∈ Rs.

In general it is a good idea to ensure that your theory is closed under transposition.
Proponents of this idea argue that this follows from the intuitive meaning of a strict rule
as capturing deductive, that is, perfect inference: a strict rule q → ¬s expresses that if q
is true, then this guarantees the truth of ¬s, no matter what. Hence, if we have s, then q
cannot hold, otherwise we would have ¬s. In general, if the negation of the consequent
of a strict rule holds, then we cannot have all its antecedents, since if we had all of them,
then its consequent would hold. This is the very meaning of a strict rule. So it is very
reasonable to include inRs the transposition of a strict rule that is inRs. A second reason
for ensuring closure under transposition is that it ensures satisfaction of Caminada and
Amgoud (2007)’s rationality postulates, as illustrated later in Section 4.2.

4.1.2. Strict inference rules and axioms based on deductive logics

Some find the use of domain-specific strict inference rules rather odd: why not instead
express them as material implications in L and put them in the knowledge base as axiom
premises? These people want to reserve the strict inference rules for general patterns of
deductive inference, since they say that this is what inference rules are meant for in logic.
(Below we will see that the same issue arises with regard to the choice of defeasible rules,
but we ignore that issue for the moment). ASPIC+ allows you to do this by basing your
strict inference rules (and axioms) on a deductive logic of your choice. You can do so
by choosing a semantics for your choice of L with an associated monotonic notion of
semantic consequence, and then filling Rs with rules that are sound with respect to that
semantics. For example, suppose you want it to conform to classical logic: you want to
choose a standard propositional (or first-order) language, and you want that arguments
can contain any classically valid inference step over this language. In ASPIC+ you can
achieve this in two ways, a crude way and a sophisticated way.

A crude way is to simply put all valid propositional (or first-order) inferences over
your language of choice in Rs. So if you have chosen a propositional language, then
you define the content ofRs as follows. (where `PL denotes standard propositional-logic
consequence). For any finite S ⊆ L and any ϕ ∈ L:1

S → ϕ ∈ Rs if and only if S `PL ϕ

In fact, with this choice of Rs, strict parts of an argument don’t need to be more than
one step long. For example, if rules S → ϕ and ϕ → ψ are in Rs, then S ∪ {ϕ} → ψ
will also be in Rs. Note also that using this method your strict rules will be closed under
transposition, because of the properties of classical logic. The proof is easy: suppose p→
q is in Rs for some p and q. Then we know that p `PL q, so (by the deduction theorem

1Although antecedents of rules formally are sequences of formulas, we will sometimes abuse notation and write them as
sets.
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for classical logic) `PL p ⊃ q so (by the properties of `PL) we have `PL −q ⊃ −p so
(by the other half of the deduction theorem) we have −q `PL −p, so (by choice of Rs)
−q → −p ∈ Rs.

Let us illustrate the crude approach with a variation on Example 4.1. We retain the de-
feasible rules d1 and d2 but we replace the domain-specific strict rules s1 and s2 with a
single material implication Married ⊃ ¬Bachelor in Kn. Moreover, we put all proposi-
tionally valid inferences over our language inRs. Then the arguments change as follows:

A1: WearsRing B1: PartyAnimal
A2: A1 ⇒ Married B2: B1 ⇒ Bachelor
A3: Married ⊃ ¬Bachelor B3: Married ⊃ ¬Bachelor
A4: A2, A3 → ¬Bachelor B4: B2, B3 → ¬Married

Now A4 rebuts B4 on B2 while B4 rebuts A4 on A2.
A sophisticated way to base the strict part of ASPIC+ on a deductive logic of your

choice is to build an existing axiomatic system for your logic into ASPIC+. You can
include its axiom(s) (typically a handfull) in Kn and its inference rule(s) (typically just
one or a few) inRs. For example, there are axiomatic systems for classical logic with just
four axioms and just one inference rule, namely, modus ponens (i.e, ϕ ⊃ ψ,ϕ → ψ)1.
With this choice of Rs strict parts of an argument could be very long, since in logical
axiomatic systems proofs of even trivial validities might be long. However, this difference
with the crude way is not very big, since if we want to be crude, we must, to know whether
S → ϕ is inRs, first construct a propositional proof of ϕ from S.

With the sophisticated way of building classical logic into our argumentation system,
argument A4 in our example stays the same, since modus ponens is in Rs. However,
argument B4 will change, since modus tollens is not in Rs. In fact, B4 will be replaced
by a sequence of strict rule applications, together being an axiomatic proof of ¬Married
from Married ⊃ ¬Bachelor and Bachelor .

Which approach is more natural? We think that the crude way is more like how people
reason: people often summarise chunks of deductive reasoning in one step. But if you
want to implement such reasoning on a computer, then the crude and sophisticated way
do not differ much.

However, note that in the sophisticated method, closure under transposition may not
hold; our example above does not contain modus tollens (that is, ϕ ⊃ ψ,−ψ → −ϕ).
But we have already argued that the contrapositive reasoning yielded by the inclusion
of transpositions is a desirable feature. Is this a problem for this method? No, since this
reasoning can also be enforced without explicitly requiring transpositions of rules. Recall
that S ` ϕ was defined as ‘there exists a strict argument for ϕ with all premises taken
from S’. Now it turns out that if ` contraposes, then this is just as good as closure of
the strict rules under transposition. Contraposition of ` means that if S ` ϕ, then if we
replace one element s of S with −ϕ, then −s is strictly implied. Now the point is that if
` corresponds to classical provability (as we have made it by our choice of axioms and
inference rules), then ` does indeed contrapose.

Definition 4.3: LetAT = (AS,K) be an argumentation theory. We say thatAT is closed
under contraposition iff for all S ⊆ L, s ∈ S and φ, if S ` φ, then S\{s} ∪ {−φ} ` −s.

Again, as will be discussed in Section 4.2, closure under contraposition also ensures
satisfaction of rationality postulates.

We end this section by stating a quite general result on a class of logics that, if em-
bedded in ASPIC+, ensures closure of the strict rules under contraposition. In Amgoud
and Besnard (2009) the idea was introduced to base argumentation logics on so-called

1As explained above, this strictly speaking is not a rule but a scheme or rules, with meta variables ranging over L.
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Tarskian abstract logics. Very briefly, abstract logics assume just some unspecified logical
language L and a consequence operator over this language, which to each subset of L
assigns a subset of L (its logical consequences). Tarski then assumed a number of con-
straints on Cn, which we need not repeat here. Finally, Tarski defined a set S ⊆ L as
consistent iff Cn(S) 6= L.

