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Abstract. In most databases, it is possible to identify small partitions
of the data where the observed distribution is notably different from that
of the database as a whole. In classical subgroup discovery, one considers
the distribution of a single nominal attribute, and exceptional subgroups
show a surprising increase in the occurrence of one of its values. In this
paper, we introduce Exceptional Model Mining (EMM), a framework
that allows for more complicated target concepts. Rather than finding
subgroups based on the distribution of a single target attribute, EMM
finds subgroups where a model fitted to that subgroup is somehow excep-
tional. We discuss regression as well as classification models, and define
quality measures that determine how exceptional a given model on a
subgroup is. Our framework is general enough to be applied to many
types of models, even from other paradigms such as association analysis
and graphical modeling.

1 Introduction

By and large, subgroup discovery has been concerned with finding regions in
the input space where the distribution of a single target variable is substantially
different from its distribution in the whole database [3, 4]. We propose to extend
this idea to targets that are models of some sort, rather than just single variables.
Hence, in a very general sense, we want to discover subgroups where a model
fitted to the subgroup is substantially different from that same model fitted to
the entire database.

As an illustrative example, consider the simple linear regression model

Pi = a+ bSi + ei

where P is the sales price of a house, S the lot size (measured, say, in square
meters), and e the random error term (see Fig. 1 and Section 4 for an actual
dataset containing such data). If we think the location of the house might make
a difference for the price per square meter, we could consider fitting the same
model to the subgroup of houses on a desirable location:

Pi = aD + bDSi + ei,
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Fig. 1. Scatter plot of lot size and sales price for the housing data.

where the subscript D indicates we are only considering houses on a desirable
location. To test whether the slope for desirable locations is significantly differ-
ent, we could perform a statistical test of H0 : b = bD, or more conveniently,
H0 : bD = bD̄, where D̄ denotes the complement of D.

In the above example, we came up ourselves with the idea that houses on a
desirable location might have a different slope in the regression model. The main
idea presented in this paper is that we can find such groups automatically by
using the subgroup discovery framework. Hence, the subgroups are not limited
to simple conditions based on a single variable. Their description may involve
conjunctions of conditions, and in case of multi-relational data, existential quan-
tification and aggregation as well. In the general case of simple linear regression,
we could be looking for subgroups G where the slope bG in

yi = aG + bGxi + ei,

is substantially different from the slope bḠ. The search process only involves the
subgroups; the variables y and x are assumed to be determined by the question
of the user, that is, they are fixed.

We have stated that the objective is to find subgroups where a model fitted
to the subgroup is substantially different from that same model fitted to the
entire database. This statement is deliberately general: we can use different types
of models in this scheme, and for each type of model we can consider several
measures of difference. In this paper we describe a number of model classes and
quality measures that can be useful. All these methods have been implemented
in the Multi-Relational Data Mining system Safarii [5].

This paper is organized as follows. In Section 2, we introduce some notation
that is used throughout the paper, and define the subgroup discovery and ex-
ceptional model mining framework. In Section 3, we give examples of three basic



types of models for exceptional model mining: correlation, regression and classi-
fication. We also propose appropriate quality measures for the types of models
discussed. In Section 4, we present the results of exceptional model mining ap-
plied to two real-life datasets. Finally, we draw conclusions in Section 5.

2 Exceptional Model Mining

We assume that the database d is a bag of labelled objects i ∈ D, referred to
as individuals, taken from a domain D. We refer to the size of the database as
N = |d|. At this point, we do not fix the nature of individuals, be it propositional,
relational, or graphical, etc. However, each description of an individual includes
a number of attributes x1, ..., xk and optionally an output attribute y. These
attributes are used in fitting models to subgroups of the data. In regular subgroup
discovery, only the y attribute is used, which is typically binary.

We make no assumptions about the syntax of the pattern language, and treat
a pattern simply as a function p : D → {0, 1}. We will say that a pattern p covers
an individual i iff p(i) = 1.

Definition 1 (Subgroup). A subgroup corresponding to a pattern p is the set
of individuals Gp ⊆ d that are covered by p: Gp = {i ∈ d|p(i) = 1}.

Definition 2 (Complement). The complement of a subgroup Gp is the set of
individuals Ḡp ⊆ d that are not covered by p: Ḡp = d\Gp.

