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Abstract

We describe a monotone classification algorithm called
MOCA that attempts to minimize the mean absolute predic-
tion error for classification problems with ordered class la-
bels. We first find a monotone classifier with minimum L1

loss on the training sample, and then use a simple interpo-
lation scheme to predict the class labels for attribute vectors
not present in the training data. We compare MOCA to the
Ordinal Stochastic Dominance Learner (OSDL), on artifi-
cial as well as real data sets. We show that MOCA often
outperforms OSDL with respect to mean absolute prediction
error.

1 Introduction

Monotonicity constraints occur frequently in data min-
ing problems and such constraints can be elicited from sub-
ject area experts with relative ease and reliability. This has
motivated the development of data mining algorithms that
are able to enforce such constraints in a justified manner.

In this paper we present MOCA, an algorithm for non-
parametric monotone classification in problems with or-
dered class labels. The algorithm consists of two basic com-
ponents. First, a monotone classifier is built that minimizes
L1 loss on the training data. This classifier is only defined
on the observed input vectors. To extend it to the complete
input space, a straightforward interpolation scheme is used
that is guaranteed to preserve the monotonicity property.
To determine the class allocation for a given input vector,
MOCA estimates the class distribution for that input vector,
and then assigns it to the (smallest) median class. Estima-
tion of the class probability distribution is performed in such
a way that allocation to the median satisfies the monotonic-
ity property.

The paper is organized as follows. In the next section,
we establish some notation and definitions that are used
throughout the paper. In section 3 we discuss isotonic re-
gression, a technique that is essential to MOCA. In sec-
tion 4 we discuss how MOCA estimates the class probability

distributions, and the MOCA allocation rule. We show that
the allocation rule minimizes L1 loss on the training data.
Furthermore, we show how new data points are predicted
with a straightforward interpolation scheme. In section 5
we discuss related work, in particular OSDL, a system that
is intended for similar problems as MOCA. After that, we
illustrate MOCA and OSDL through a small example in sec-
tion 6. In section 7 we perform an experimental comparison
of OSDL and MOCA on both artificial and real data sets. Fi-
nally, we draw conclusions in section 8.

2 Preliminaries

Let X denote the vector of predictors (attributes), which
takes values x in a p-dimensional input space X = ×Xi,
and let Y denote the class variable which takes values y in
a one-dimensional space Y = {1, 2, . . . , k}, where k is the
number of class labels. Let D = {(xi, yi)}N

i=1 denote the
set of observed data points in X × Y , and let Z denote the
set of distinct x values occurring in D.

We assume the existence of a partial order on X and a
total order on Y . Typically, the partial order on X is the
product order induced by total orders on Xi, that is

x ≤ x′ ⇔ xi ≤ x′i ∀i = 1, . . . , p. (1)

The objective is to learn from data an allocation rule
c : X → Y such that ∀x,x′ ∈ X :

x ≤ x′ ⇒ c(x) ≤ c(x′), (2)

that is, a lower ordered input is not allowed to have a higher
class label. In case of the product order defined in (1) this
constraint expresses the knowledge that each attribute has a
positive influence on the class label.

It is customary to evaluate a classifier on the basis of
its error-rate or 0/1 loss. For classification problems with
ordered class labels this choice is less obvious. It makes
sense to incur a higher cost for those misclassifications that
are “far” from the true label, than to those that are “close”.
One loss function that has this property is L1 loss:

L(i, j) = |i− j| i, j = 1, . . . , k (3)



where i is the true label, and j the predicted label. We note
that this is certainly not the only possible choice. One could
also choose L2 loss for example, or another loss function
that has the desired property that misclassifications that are
far from the true label incur a higher loss. Nevertheless, L1

loss is a reasonable candidate, and in this paper we confine
our attention to this loss function.

3 The isotonic regression

In this section we give a short description of the isotonic
regression. In the next section we discuss its application to
monotone classification in MOCA.