Now Amgoud and Besnard (2009)’s idea was to define an argument as a pair (S, p)
where S ⊆ L and p ∈ L, where S is consistent, p ∈ Cn(S) and S is minimal in satisfying
all these conditions. In ASPIC+ Tarski’s notion of an abstract logic can be used to generate
the strict rules, via the following constraint (for any finite S):

S → p ∈ Rs iff p ∈ Cn(S)

It turns out that any AT with this choice of strict rules satisfies closure under contraposi-
tion. Strictly speaking, this only holds under some assumptions on the relation between
the Cn function and ASPIC+’s negation (note that Tarski did not make any assumption
on the syntax of L), but these assumptions are quite natural. For the details we refer the
reader to Section 5.2 of Modgil and Prakken (2013).

4.1.3. Choosing defeasible inference rules

Let us return to the question of how to choose the defeasible rules. Can we derive them
from a logic of our choice just as we can derive the strict rules from a logic of our choice
if we want to? This is controversial. Some philosophers argue that all rule-like structures
that we use in daily life are “inference licences” and so cannot be expressed in the logical
object language. In this view, all that can be done is apply them to formulas from L to
support new formulas fromL. That is, these philosophers see all defeasible generalisations
as inference rules, whether they are domain-specific or not.

Others (usually logicians) take a more standard-logic approach (e.g. Kraus et al. (1990),
Pearl (1992)). They say that all contingent knowledge should be expressed in the object
language, so they reject the idea of domain-specific defeasible inference rules (for the
same reason they don’t like domain-specific strict rules). They would introduce a new
connective into L, let us write it as ;, where they informally read p ; q as something
like “If p then normally/typically/usually q”. They then want to give a model-theoretic
semantics for this connective just as logicians give a model-theoretic semantics for all
connectives. The main difference is that such semantics for defeasible conditionals do
not look at all models of a theory to check whether it entails a formula (as semantics for
deductive logics do) but only to a preferred class of models of the theory (for example,
all models where things are as normal as possible). They would then add a strict inference
rule S → ϕ to Rs just in case ϕ is true in all models of S, while they would add a
defeasible inference rule S ⇒ ϕ to Rd just in case ϕ is true in all preferred models of S
but not in all models of S.

Now what inference rules for ; could result from such an approach? On two things
there is consensus between logicans: modus ponens for ; is defeasibly but not deduc-
tively valid, so the rule ϕ ; ψ,ϕ ⇒ ψ should go into Rd. There is also consensus that
contraposition for ; is deductively invalid, so the rule ϕ ; ψ → −ψ ; −ϕ should not
go intoRs. However, here the consensus ends. Should the defeasible analogue of this rule
go intoRd or not? Opinions differ at this point1.

Let us illustrate the difference between the two approaches with a further variation
on Example 4.1. Above we used the approach where all defeasible generalisations are
inference rules. We now replace the two domain-specific defeasible inference rules d1
and d2 with two object-level conditionals expressed in L and now add them to Kp:

1See Chapter 4 of Caminada (2004) for a very readable overview of the discussion.
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WearsRing ; Married
PartyAnimal ; Bachelor

Moreover, we add defeasible modus ponens for ; toRd:

Rd = {ϕ; ψ,ϕ⇒ ψ}

The arguments then change as follows (assuming the crude way of incorporating classical
logic):

A1: WearsRing B1: PartyAnimal
A2: WearsRing ; Married B2: PartyAnimal ; Bachelor
A3: A1, A2 ⇒ Married B3: B1, B2 ⇒ Bachelor
A4: Married ⊃ ¬Bachelor B4: Married ⊃ ¬Bachelor
A5: A3, A4 → ¬Bachelor B5: B3, B4 → ¬Married

Now A5 rebuts B5 on B3 while B5 rebuts A5 on A3.
Concluding, if you want, you can base at least some of your choices concerning defea-

sible inference rules on model-theoretic semantics for nonmonotonic logics. However, it
is an open question whether a model-theoretic semantics is the only criterion by which
we can choose our defeasible rules. Some have based their choice on other criteria, since
they do not primarily see defeasible rules as logical inference rules but as principles of
human cognition or rational action, so that they should be based on foundations other than
semantics. For example, John Pollock based his defeasible reasons on his account of epis-
temology (the part of philosophy that studies how we can obtain knowledge). Others have
based their choice of defeasible reasons on the study of argument schemes in informal
argumentation theory. We give examples of both these approaches in Section 4.3.

4.2. Satisfying rationality postulates

We are now in a position to state under what conditions ASPIC+ satisfies Caminada and
Amgoud (2007)’s four rationality postulates. These are listed below (it is helpful to refer
to concepts defined in Definition 3.4 when reading these postulates), adapted to the AS-
PIC+ framework. Let E be any complete extension of a Dung framework instantiated by
ASPIC+ arguments and the ASPIC+ defeat relation (as defined in Section 3.4)

Sub-argument Closure: For any argument A in E, all sub-arguments of A are in E,
i.e., for all A ∈ E: if A′ ∈ Sub(A) then A′ ∈ E.
Closure under Strict Rules: If E contains arguments with conclusions α1, . . . .αn,
then any arguments obtained by applying only strict inference rules to these conclu-
sions, are in E, i.e., {Conc(A)|A ∈ E} = Cl({Conc(A)|A ∈ E}).
Direct Consistency: The conclusions of arguments in E are directly consistent, i.e.,
{Conc(A)|A ∈ E} is consistent.
Indirect Consistency: The conclusions of arguments in E are indirectly consistent,
i.e., Cl({Conc(A)|A ∈ E}) is consistent.

Depending on the choices outlined in Section 4.1.2, the first requirement for satisfying
the above postulates is that your argumentation theory is closed under transposition or
contraposition. This is because if neither property is satisfied, then since strict rule appli-
cations cannot be attacked, direct consistency may then be violated. This can be illustrated
with the first version of Example 4.1. Suppose we only have one strict rule, namely, s1.
we cannot construct B3, since B3 applies the now missing rule s2. We still have that A3

rebuts B2. Suppose now that d1 < d2 and we apply the last-link argument ordering. Then
A3 does not defeat B2. In fact, no argument in the example is defeated, so we end up
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with a single extension in all semantics, which contains arguments for both Bachelor and
¬Bachelor and so violates direct and indirect consistency.