When clear from the context, we will omit the p from now on, and simply refer
to a subgroup and its complement as G and Ḡ. We use n and n̄ to denote the size
of G and Ḡ, respectively. In order to judge the quality of candidate patterns in a
given database, a quality measure needs to be defined. This measure determines
for each pattern in a pattern language P how interesting (exceptional) a model
induced on the associated subgroup is.

Definition 3 (Quality Measure). A quality measure for a pattern p is a
function ϕd : P → IR that computes a unique numeric value for a pattern p,
given a database d.

Subgroup discovery [3] is a data mining framework aimed at discovering pat-
terns that satisfy a number of user-specified inductive constraints. These con-
straints typically include an interestingness constraint ϕ(p) ≥ t, as well as a
minimum support threshold n ≥ minsup that guarantees the relative frequency
of the subgroups in the database. Further constraints may involve properties
such as the complexity of the pattern p. In most cases, a subgroup discovery
algorithm will traverse a search lattice of candidate patterns in a top-down,
general-to-specific fashion. The structure of the lattice is determined by a re-
finement operator ρ : P → 2P , a syntactic operation which determines how
simple patterns can be extended into more complex ones by atomic additions.
In our application (and most others), the refinement operator is assumed to be
a specialisation operator : ∀q ∈ ρ(p) : p � q (p is more general than q).



The actual search strategy used to consider candidates is a parameter of
the algorithm. We have chosen the beam search strategy [13], because it nicely
balances the benefits of a greedy method with the implicit parallel search result-
ing from the beam. Beam search effectively performs a level-wise search that is
guided by the quality measure ϕ. On each level, the best-ranking w patterns are
refined to form the candidates for the next level. This means that although the
search will be targeted, it is less likely to get stuck in a local optimum, because
at each level alternatives are being considered. The search is further bounded by
complexity constraints and the minsup constraint. The end-result is a ranked
list of patterns (subgroups) that satisfy the inductive constraints.

In the case of regular subgroup discovery, with only a single discrete target
variable, the quality measure of choice is typically a measure for how different the
distribution over the target variable is, compared to that of the whole database
(or in fact to that of the complement). As such an unusual distribution is eas-
ily produced in small fractions of the database, the deviation is often weighed
with the size of the subgroup: a pattern is interesting if it is both exceptional
and frequent. Well-known examples of quality measures for binary targets are
frequency, confidence, χ2, and novelty.

The subject of this paper, exceptional model mining (EMM), can now be
viewed as an extension of the subgroup discovery framework. The essential dif-
ference with standard subgroup discovery is the use of more complex target con-
cepts than the regular single attribute. Our targets are models of some sort, and
within each subgroup considered, a model is induced on the attributes x1, ..., xk,
and optionally y. We will define quality measures that capture how exceptional
the model within the subgroup is in relation to the model induced on its comple-
ment. In the next section, we present a number of model types, and propose one
or more quality measures for each. When only the subgroup itself is considered,
the quality measures tend to focus on the accuracy of the model, such as the
fit of a regression line, or the predictive accuracy of a classifier. If the quality
measure captures the difference between the subgroup and its complement, it is
typically based on a comparison between more structural properties of the two
models, such as the slope of the regression lines, or the make-up of the classifiers
(e.g. size, attributes used).

Example 1. Consider again the housing dataset (Fig. 1). Individuals (houses)
are described by a number of attributes such as the number of bathrooms or
whether the house is located at a desirable location. An example of a pattern
(and associated subgroup G) would be:

p : nbath ≥ 2 ∧ drive = 1

which covers 128 houses (about 23% of the data). Its complement (which is often
only considered implicitly) is

p̄ : ¬nbath ≥ 2 ∨ ¬drive = 1

The typical refinement operator will add a single condition on any of the available
attributes to the conjunction. In this example, target models are defined over the



two attributes x = lot size and y = sales price. Note that these two attributes
are therefore not allowed to appear in the subgroup definitions. One possibility
is to perform the linear regression of y on x. As a quality measure ϕd, we could
consider the absolute difference in slope between the two regression lines fitted
to G and Ḡ. In Section 3.2, we propose a more sophisticated quality measure for
the difference in slope, that implicitly takes into account the supports n and n̄,
and thus the significance of the finding.

3 Model Classes

In this section, we discuss simple examples of three classes of models, and sug-
gest quality measures for them. As an example of a model without an output
attribute, we consider the correlation between two numeric variables. We discuss
linear regression for models with a numeric output attribute, and two simple
classifiers for models with discrete output attributes.