Let Z = {z1, z2, . . . , zn} be a nonempty finite set of
constants and let≤ be a partial order on Z. Any real-valued
function f on Z is isotonic with respect to ≤ if, for any
z, z′ ∈ Z, z ≤ z′ implies f(z) ≤ f(z′). We assume that
each element zi of Z is associated with a real number g(zi);
these real numbers typically are estimates of the function
values of an unknown isotonic function on Z. Furthermore,
each element of Z has associated a positive weight w(zi)
that typically indicates the precision of this estimate. An
isotonic function g∗ on Z now is an isotonic regression of g
with respect to the weight function w and the partial order
≤ if and only if it minimizes the sum

n∑
i=1

w(zi) [f(zi)− g(zi)]2 (4)

in the class of isotonic functions f on Z. Brunk [4] proved
the existence of a unique g∗.

Any real-valued function f on Z is antitonic with respect
to≤ if, for any z, z′ ∈ Z, z ≤ z′ implies f(z) ≥ f(z′). The
antitonic regression of g is defined completely analogous to
the isotonic regression as the function that minimizes (4)
within the class of antitonic functions. The isotonic regres-
sion with respect to a partial order, is equivalent to the anti-
tonic regression with respect to the inverse order.

The best time complexity known for an exact solution to
the isotonic regression problem for arbitrary partial order is
O(n4) [11]. It is based on a divide-and-conquer strategy
that involves solving at most n maximal flow problems.

A subset L of Z is a lower set of Z with respect to ≤,
if z ∈ L, z′ ∈ Z, and z′ ≤ z imply z′ ∈ L. Hence, if a
lower set contains a particular element, it is required to also
contain all lower ordered elements. Likewise, a subset U of
Z is an upper set of Z if z ∈ U , z′ ∈ Z, and z ≤ z′ imply
z′ ∈ U . The weighted average of g, with weights w, for a
nonempty subset A of Z is defined as

Av(A, g) =
∑

z∈A w(z)g(z)∑
z∈A w(z)

(5)

A maximal partition of Z = {z1, z2, . . . , zn} with re-
spect to the isotonic regression is a partition B1, . . . , Bm of
nonempty sets such that

1. g∗(zj) = Av(Bi, g) ∀zj ∈ Bi

2. Each Bi can be written as the intersection of an upper
and lower set, and

3. m is as large as possible.

The maximal partition can be computed by choosing each
new lower set to have minimal cardinality in the Minimum
Lower Sets algorithm [6]. Finally, we define the downset of
z0 with respect to Z to be the set {z ∈ Z : z ≤ z0}. The
upset of z0 is defined analogously.

4 MOCA

In this section, we describe a new nonparametric clas-
sification algorithm called MOCA. The objective of MOCA
is to produce a classifier that satisfies (2), and subject to
this constraint minimizes the mean absolute prediction er-
ror. MOCA can be regarded as a probabilistic classifier, in
the sense that for each input vector observed in the train-
ing sample, it estimates the class distribution. Estimates of
class distributions for other input vectors are obtained by in-
terpolation. The MOCA estimates of the class distributions
satisfy the stochastic order constraint:

x ≤ x′ ⇒ F̃i(x) ≥ F̃i(x′) i = 1, . . . , k (6)

where F̃ (x) denotes the MOCA estimate of the cumulative
class probability distribution for input vector x.

To get an outright class assignment, we take the smallest
median of F̃ (x). Since F̃ (x) satisfies the stochastic order
constraint (6), allocation to the median is guaranteed to sat-
isfy the monotonicity property stated in (2). We show that
the given allocation rule minimizes L1 loss on the training
sample subject to the monotonicity requirement. Although
this result is not immediately obvious, it does seem plausi-
ble, since the median is known to minimize L1 loss.

After this general description, we proceed with the tech-
nical details. Recall that Z is the set of distinct x values
present in the training sample D. Let

P̂j(x) =
n(x, j)
n(x)

, x ∈ Z

where n(x) denotes the number of observations in D with
attribute values x, and n(x, j) denotes the number of ob-
servations in D with attribute values x and class label j.
Furthermore, let

F̂i(x) =
∑
j≤i

P̂j(x), x ∈ Z



denote the unconstrained maximum likelihood estimate of

Fi(x) = P (y ≤ i|x),x ∈ Z.

Definition 1 (MOCA estimator) The MOCA estimator

F ∗
i (x), i = 1, 2, . . . , k; x ∈ Z

of Fi(x) is given by the antitonic regression of g(x) =
F̂i(x) with weights w(x) = n(x), for each value i =
1, 2, . . . , k.