However, with transposition this bad outcome is avoided: if we also have s2, then ar-
gument B3 can be constructed, which rebuts A3 on A2. Again applying the preference
d1 < d2 with the last-link ordering, we have that B3 strictly defeats A2. Again we have
a unique extension in all semantics, containing all arguments except A2 and A3. This
extension does not violate consistency.

Example 4.4 Consider Example 3.7. As discussed in Example 3.18, if the argument or-
dering is such that C3 does not defeat B1, then both arguments will be in the same exten-
sion, which thus violates consistency since the conclusions of these arguments contradict
each other. However, if the transposition s→ ¬v of v → ¬s is added to Rs, then B1 can
be continued to an argument for ¬v, which successfully rebuts C3 on C2, excluding the
consistency-violating extensions.

Some say that the above violation of consistency, before inclusion of the transposed
rule, arises because ASPIC+ forbids attacks on strictly derived conclusions. Consistency
would not be violated if B2 was allowed to attack A3 in the first version of Example 4.1.
However, apart from the reasons discussed in Section 2, there is another reason for pro-
hibiting attacks on strictly derived conclusions: if they are allowed, then extensions may
not be strictly closed or indirectly consistent, even if the strict rules are closed under
transposition. To see why, suppose we changed ASPIC+’s definitions to allow attacks
on strict conclusions, so that B2 attacks A3, A2 attacks B3, and A3 and B3 attack each
other in Example 4.1. Suppose also that all knowledge-base items and all defeasible rules
in the example are of equal preference, and suppose we apply the weakest- or last-link
argument ordering. Then all rebutting attacks in the example succeed. But then the set
{A1, A2, B1, B2} is admissible and is in fact both a stable and preferred extension. But
this violates the rationality postulates of strict closure and indirect consistency. The ex-
tension contains an argument for Bachelor but not for ¬Married , which strictly follows
from it by rule s2. Likewise, the extension contains an argument for Married but not for
¬Bachelor , which strictly follows from it by rule s1. So the extension is not closed under
strict rule application. Moreover, the extension is indirectly inconsistent, since its strict
closure contains both Married and ¬Married , and both Bachelor and ¬Bachelor .

Other requirements for satisfying the postulates are that the axioms Kn are indirectly
consistent (axiom consistency) and the preference ordering is reasonable. The ratio-
nale for requiring the former is self-evident. A reasonable argument ordering essentially
amounts to requiring that: 1) arguments that are both strict and firm are strictly preferred
over all other arguments; 2) the strength (and implied relative preference) of an argument
is determined exclusively by the defeasible rules and/or ordinary premises; 3) the prefer-
ence ordering is acyclic, and if B ≺ A then it must be that B′ ≺ A where B′ is some
maximal fallible (i.e., defeasible or plausible) sub-argument ofB (for example in our run-
ning example C2 but not C1 is a maximal fallible argument of C3). We refer the reader to
Modgil and Prakken (2013) for the technical definition of a reasonable ordering, suffice
to say that in that paper it is shown that the weakest- and last-link argument orderings of
Section 3.5 are reasonable.

We are now in a position to state an important result proved in Modgil and Prakken
(2013) that if your argument theory is well-defined, in the sense that is satisfies axiom
consistency, and transposition or contraposition, and your argument preference ordering
is reasonable, then all four rationality postulates are satisfied by the ASPIC+ framework
as defined in Section 3. Finally, note that if you do not include any strict rules or axiom
premises in your argumentation theory, then the requirement that it be well defined obvi-
ously does not apply, but it is also worth noting that the preference ordering need not be
reasonable in order that all four rationality postulates be satisfied (indeed no assumptions
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as to the properties of the preference ordering are required in this case).

4.3. Using ASPIC+ to model argument schemes

We concluded Section 4.1.3 by remarking on the use of defeasible inference rules as
principles of cognition in John Pollock’s work and as argument schemes in informal argu-
mentation theory. We now illustrate how both approaches can be formalised in ASPIC+

and how strict inference rules can also be accommodated when doing so.
Let us first look in more detail at John Pollock’s work. He formalised defeasible rules

for reasoning patterns involving perception, memory, induction, temporal persistence and
the statistical syllogism, as well as undercutters for these reasons.

In ASPIC+ his principles of perception and memory can be written as follows:

dp(x, ϕ): Sees(x, ϕ)⇒ ϕ
dm(x, ϕ): Recalls(x, ϕ)⇒ ϕ

In fact, these defeasible inference rules are schemes for all their ground instances (that is,
for any instance where x and ϕ are replaced by ground terms denoting a specific perceiv-
ing agent and a specific perceived state of affairs). Therefore, their names dp(x, ϕ) and
dm(x, ϕ) as assigned by the n function are in fact also schemes for names. A proper name
is obtained by instantiating these variables by the same ground terms as used to instan-
tiate these variables in the scheme. Thus it becomes possible to formulate undercutters
for one instance of the scheme (say for Jan who saw John in Amsterdam) while leaving
another instance unattacked (say for Bob who saw John in Holland Park). Note, finally,
that these schemes assume a naming convention for formulas in a first-order language,
since ϕ is a term in the antecedent while it is a well-formed formula in the consequent. In
the remainder we will leave this naming convention implicit.

Now undercutters for dp state circumstances in which perceptions are unreliable, while
undercutters of dm state conditions under which memories may be flawed. For exam-
ple, a well-known cause of false memories of events is that the memory is distorted by,
for instance, seeing pictures in the newspaper or watching a TV programme about the
remembered event. A general undercutter for distorted memories could be

um(x, ϕ): DistortedMemory(x, ϕ)⇒ ¬dm(x, ϕ)

combined with information such as

∀x, ϕ(SeesPicturesAbout(x, ϕ) ⊃ DistortedMemory(x, ϕ))

Pollock’s epistemic inference schemes are in fact a subspecies of argument schemes.
The notion of an argument scheme was developed in philosophy and is currently an im-
portant topic in the computational study of argumentation. Argument schemes are stereo-
typical non-deductive patterns of reasoning, consisting of a set of premises and a conclu-
sion that is presumed to follow from them. Uses of argument schemes are evaluated in
terms of critical questions specific to the scheme. An example of an epistemic argument
scheme is the scheme from the position to know (Walton 1996, pp. 61–63):

A is in the position to know whether P is true
A asserts that P is true
P is true

Walton gives this scheme three critical questions:
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1. Is A in the position to know whether P is true?
2. Did A assert that P is true?
3. Is A an honest (trustworty, reliable) source?