3.1 Correlation models

As an example of a model without an output attribute, we consider two numeric
variables x1 and x2, and their linear association as measured by the correlation
coefficient ρ. We estimate ρ by the sample correlation coefficient r:

r =
∑

(xi
1 − x̄1)(xi

2 − x̄2)√∑
(xi

1 − x̄1)2
∑

(xi
2 − x̄2)2

where xi denotes the ith observation on x, and x̄ denotes its mean.

Absolute difference between correlations (ϕabs). A logical quality mea-
sure is to take the absolute difference of the correlation in the subgroup G and
its complement Ḡ, that is

ϕabs(p) = |rG − rḠ|

The disadvantage of this measure is that it does not take into account the size
of the groups, and hence does not do anything to prevent overfitting. Intuitively,
subgroups with higher support should be preferred.

Entropy (ϕent). As an improvement of ϕabs, the following quality function
weighs the absolute difference between the correlations with the entropy of the
split between the subgroup and its complement. The entropy captures the infor-
mation content of such a split, and favours balanced splits (1 bit of information
for a 50/50 split) over skewed splits (0 bits for the extreme case of either sub-
group or complement being empty). The entropy function H(p) is defined (in
this context) as:

H(p) = −n/N lg n/N − n̄/N lg n̄/N
The quality measure ϕent is now defined as:

ϕent(p) = H(p) · |rG − rḠ|



Significance of correlation difference (ϕscd). A more statistically oriented
approach to prevent overfitting is to perform a hypothesis test on the difference
between the correlation in the subgroup and its complement. Let ρp and ρp̄

denote the population coefficients of correlation for p and p̄, respectively, and let
rG and rḠ denote their sample estimates. The test to be considered is

H0 : ρp = ρp̄ against Ha : ρp 6= ρp̄

We would like to use the observed significance (p-value) of this test as a quality
measure, but the problem is that the sampling distribution of the sample corre-
lation coefficient is not known in general. If x1 and x2 follow a bivariate normal
distribution, then application of the Fisher z transformation

z′ =
1
2

ln
(

1 + r

1− r

)
makes the sampling distribution of z′ approximately normal [11]. Its standard
error is given by

1√
m− 3

where m is the size of the sample. As a consequence

z∗ =
z′ − z̄′√
1

n−3 + 1
n̄−3

approximately follows a standard normal distribution under H0. Here z′ and
z̄′ are the z-scores obtained through the Fisher z transformation for G and Ḡ,
respectively. If both n and n̄ are greater than 25, then the normal approximation
is quite accurate, and can safely be used to compute the p-values. Because we
have to introduce the normality assumption to be able to compute the p-values,
they should be viewed as a heuristic measure. Transformation of the original
data (for example, taking their logarithm) may make the normality assumption
more reasonable. As a quality measure we take 1 minus the computed p-value
so that ϕscd ∈ [0, 1], and higher values indicate a more interesting subgroup.

3.2 Regression Model

In this section, we discuss some possibilities of EMM with regression models.
For ease of exposition, we only consider the linear regression model

yi = a+ bxi + ei, (1)

but this is in no way essential to the methods we discuss.



Significance of Slope Difference (ϕssd). Consider model (1) fitted to a
subgroup G and its complement Ḡ. Of course, there is a choice of distance
measures between the fitted models. We propose to look at the difference in the
slope b between the two models, because this parameter is usually of primary
interest when fitting a regression model: it indicates the change in the expected
value of y, when x increases with one unit. Another possibility would be to look
at the intercept a, if it has a sensible interpretation in the application concerned.
Like with the correlation coefficient, we use significance testing to measure the
distance between the fitted models. Let bp be the slope for the regression function
of p and bp̄ the slope for the regression function of p̄. The hypothesis to be tested
is

H0 : bp = bp̄ against Ha : bp 6= bp̄

We use the least squares estimate

b̂ =
∑

(xi − x̄)(yi − ȳ)∑
(xi − x̄)2

for the slope b. An unbiased estimator for the variance of b̂ is given by

s2 =
∑
ê2
i

(m− 2)
∑

(xi − x̄)2

where êi is the regression residual for individual i, and m is the sample size.
Finally, we define our test statistic

t′ =
b̂G − b̂Ḡ√
s2

G + s2
Ḡ

Although t′ does not have a t distribution, its distribution can be approximated
quite well by one, with degrees of freedom given by (cf. [10]):

df =

(
s2

G + s2
Ḡ

)2
s4

G

n−2 +
s4

Ḡ

n̄−2

(2)

Our quality measure ϕssd ∈ [0, 1] is once again defined as one minus the p-value
computed on the basis of a t distribution with degrees of freedom given in (2).
If n + n̄ ≥ 40 the t-statistic is quite accurate, so we should be confident to use
it unless we are analysing a very small dataset.