Note that this estimator satisfies the stochastic order con-
straint ∀x,x′ ∈ Z:

x ≤ x′ ⇒ F ∗
i (x) ≥ F ∗

i (x′) i = 1, . . . , k (7)

by construction. It is therefore not surprising that it has been
used for estimation under a stochastic order constraints in
the past. It was proposed for linear orders already by Hogg
[9], and later analyzed by El Barmi and Mukerjee [7]. It was
used by Feelders [8] for parameter estimation in Bayesian
networks under a stochastic order constraint.

Now the isotonic regression is only defined on the ob-
served data points, that is, only for x ∈ Z. Typically our
training sample does not cover the entire input space, i.e.
Z ⊂ X , so we need some way to estimate Fi(x0) for points
x0 not in the training sample. Of course these estimates
should satisfy the stochastic order constraint with respect to
F ∗(x). Hence, we can derive the following bounds:

Fmin
i (x0) = max

x0≤x
F ∗

i (x) i = 1, . . . , k (8)

and

Fmax
i (x0) = min

x≤x0
F ∗

i (x) i = 1, . . . , k (9)

If there is no point x in Z such that x ≤ x0, then we put
Fmin

i (x0) = 1 (i = 1, . . . , k), and if there is no point x in
Z such that x0 ≤ x, then we put Fmax

i (x0) = 0
(i = 1, . . . , k − 1), and Fmax

k (x0) = 1.
Because F ∗

i is antitonic we always have Fmin
i ≤ Fmax

i .
Any choice from the interval [Fmin

i , Fmax
i ] satisfies the

stochastic order constraint with respect to the training data.
A simple interpolation scheme that is guaranteed to pro-

duce globally consistent estimates is to take the convex
combination

F̃i(x0) = αFmin
i (x0) + (1− α)Fmax

i (x0),

with α ∈ [0, 1]. Note that for x0 ∈ Z, we have F̃i(x0) =
F ∗

i (x0), since both Fmin
i (x0) and Fmax

i (x0) are equal to
F ∗

i (x0). The value of α can be chosen so as to minimize
empirical loss on a test sample.

Since MOCA should produce a class prediction, we still
have to specify an allocation rule. MOCA allocates x to the
smallest median of F̃ (x):

cMOCA(x) = min
i

: F̃i(x) ≥ 0.5

First of all, note that since F̃i satisfies the stochastic order
constraint (6), cMOCA will satisfy the monotonicity constraint
given in (2). Furthermore, it can be shown that cMOCA mini-
mizes L1 loss

N∑
i=1

|yi − c(xi)|

within the class of monotone integer-valued functions c(·).
In other words, of all monotone classifiers, cMOCA is among
the ones (there may be more than one) that minimize L1

loss on the training sample. We prove this as follows: Dyk-
stra et al. [6] describe a method for minimizing L1 loss
that they prove correct. We show that cMOCA satisfies all the
requirements of their method.

In [6] Dykstra et al. compute the isotonic regression
p∗i (x) of pi(x) = 1− F̂i(x), with weights w(x) = n(x). It
is not difficult to show that

p∗i (x) = 1− F ∗
i (x) i = 1, . . . , k − 1 (10)

Next, Dykstra et al. [6] show that an allocation rule c(x)
minimizes L1 loss on the training sample if it satisfies three
properties. Using (10) we can write these properties as:

1. If F ∗
i (x) > 1

2 then c(x) ≤ i, for i = 1, . . . , k − 1.

2. If F ∗
i (x) < 1

2 then c(x) > i, for i = 1, . . . , k − 1.

3. c(x) is constant (either i or i + 1) on every element of
the maximal partition that is a subset of {x : F ∗

i (x) =
1
2}, for i = 1, . . . , k − 1.

We show that cMOCA(x) has the desired properties.

1. It follows from the definition of cMOCA that if F ∗
i (x) > 1

2
then cMOCA(x) ≤ i.

2. Likewise, it follows from the definition of cMOCA that if
F ∗

i (x) < 1
2 then cMOCA(x) > i.