A natural way to formalise reasoning with argument schemes is to regard them as de-
feasible inference rules and to regard critical questions as pointers to counterarguments.
For example, in the scheme from the position to know questions (1) and (2) point to un-
derminers (of, respectively, the first and second premise) while questions (3) points to
undercutters (the exception that the person is for some reason not credible).

Accordingly, we formalise the position to know scheme and its undercutter as follows:

dw(x, ϕ): PositionToKnow(x, ϕ), Says(x, ϕ)⇒ ϕ
uw(x, ϕ): ¬Credible(x)⇒ ¬dw(x, ϕ)

We will now illustrate the modelling of both Pollock’s defeasible reasons and Walton’s ar-
gument schemes with our example from Section 2, focusing on a specific class of persons
who are in the position to know, namely, witnesses. In fact, witnesses always report about
what they observed in the past, so they will say something like “I remember that I saw
that John was in Holland Park”. Thus an appeal to a witness testimony involves the use of
three schemes: first the position to know scheme is used to infer that the witness indeed
remembers that he saw that John was in Holland Park, then the memory scheme is used to
infer that he indeed saw that John was in Holland Park, and finally, the perception scheme
is used to infer that John was indeed in Holland Park. Now recall that John was a suspect
in a robbery in Holland Park and that Jan testifed that he saw John in Amsterdam on the
same morning, while Jan is a friend of John. Suppose now we also receive information
that Bob read newspaper reports about the robbery in which a picture of John was shown.
One way to model this in ASPIC+ is as follows.

The knowledge base consists of the following facts (since we don’t want to dispute
them, we put them in Kn):

f1: PositionToKnow(Bob,Recalls(Bob, Sees(Bob, InHollandPark(John))))
f2: Says(Bob,Recalls(Bob, Sees(Bob, InHollandPark(John))))
f3: SeesPicturesAbout(Bob, Sees(Bob, InHollandPark(John)))
f4: ∀x, ϕ.(SeesPicturesAbout(x, ϕ) ⊃ DistortedMemory(x, ϕ))
f5: ∀x.InHollandPark(x) ⊃ InLondon(x)
f6: PositionToKnow(Jan,Recalls(Jan,Sees(Jan, InAmsterdam(John))))
f7: Says(Jan,Recalls(Jan, Sees(Jan, InAmsterdam(John))))
f8: Friends(Jan, John)
f9: SuspectedRobber(John)
f10: ∀x, y, ϕ.Friends(x, y) ∧ SuspectedRobber(y) ∧ InvolvedIn(y, ϕ) ⊃ ¬Credible(x)
f11: InvolvedIn(John,Recalls(Jan, Sees(Jan, InAmsterdam(John))))
f12: ∀x¬(InAmsterdam(x) ∧ InLondon(x))

Combining this with the schemes from perception, memory and position to know, we
obtain the following arguments (for reasons of space we don’t list separate lines for argu-
ments that just take an item from K).

A3: f1, f2 ⇒dw Recalls(Bob, Sees(Bob, InHollandPark(John)))
A4: A3 ⇒dm Sees(Bob, InHollandPark(John))
A5: A4 ⇒dp InHollandPark(John)
A7: A5, f5 → InLondon(John)

This argument is undercut (on A4) by the following argument applying the undercutter
for the memory scheme:
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B3: f3, f4 → DistortedMemory(Bob,Sees(Bob, InHollandPark(John)))
B4: B3 ⇒um ¬dm(Bob, Sees(Bob, InHollandPark(John)))

Moreover, A7 is rebutted (on A5) by the following argument:

C3: f6, f7 ⇒dw Recalls(Jan,Sees(Jan, InAmsterdam(John)))
C4: C3 ⇒dm Sees(Jan, InAmsterdam(John))
C5: C4 ⇒dp InAmsterdam(John)
C8: C5, f5, f12 → ¬InHollandPark(John)

This argument is also undercut, namely, on C3 based on the undercutter of the position to
know scheme:

D4: f8, f9, f10, f11 → ¬Credible(Jan)
D5: D4 ⇒uw ¬dw(Jan,Recalls(Jan, Sees(Jan, InAmsterdam(John))))

Finally, C8 is rebutted on C5 by the following continuation of argument A7:

A8: A5, f5, f12 ⇒ ¬InAmsterdam(John)

A8 is in turn undercut by B4 (on A4) and rebutted by C8 (on A5).
Because of the two undercutting arguments, neither of the testimony arguments are

credulously or sceptically justified in any semantics. Let us now see what happens if we
do not have the two undercutters. Then we must apply preferences to the rebutting attack
of C8 on A5 and to the rebutting attack of A8 on C5. As it turns out, exactly the same
preferences have to be applied in both cases, namely, those between the three defeasible-
rule applications in the respective arguments. And this is what we intuitively want.

Finally, we note that counterarguments based on critical questions of argument schemes
may themselves apply argument schemes. For example, we may believe that Jan and John
are friends because another witness told our so. Or we may believe that Holland Park is
in London because a London taxi driver told us so (an application of the so-called expert
testimony scheme).

4.4. Instantiations with no defeasible rules

All that has been said so far about ways to choose the strict rules applies irrespective of
whether you also want to include defeasible rules in your argumentation system. In fact,
ASPIC+ allows you to only use strict inference rules. Principled ways to do so are to base
the strict rules on classical logic or indeed on any Tarskian consequence relation. In this
way, ASPIC+ extends the classical-logic approach of Besnard and Hunter (2009) and the
abstract-logic approach of Amgoud and Besnard (2009), by providing guidelines for using
preferences to resolve inconsistencies in classical logic or any other underlying Tarksian
logic. The use of preferences is of particular importance in such contexts, since in these
contexts the stable and preferred extensions of Dung frameworks simply correspond to the
maximal consistent subsets of the instantiating theories (Amgoud and Besnard 2013). One
thus needs some ‘extra-logical’ means, such as preferences, to resolve inconsistencies.

The idea is as follows. Given a set S of wff in some language L and a Tarksian con-
sequence relation Cn over L (note that classical consequence is such a Tarskian conse-
quence relation), we let the axioms and defeasible inference rules be empty, and the strict
rules defined as indicated in Section 4.1.2, namely, as S → p ∈ Rs iff p ∈ Cn(S), for
any finite S ⊆ L. Furthermore, in keeping with the above mentioned classical, and more
general Tarskian Logic approaches, we put an extra constraint on ASPIC+ arguments,
namely, that their set of premises is indirectly consistent and, moreover, subset-minimal
in applying their conclusion
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For this special case all ASPIC+ arguments are strict, so all attacks are undermining
attacks. In Modgil and Prakken (2013) it was shown that these ASPIC+ reconstructions
of Tarskian and classical approaches are equivalent to the originals if these originals use
a form of undermining attack. Moreover, the result stated in Section 4.1.2 – that any
ASPIC+ AT with the strict rules derived from a Tarskian logic satisfies closure under
contraposition — then implies that without preferences these reconstructions are well-
defined and thus satisfy the rationality postulates1. Moreover, if these reconstructions are
extended with a reasonable argument ordering, then this result also holds for the case
with preferences. Thus the ASPIC+ framework has in fact been used to extend both the
classical-logical approach of Besnard and Hunter (2009) and the more general Tarskian
approach of Amgoud and Besnard (2009) with preferences in a way that satisfies all ratio-
nality postulates of Caminada and Amgoud (2007). A final result of Modgil and Prakken
(2013) is that if a thus defined classical-logic instantiation of ASPIC+is combined with a
total priority ordering ≤′, then one obtains a correspondence with Brewka (1989)’s Pre-
ferred Subtheories.

4.5. Illustrating uses of ASPIC+ with and without defeasible rules

In this section we compare respective uses of ASPIC+ with and without defeasible rules
in more detail. We first say more about the arguments of some that classical-logic simula-
tions of defeasible rules may yield counterintuitive results. Let us assume a classical-logic
instantiation of ASPIC+ as defined in Section 4.4 and formalise natural-language general-
isations ‘If P then normallyQ’ as material implications P ⊃ Q put inKp. The idea is that
since P ⊃ Q is an ordinary premise, its use as a premise can be undermined in exceptional
cases. Observe that by classical reasoning we then have a strict argument for ¬Q ⊃ ¬P .
Some say that this is problematic. Consider the following example: ‘Anyone who is a man
usually has no beard’, so (strictly) ‘Anyone who has a beard usually is not a man’. This
strikes some as counterintuitive, since we know that virtually everyone who has a beard
is a man, so the contraposition of ‘If P then normally Q’ cannot be deductively valid1.

A more refined classical approach is to give the material implication an extra normality
condition N , which informally reads as ‘everything is normal as regards P implying Q’,
and which is also put inKp. The idea then is that exceptional cases give rise to underminers
of N . However, (P ∧ N) ⊃ Q also deductively contraposes, namely, as (¬Q ∧ N) ⊃
¬P , so it seems that we still have the controversial deductive validity of contraposition
for generalisations (in the beard and men example the contraposition of the rule with
the added normality condition would read: ‘Anyone who has a beard and all is normal
regarding men and having beards, usually is not a man’ !).

So far we only discussed reasons for belief but argumentation is often about what to
do, prefer or value (what philosophers often call practical reasoning). Here too it has
been argued on philosophical grounds that reasons for doing, preferring or valuing cannot
be expressed in classical logic since they do not contrapose. This view can, of course,
not be based on a statistical semantics for such reasons, since statistics only applies to
reasoning about what is the case (what philosophers often call epistemic reasoning). Space
limitations prevent us from giving more details about these philosophical arguments.

1In fact, given that the ASPIC+arguments are restricted to those with consistent premises, satisfaction of the postulates
also requires that if for some set of premises S is minimally (under set inclusion) indirectly inconsistent (see Definition
3.4), then ∀φ ∈ S, S\{φ} ` ¬φ. Modgil and Prakken (2013) show that this property is also satisfied for Tarskian based
ASPIC+ ATs.
1One way to argue why classical simulations may give counter-intuitive results is to recall that a number of researchers
provide statistical semantics for defeasible inference rules. These semantics regard a defeasible rule of the form P ⇒ Q as
a qualitative approximation of the statement that the conditional probability of Q, given P , is high. The laws of probability
theory then tell us that this does not entail that the conditional probability of ¬P , given ¬Q, is high. The problem with the
classical-logic approach is then that it conflates this distinction by turning the conditional probability ofQ given P into the
unconditional probability of P ⊃ Q, which then has to be equal to the unconditional probability of ¬Q ⊃ ¬P .
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We next illustrate two different ways to use ASPIC+ with a detailed example. Both ways
use classical logic in their strict part and use explicit preferences, but only the second way
uses defeasible inference rules. The first way instead expresses defeasible generalisations
as material implications with normality assumptions. The example will shed further light
on the issue whether empirical generalisations can be represented in classical logic, and
it will also motivate the use of axiom premises. Our example is a well-known one from
the literature on nonmonotonic logic. Suppose a defeasible reasoner accepts all following
natural-language statements are true. For the generalisations (1) and (2) this means that
the reasoner accepts that they hold in general but that they may have exceptions.

(1) Birds normally fly
(2) Penguins normally don’t fly
(3) All penguins are birds
(4) Penguins are abnormal birds with respect to flying
(5) Tweety is a penguin

A defeasible reasoner then wants to know what can be concluded from this information
about whether Tweety can fly. It seems uncontroversial to say that any defeasible reasoner
will conclude that Tweety can fly.

We now formalise these statements with the just-explained method to represent empiri-
cal generalisations as material implications with explicit normality assumptions. We use a
classical-logic instantiation of ASPIC+ with preferences as defined above in Section 4.4.