3. cMOCA(x) = i on {x : F ∗
i (x) = 1

2}, for i = 1, . . . , k−1.

The first two conditions are straightforward, but the third
one is a bit more involved; therefore we illustrate it
with an example. Suppose we have a data set D =
{(1, 1, 3), (1, 2, 1), (2, 1, 1), (2, 1, 3)}, where each tuple has
the form (x1, x2, y). Table 1 contains these 4 observations
on 3 distinct input vectors, together with the ML and MOCA
estimates of Fi(x). Note that F̂ violates the order con-
straints, and the antitonic regression removes this violation
by averaging F̂i(x) over the cells (1, 1) and (1, 2), for i = 1



y F̂ F ∗

(x1, x2) 1 2 3 1 2 1 2
(1, 1) 0 0 1 0 0 1/2 1/2
(1, 2) 1 0 0 1 1 1/2 1/2
(2, 1) 1 0 1 1/2 1/2 1/2 1/2

Table 1. Data (left), maximum likelihood (mid-
dle) and MOCA estimates (right) for example.

as well as i = 2. This results in F ∗ as given in the rightmost
part of the table. Note also that the maximal partition is
given by B1 = {(2, 1)} and B2 = {(1, 1), (1, 2)}, both for
i = 1 and i = 2. The set of medians of F ∗ for all three in-
put vectors is {1, 2, 3}. The third condition of Dykstra et al.
states that one can assign any of these three values (as long
as the assignment satisfies the monotonicity constraint), but
one should assign the same labels to the elements (1, 1) and
(1, 2) of B2, because they were averaged in computing F ∗.
The reader can easily verify that assigning different labels
to them leads to suboptimal L1 error. We can assign any
label to (2, 1) however, as long as it is consistent with the
label we assigned to the other two input vectors. For exam-
ple, if we put c(1, 1) = c(1, 2) = 2, then we can still assign
either 2 or 3 to (2, 1): both give the minimum possible L1

error. Now MOCA will assign the label 1 to all three input
vectors, and hence it is constant on a larger set of input vec-
tors than required. This does not harm the optimality of the
assignment however.

5 Related work

The proposed algorithm is closely related to the ordi-
nal stochastic dominance learner (OSDL) developed by Cao-
Van [5] and generalized by Lievens et al. in [10]. We give
a short description of OSDL to point out the similarities and
differences with MOCA.

To obtain a collection of distribution functions that sat-
isfy the stochastic order requirement, Cao-Van [5] defines:

Fmin
i (x0) = min

x≤x0
F̂i(x) (11)

and
Fmax

i (x0) = max
x0≤x

F̂i(x), (12)

where x ∈ Z. Note that ∀x,x′ ∈ X :

x ≤ x′ ⇒ Fmin
i (x) ≥ Fmin

i (x′) (13)
x ≤ x′ ⇒ Fmax

i (x) ≥ Fmax
i (x′). (14)

Proposition (13) holds, since the downset of x is a subset of
the downset of x′, and the minimum taken over a given set

is never above the minimum taken over one of its subsets.
Proposition (14) follows similarly.

The final estimates are obtained by putting

F̃i(x) = αFmin
i (x0) + (1− α)Fmax

i (x0), (15)

with α ∈ [0, 1].
This rule is used both for observed data points, as well as

for new data points. Like with MOCA, α is a free parameter
whose value can be selected so as to minimize empirical
loss on a test sample. Note that F̃ satisfies the stochastic
order constraint, because both (13) and (14) hold.

The reader will have noticed the similarity between
MOCA and OSDL: MOCA uses the same interpolation
method, and the MOCA definitions of Fmin and Fmax are
the reverse of the corresponding definitions for OSDL. The
important difference is that OSDL plugs in the maximum
likelihood estimates F̂ in equations (11) and (12), whereas
MOCA plugs in the isotonic regression estimates F ∗ in equa-
tions (8) and (9). The most important consequence of this
difference is that MOCA is guaranteed to minimize L1 loss
on the training sample, whereas this is not the case for
OSDL. Another difference is the choice of allocation rule.
Originally Cao-Van [5] assigned x to the expected value of
F̃ (x), rounded to the nearest integer. In [10] the allocation
rule is changed to a median of F̃ (x), but the choice of me-
dian is left unspecified, provided that it is chosen in such a
way that the monotonicity constraint is satisfied.