(1) bird ∧ ¬ab1 ⊃ canfly
(2) penguin ∧ ¬ab2 ⊃ ¬canfly
(3) penguin ⊃ bird
(4) penguin ⊃ ab1

(5) penguin

Let us first add these formulas to Kp. The idea now is that the normality assumptions of
a defeasible reasoner are expressed as additional statements ¬ab1 and ¬ab2, also added
to Kp. We then define the preference ordering on Kp such that all of (1-5) are strictly
preferred over any of these two assumptions and that ¬ab1 <

′ ¬ab2.
We can then construct many arguments on the issue whether Tweety can fly. Note that
{1, 2, 3, 4, 5} ∪ {¬ab1,¬ab2} is minimally inconsistent, so if we take any single element
out, the rest can be used to build an argument against it. This means that we can formally
build arguments not just against the two normality assumptions but also against any of (1-
5) (note the similarity with the fact that, as noted above, in classical-logic argumentation
without preferences the stable and preferred extensions corespond to maximal consistent
subsets of the knowledge base). With the weakest- or last-link ordering we do obtain the
intuitive conclusion ¬canfly , but the fact that arguments against any of (1-5) can be built
may be regarded as somewhat odd, since we just noted that a defeasible reasoner accepts
(1-5) as given and is only interested in what follows from them.

Let us therefore move (1-5) to the axioms Kn, so that they cannot be attacked.
Then we have just a few arguments on the issue whether Tweety can fly: we have
an argument {1, 2, 3, 4, 5} ∪ {¬ab2} → ¬canfly , which has one attacker, namely,
{1, 2, 3, 5} ∪ {¬ab1} → ab2. However, with the weakest- or last link principle this at-
tacker does not defeat it target, since we have ¬ab1 <

′ ¬ab2. Hence ¬canfly is justified
in any semantics. So at first sight it would seem that the classical-logic approach enriched
with axiom premises adequately models reasoning with empirical generalisations.

However, this approach still has some things to explain, as can be illustrated by chang-
ing our example a little: above it was given as a matter of fact that Tweety is a penguin but
in reality the particular ‘facts’ of a problem are not simply given but derived from infor-
mation sources (sensors, testimonies, databases, the internet, and so on). Now in reality
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none of these sources is fully reliable so inferring facts from them can only be done under
the assumption that things are normal. So let us change the example by saying that Tweety
was observed to be a penguin and that animals that are observed to be penguins normally
are penguins. We change 5 to 5′ and we add 6 to Kn:

(5’) observed as penguin
(6) observed as penguin ∧ ¬ab3 ⊃ penguin

Moreover, we add ¬ab3 to Kp. We can still build an argument that Tweety cannot fly,
namely, {1, 2, 3, 4, 5′} ∪ {¬ab2,¬ab3} → ¬canfly . However, we can also build an at-
tacker of this argument, namely {1, 2, 3, 4, 5′, 6}∪{¬ab1,¬ab2} → ab3. We can still ob-
tain the intuitive outcome by preferring the assumption ¬ab3 over the assumption ¬ab1 .
However, some have argued that this is an ad-hoc solution, since there would be no gen-
eral principle on which such a preference can be based. The heart of the problem, they
say, is the fact that the material implication satisfies contraposition, a property which, as
we just mentioned, can be argued to be too strong for defeasible generalisations. In reality
a defeasible reasoner would not even construct an argument against penguin . As can be
easily checked, the same issues arise if we put (1-4,5’,6) inKp while we then have our old
issue back that arguments can be constructed against any element of Kp.

Concluding so far, those who want to want to model ‘default reasoning’ in classical
argumentation have to explain why arguments as the one for ab3 can be constructed and
why it does not defeat the argument for¬canfly (or alternatively, why the latter conclusion
is not justified). Moreover, if they apply the first version of this approach, by putting all of
{1, 2, 3, 4, 5′, 6} in Kp, then they also have to explain why arguments against any of these
premises can be constructed and whether these arguments succeed as defeats.

Let us next formalise the example with domain-specific defeasible rules and with the
strict rules still corresponding to classical logic.

d1: bird ⇒ canfly
d2: penguin ⇒ ¬canfly
d3: observed as penguin ⇒ ¬penguin
f1: penguin ⊃ bird
f2: penguin ⊃ ¬r1
f3: observed as penguin

It now does not matter whether we put the facts in Kn or Kp, nor does it matter which
priorities we define on Kp orRd. We have the following arguments:

A1: observed as penguin B1: A2 ⇒ ¬canfly
A2: A1 ⇒ penguin
A3: penguin ⊃ bird
A4: A2, A3 ⇒ canfly C1: A2 ⇒ ¬r1

Note also that no argument can be built against the conclusion penguin . We have that A4

andB1 rebut each other while C1 undercutsA4. Whatever the argument ordering between
A4 and B1, we thus obtain that the conclusion ¬canfly is justified in any semantics.

Concluding, the classical modelling of this example is simpler in that it only uses classi-
cal inference and does not have to rely on the notion of a defeasible inference rule. On the
other hand, to obtain the intuitive outcome it needs more preferences than the modelling
with defeasible rules, while the issue arises on which grounds these preferences can be
stated. Moreover, if the classical approach regards all knowledge as fallible in principle,
then it generates many more arguments than perhaps intuitively expected, at least many
more than in the modelling with defeasible rules.
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4.6. Representing facts

ASPIC+ allows you to represent facts in various ways, each with their pros and cons. Dis-
putable facts ϕ can either be put as such in Kp or as defeasible rules ⇒ ϕ with empty
antecedents. An advantage of including disputable facts in Kp is that thus ASPIC+ cap-
tures classical and abstract-logic argumentation with preferences as special cases. On the
other hand, if disputable facts ϕ are represented as defeasible rules ⇒ ϕ, then the defi-
nition of the weakest- and last-link argument orderings becomes simpler, since then only
sets of defeasible rules need to be compared. In addition, this choice removes the need for
undermining attack, which simplifies the definitions of attack and defeat.

Undisputable facts ϕ can either be put as such in Kn or as strict rules→ ϕ with empty
antecedents. This choice does not make a difference for the weakest- or last-link argument
ordering, since these orderings disregard axiom premises and strict rules. However, a dis-
advantage of representing undisputable fact ϕ as strict rules → ϕ is that then the strict
rules do not express a logic any more, so the above-mentioned theorems on definitions of
Rs in terms of Tarskian abstract logics do not apply any more.

4.7. Summary

We have seen that ASPIC+ allows you to make any choice of axioms, strict and defea-
sible rules you like. You can choose domain-specific strict and/or defeasible inference
rules, and you can choose logical strict and/or defeasible inference rules, for any deduc-
tive and/or nonmonotonic logic of your choice, good or bad. You can add logical axioms
to Kn but you can also add other information to Kn that you don’t want to put up for
discussion, including even contingent facts. You can also base your defeasible rules on
informal accounts of argument schemes. All that ASPIC+ tells you is how arguments can
be built with your rules of choice, how they can be attacked, and how these attacks can be
resolved, given an argument ordering of your choice. Moreover, we have some theorems
about ASPIC+ that inform you about some properties of your choices.

5. Generalising negation in ASPIC+

The notion of an argumentation system in Section 3.2, assumed a language L closed un-
der negation (¬), where the standard classical interpretation of ¬ licenses a symmetric
notion of conflict based attack, so that an argument consisting of an ordinary premise φ
or with a defeasible top rule concluding φ, symmetrically attacks an argument consist-
ing of an ordinary premise ¬φ or with a defeasible top rule concluding ¬φ. However,
the ASPIC+framework as presented in Modgil and Prakken (2013), Prakken (2010), ac-
commodates a more general notion of conflict, by defining an argumentation system to
additionally include a function − that, for any wff ψ ∈ L, specifies the set of wff’s that
are in conflict with ψ. With this idea, which is taken from assumption-based argumenta-
tion (Bondarenko et al. 1997, Dung et al. 2009), one can define both an asymmetric and
symmetric notion of conflict-based attack. More formally:

Definition 5.1: − is a function from L to 2L, such that:
• ϕ is a contrary of ψ if ϕ ∈ ψ, ψ 6∈ ϕ ;
• ϕ is a contradictory of ψ (denoted by ‘ϕ = −ψ’), if ϕ ∈ ψ, ψ ∈ ϕ ;
• each ϕ ∈ L has at least one contradictory.

Note that classical negation is now a special case of the symmetric contradictory rela-
tion: α ∈ β iff α is of the form ¬β or β is of the form ¬α (i.e., for any wff α, α and ¬α
are contradictories). Modgil and Prakken (2013) then redefine Definition 3.4’s notion of
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direct consistency so that a set S is directly consistent iff @ ψ, ϕ ∈ S such that ψ ∈ ϕ.
Also, Conc(A) ∈ ϕ (Conc(A) ∈ n(r)) replaces Conc(A) = −ϕ (Conc(A) = −n(r)) in
Definition 3.10’s definition of attacks.

With this, one can reconstruct assumption-based argumentation (ABA) in ASPIC+,
since as noted above, ABA also generalises the notion of conflict through the use of a
− function. Indeed, this reconstruction is formally shown in Prakken (2010), in which as-
sumption premises were distinguished from ordinary premises, and used to model ABA
assumptions. However, one can do without such specialised premises, and model assump-
tions as ordinary premises. So, to summarise, an ASPIC+reconstruction of ABA will have
empty sets of defeasible rules and axiom premises, and consist of ordinary premises and
strict rules (respectively corresponding to the assumptions and rules in an ABA theory).
Then, for every ordinary premise α, one specifies that:

(1) there is a β in L such that β is a contrary or contradictory of α
(2) α is not the conclusion of a strict inference rule (corresponding to so called ‘flat’

ABA theories)

Then, without the use of preference relation, a correspondence can be shown between
ABA and ASPIC+. Note that by reconstructing ABA in ASPIC+, one can then iden-
tify conditions under which ABA satisfies rationality postulates (by requiring, for in-
stance, that the strict rules are closed under transposition). For example, consider the AS-
PIC+reconstruction of an ABA theory consisting of strict rules a → p and b → ¬p, and
ordinary premises (assumptions) {a, b} such that a and ¬a are contradictories, and b and
¬b are contradictories. Consistency is violated since one can construct a single preferred
(and grounded) extension containing arguments A = [a; a → p] and B = [b; b → ¬p],
neither of which attack each other. However with the additional transpositions p → ¬b
and ¬p → ¬a, then extending A and B yields A′ = [a; a → p; p → ¬b] and B′ =
[b; b → ¬p;¬p → ¬a]. A′ and B′ respectively attack B and A. So the set of arguments
{A,B} is no longer admissible (neither A or B can defend against these attacks).

The rationale for these more general notions of conflict and attack is two-fold. Firstly,
one can for pragmatic reasons state that two formulae are in conflict, rather than requiring
that one implies the negation of another; for example, assuming a predicate language with
the binary ‘<’ relation, one can state that any two formulae of the form α < β and β < α
are contradictories. Secondly, the − function allows for an asymmetric notion of negation.
This in turn is required for modelling negation as failure (as in logic programming). Using
the negation as failure symbol ∼ (also called ‘weak’ negation, in contrast to the ‘strong’
negation symbol ¬), then ∼ α denotes the negation of α under the assumption that α is
not provable (i.e., the negation of α is assumed in the absence of evidence to the contrary).
It is not then meaningful to assert that such an assumption brings into question (and so
initiates an attack on) the evidence whose very absence is required to make the assumption
in the first place. In other words, if A is an argument consisting of the premise ∼ α, and
B concludes α (the contrary of ∼ α), then B attacks A, but not vice versa. Furthermore,
since the very construction of A is invalidated by evidence to the contrary, i.e., B, then
such attacks succeed as defeats independently of preferences.

To accommodate the notion of contrary, and attacks on contraries succeeding as defeats
independently of preferences, we further modify Definition 3.10 to distinguish the special
cases where Conc(A) is a contrary of ϕ, in which case we say that A contrary rebuts B
and A contrary undermines B, and then modify Definition 3.12 so that:

• A successfully rebuts B if A contrary rebuts B, or A rebuts B on B′ and A ⊀ B′.
• A successfully undermines B if A contrary undermines B, or A undermines B on φ

and A ⊀ φ.

Following on from the discussion in Section 4.2, one can then show (Modgil and
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Prakken 2013) that with the additional notion of contrary, satisfaction of the four rational-
ity postulates not only requires that the argument theory satisfy axiom consistency, and
transposition or contraposition, but also that it is well formed in the sense that whenever
φ is a contrary of ψ then ψ is not an axiom premise or the consequent of a strict rule.

To illustrate the use of negation as failure, suppose you want your arguments to be
built from a propositional language that includes both ¬ and ∼. One could then define
L as a language of propositional literals, composed from a set of propositional atoms
{a, b, c, . . . } and the symbols ¬ and ∼. Then:

• α is a strong literal if α is a propositional atom or of the form ¬β where β is a propo-
sitional atom (strong negation cannot be nested).