6 Example

In this section we present a small example to illustrate
both MOCA and OSDL. Suppose we have a problem with
two input attributes X1 and X2, and a class label Y , all of
them taking their values from the set {1, 2, 3}. Hence we
have

X = {1, 2, 3} × {1, 2, 3} and Y = {1, 2, 3}.

The observed data and the maximum likelihood estimates
F̂ are given in table 2. Note that

Z = {(1, 1), (1, 2), (2, 1), (1, 3), (3, 2)}

in this example.
The data point (3, 2) with class label 1 “spoils” the

monotonicity of F̂ . In table 3 we give the MOCA and OSDL
estimates of F on the observed attribute vectors, together
with their median values. For OSDL we used α = 1

2 ; for
MOCA the value of α is immaterial since the estimate will
always be equal to F ∗ on the observed attribute vectors.
MOCA resolves the violation by taking the weighted aver-
age of F̂1(2, 1) and F̂1(3, 2) and assigning this value to both
cells

F ∗
1 (2, 1) = F ∗

1 (3, 2) =
3× 0 + 1× 1

3 + 1
=

1
4



y F̂
(x1, x2) 1 2 3 n 1 2

1 (1, 1) 2 0 0 2 1 1
2 (1, 2) 1 2 0 3 1/3 1
3 (2, 1) 0 2 1 3 0 2/3
4 (1, 3) 0 0 1 1 0 0
5 (3, 2) 1 0 0 1 1 1

Table 2. Data and ML estimates for example.

MOCA OSDL

(x1, x2) 1 2 Med. 1 2 Med.
(1, 1) 1 1 1 1 1 1
(1, 2) 1/3 1 2 2/3 1 1
(2, 1) 1/4 3/4 2 1/2 5/6 {1,2}
(1, 3) 0 0 3 0 0 3
(3, 2) 1/4 3/4 2 1/2 5/6 {1,2}

Table 3. MOCA and OSDL estimates, and the
corresponding medians.

The order violation in F̂2 is dealt with in a similar manner.
To illustrate OSDL, we show how F̃1(1, 2) is computed.

We have

Fmin
1 (1, 2) = min{1/3, 1} = 1/3

Fmax
1 (1, 2) = max{1/3, 0, 1} = 1
F̃1(1, 2) = 1

2 ×
1
3 + 1

2 × 1 = 2
3

The L1 error of cMOCA is given by

L1[cMOCA] = 0 + 1 + 1 + 0 + 1 = 3.

This is the minimum possible L1 error on the training data
for a monotone classifier. For cOSDL we have a choice of me-
dians for the third and fifth observation. The lowest error is
obtained if we assign both the label 2:

L1[cOSDL] = 0 + 2 + 1 + 0 + 1 = 4

7 Experiments

We performed experiments on a number of data sets in
order to compare our method to OSDL with respect to their
average L1 errors. We performed experiments on both ar-
tificial and real datasets. These are discussed separately in
section 7.1 and section 7.2. In all experiments we have as-
sumed that, like MOCA, OSDL assigns x to the smallest me-
dian of F̃ (x).

σ2 LMOCA

1 LOSDL

1 LMOCA

1 LOSDL

1

0 0.3009 0.3009 0.621 0.6549
(1/10)M 0.3359 0.3688 0.7297 0.8974
(2/10)M 0.5039 0.5441 0.811 0.9991
(3/10)M 0.6472 0.7096 0.8727 1.2763
(4/10)M 0.7736 0.8641 1.0004 1.3331
(5/10)M 0.8453 0.9616 1.0207 1.4066
(6/10)M 0.9623 1.1389 1.0964 1.4556
(7/10)M 0.9297 1.2999 1.0463 1.3733
(8/10)M 0.9762 1.3428 1.0245 1.4614
(9/10)M 1.0263 1.3558 1.0944 1.4259
M 1.0195 1.4251 1.0248 1.4583

Table 4. Experimental results on the artifi-
cial data generated by the monotone func-
tion f1 (left) and the non-monotone function
f2 (right).

7.1 Artificial Data

To compare the performance of MOCA and OSDL in con-
trolled circumstances we generated artificial data from a
monotone function f1,

f1(x1, x2) = 1 + x1 + 1
2 (x2

2 − x2
1) (16)

and from a non-monotone function f2,

f2(x1, x2) = 3 + sin
(π

2
x1

)
(2 + sin(2πx2)) (17)

where x1 and x2 are drawn independently from the uniform
distribution on the unit interval. The non-monotone func-
tion f2 was used to test the robustness of the algorithms
against violation of the monotonicity assumption.

We sampled 100 points for training, and another 10,000
to get a reliable estimate of the mean absolute prediction
error. Then we added a normally distributed error term
with mean zero and variance σ2 to each value of f1 and f2.
To create ordered class labels, the resulting numeric val-
ues were discretized into four intervals in such a way that
each contained approximately the same number of cases.
We tried values for α ∈ {0, 0.25, 0.5, 0.75, 1} and picked
the best value (i.e. the one with the lowest error on the test
set) for the final comparison between MOCA and OSDL.

To study the behaviour at different levels of noise, we
tried σ2 ∈ { k

10M}10k=0, where M is the maximum observed
value of equation (16) and equation (17) respectively. Note
that even though f1 is a monotone function, the data may
contain non-monotone pairs of observations, due to the ad-
dition of noise. The non-monotone function f2 will contain
non-monotone pairs even at the zero noise level.



The results are given in table 4. We observe that MOCA
has consistently lower error, except of course for the mono-
tone data without noise: in that case F̂ already satisfies the
stochastic order constraint, and hence MOCA and OSDL give
identical results. All observed improvements are significant
at α = 0.01.

7.2 Real data

For the experiments on real data, we selected a number
of data sets for which the presence of an increasing (or de-
creasing) relation between the attributes and the response
variable was plausible. They are available from the UCI
machine learning repository [2] except for Windsor Hous-
ing1 [1] and Employee Selection 2 [3].

As for the Australian credit approval data, we only used
columns 7, 8, 9 and 10 of the attributes from the original
data set. For the Boston housing data, we excluded the
Charles River dummy variable. Several of the data sets we
used had a binary target variable, one had a 9-class target
variable (the Employee Selection data set), one had a 4-class
target variable (the Car data set) and the remaining data sets
had a numeric target. The numeric targets were discretized
into four intervals, in such a way that each interval con-
tained approximately the same number of observations.

For each data set, we selected the best α value from the
set {0, 0.25, 0.5, 0.75, 1}, both for MOCA and OSDL, using
10-fold cross-validation. We then picked the best result ob-
tained for each method in terms of the average L1 error and
compared them by performing a paired sample t-test. The
results are given in Table 5. We note that MOCA has lower
error in 7 out of 9 cases, in 3 cases significant at α = 0.05.
In two cases OSDL is better, and significantly so on the Car
data set.

8 Conclusion

We have presented MOCA, a new nonparametric mono-
tone classification algorithm that attempts to minimize the
mean absolute prediction error for classification problems
with ordered class labels. We have shown that MOCA min-
imizes the L1 error on the training sample, subject to the
monotonicity constraint. Through experiments on artificial
and real data, we have shown that it compares favourably to
OSDL, a classification algorithm intended for the same type
of monotone classification problems as MOCA.

1Available from the Journal of Applied Econometrics Data Archive at
http://econ.queensu.ca/jae/

2Available at
http://www.cs.waikato.ac.nz/ml/weka/index datasets.html

Data set (# classes) LMOCA

1 LOSDL

1

Australian credit (2) 0.161∗ 0.336
AutoMpg (4) 0.253 0.255
Boston housing (4) 0.457 0.502
Car (4) 0.041 0.032∗

ESL (9) 0.334 0.344
Haberman survival (2) 0.261 0.258
Machine (4) 0.340∗ 0.383
Pima indians (2) 0.260 0.266
Windsor housing (4) 0.538∗ 0.593

Table 5. Experimental results on the real
data sets. Lower error is shown in bold-
face. ∗ indicates a significant difference at
α = 0.05.Note that for the binary classifica-
tion problems, the reported error is equal to
the error-rate.
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