• α is a wff of L, if α is a strong literal or of the form ∼ β where β is a strong literal
(weak negation cannot be nested).

Then α ∈ β iff (1) α is of the form ¬β or β is of the form ¬α; or (2) β is of the form
∼ α (i.e., for any wff α, α and ¬α are contradictories and α is a contrary of∼ α). Finally,
for any∼ α that is in the antecedent of a strict or defeasible inference rule, one is required
to include ∼ α in the ordinary premises.

Consider now Example 3.7, where we now have that u ∈ ∼ u, and we replace the rule
d4 : u⇒ v with d′4:∼ u⇒ v, and add∼ u to the ordinary premises:Kp = {∼ u, s, u, x}.
Then, the arguments C3 and D4 are now replaced by arguments C ′3 and D′4 each of which
contain the sub-argument E : ∼ u (instead of C1 : u). Then C1 : u contrary undermines,
and so defeats, C ′3 and D′4 on ∼ u.

6. Conclusion

6.1. Relationship to other approaches

We now sketch the relation of ASPIC+ with the other approaches presented in this special
issue. ASPIC+ is based on two ideas: that conflicts between arguments are sometimes re-
solved with explicit preferences, and that arguments are built with two kinds of inference
rules: strict, or deductive rules, which logically entail their conclusion, and defeasible
rules, which only create a presumption in favour of their conclusion. The second idea
implies that ASPIC+ does not primarily see argumentation as inconsistency handling in a
given ‘base’ logic: conflicts between arguments may not only arise from the inconsistency
of a knowledge base but also from the defeasibility of the reasoning steps in an argument.
ASPIC+ has these features in common with DeLP (Garcia and Simari 2004) but a main
difference with DeLP is that the latter is not meant to generate Dung-style abstract argu-
mentation frameworks. Another difference is that DeLP is more computationally oriented
and therefore has restricted expressiveness, while ASPIC+ is foremost meant as a theoret-
ical framework and therefore has very few restrictions on expressiveness.

The two remaining approaches discussed in this issue, namely, assumption-based ar-
gumentation (ABA) (Bondarenko et al. 1997, Dung et al. 2009) and classical argumenta-
tion (CA) (Besnard and Hunter 2009) can be formalised within the ASPIC+ framework
(where in the latter case, ASPIC+ additionally accommodates the use of preferences).
However, the focus on explicit preferences and defeasible rules is what sets ASPIC+ apart
from these approaches. As stated by Toni in her chapter in this volume, the philosophy
behind ABA is to translate preferences and defeasible rules into ABA rules plus ABA
assumptions, so that rebutting and undercutting attack and the application of preferences
all reduce to premise attack. The idea of this is to keep the formal theory simpler and to
make the technical machinery of ABA available for other approaches. We agree that this
approach has its merits but note that it is an open question whether ASPIC+ can in its full
generality be translated into ABA. Also, as we noted above, we claim that there is also
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some merit in having a theory with explicit notions of rebutting and undercutting attack
and preference application, namely, if the aim is to formalise modes of reasoning in a way
that corresponds with human modes of reasoning and debate.

Besnard & Hunter also present a simple rule-based argumentation system, which is
very similar to an instantiation of ASPIC+ with only propositional literals in its language,
only axiom premises, only defeasible inference rules, no undercutters and no preferences.
However, this system differs from ASPIC+ in its notions of argument and attack, for which
reason the results on how ASPIC+ satisfies the rationality postulates are not inherited by
the simple system.

We also note that both Toni’s and Besnard & Hunter’s use of the terms ‘deductive’ and
‘defeasible’ argumentation differs from ours. Toni calls an inference rule defeasible if it is
applied to an assumption. Thus she would, for example, call the inference rules of classi-
cal logic defeasible when they are applied to assumptions, while we would still call them
deductive. Besnard & Hunter define any form of argumentation as deductive in which the
premises “entail” the conclusion according to some monotonic “base logic”. Since they
assume no constraints on what such a base logic is, in fact any form of structured argu-
mentation fits their definition of a base logic, since the idea of argumentation is that the
construction of arguments is monotonic and that the nonmonotonicity arises from the in-
teraction of conflicting arguments. In consequence, they would call ASPIC+’s defeasible
arguments deductive since ASPIC+’s definition of an argument fits their definition of a
base logic. By contrast, we call an argument deductive only if it cannot be attacked on its
inferences or conclusion. For example, while Besnard & Hunter call their ‘simple system’
a system for deductive argumentation, we say it is for defeasible argumentation, since it
allows inferences to be attacked on their conclusions.

6.2. Further reading

ASPIC+ has been further studied and applied in a number of works. Wu (2012) has stud-
ied how ASPIC+ can be modified to satisfy several additional rationality postulates pro-
posed by Caminada et al. (2012). van Gijzel and Prakken (2012) have reconstructed the
Carneades system of Gordon et al. (2007) in ASPIC+. Bex et al. (2013) have used AS-
PIC+ to give a logical account of the Argument Interchange Format (AIF). Moreover,
ASPIC+ has been applied to legal reasoning (Prakken 2012, Prakken et al. 2013), to deci-
sion making (van der Weide 2011), to policy debates (Bench-Capon et al. 2011, Prakken
2012) and to IT security risk assessment (Prakken et al. 2013). Finally, two implemen-
tations are available online of instantiations of ASPIC+ with domain-specific inference
rules and with rule priorities: Mark Snaith’s TOAST (http://www.arg.dundee.ac.uk/toast/)
and Wietske Visser’s EPR (http://www.wietskevisser.nl/research/epr/).

6.3. Final remarks

In this paper we have given a tutorial introduction to the ASPIC+ framework for structured
argumentation. ASPIC+ is not a system but a framework for specifying systems. A main
objective is to identify conditions under which instantiations of ASPIC+ satisfy logical
consistency and closure properties. We first discussed ASPIC+’s philosophical underpin-
nings. We then illustrated the main definitions with examples and we presented some more
and less principled ways to instantiate the framework. We also briefly discussed how AS-
PIC+ captures several other approaches as special cases. As we saw above, the ASPIC+

framework can be instantiated in many different ways. We have already discussed some
of these ways and their properties. We hope that in due course more ‘best practices’ in
using ASPIC+ will emerge.
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