3.3 Classification Models

In the case of classification, we are dealing with models for which the output
attribute y is discrete. In general, the attributes x1, ..., xk can be of any type
(binary, nominal, numeric, etc). Furthermore, our EMM framework allows for
any classification method, as long as some quality measure can be defined in order
to judge the models induced. Although we allow arbitrarily complex methods,
such as decision trees, support vector machines or even ensembles of classifiers,
we only consider two relatively simple classifiers here, for reasons of simplicity
and efficiency.



Logistic Regression. Analogous to the linear regression case, we consider the
logistic regression model

logit(P (yi = 1|xi)) = ln
(
P (yi = 1|xi)
P (yi = 0|xi)

)
= a+ b · xi,

where y ∈ {0, 1} is a binary class label. The coefficient b tells us something about
the effect of x on the probability that y occurs, and hence may be of interest to
subject area experts. A positive value for b indicates that an increase in x leads
to an increase of P (y = 1|x) and vice versa. The strength of influence can be
quantified in terms of the change in the odds of y = 1 when x increases with,
say, one unit.

To judge whether the effect of x is substantially different in a particular
subgroup Gp, we fit the model

logit(P (yi = 1|xi)) = a+ b · p(i) + c · xi + d · (p(i) · xi). (3)

Note that

logit(P (yi = 1|xi)) =
{

(a+ b) + (c+ d) · xi if p(i) = 1
a+ c · xi if p(i) = 0

Hence, we allow both the slope and the intercept to be different in the subgroup
and its complement. As a quality measure, we propose to use one minus the p-
value of a test on d = 0 against a two-sided alternative in the model of equation
(3). This is a standard test in the literature on logistic regression [11]. We refer
to this quality measure as ϕsed.

DTM classifier. The second classifier considered is the Decision Table Majority
(DTM) classifier [7, 6], also known as a simple decision table. The idea behind this
classifier is to compute the relative frequencies of the y values for each possible
combination of values for x1, . . . , xk. For combinations that do not appear in the
dataset, the relative frequency estimates are based on that of the whole dataset.
The predicted y value for a new individual is simply the one with the highest
probability estimate for the given combination of input values.

Example 2. As an example of a DTM classifier, consider a hypothetical dataset
of 100 people applying for a mortgage. The dataset contains two attributes de-
scribing the age (divided into three suitable categories) and marital status of
the applicant. A third attribute indicates whether the application was success-
ful, and is used as the output. Out of the 100 applications, 61 were successful.
The following decision table lists the estimated probabilities of success for each
combination of age and married?. The support for each combination is indicated
between brackets.

married? = ‘no’ married? = ‘yes’
age = ‘low’ 0.25 (20) 0.61 (0)
age = ‘medium’ 0.4 (15) 0.686 (35)
age = ‘high’ 0.733 (15) 1.0 (15)



As this table shows, the combination married? = ‘yes’∧age = ‘low’ does not
appear in this particular dataset, and hence the probability estimate is based
on the complete dataset (0.61). This classifier predicts a positive outcome in all
cases except when married? = ‘no’ and age is either ‘low’ or ’medium’.

For this instance of the classification model we discuss two different quality
measures. The BDEU (Bayesian Dirichlet equivalent uniform) score, which is a
measure for the performance of the DTM classifier on G, and the Hellinger dis-
tance, which assigns a value to the distance between the conditional probabilities
estimated on G and Ḡ.

BDeu score (ϕBDeu). The BDeu score ϕBDeu is a measure from Bayesian
theory [2] and is used to estimate the performance of a classifier on a subgroup,
with a penalty for small contingencies that may lead to overfitting. Note that
this measure ignores how the classifier performs on the complement. It merely
captures how ‘predictable’ a particular subgroup is.

The BDeu score is defined as∏
x1,...,xk

Γ (α/q)
Γ (α/q + n(x1, ..., xk))

∏
y

Γ (α/qr + n(x1, .., xk, y))
Γ (α/qr)

where Γ denotes the gamma function, q denotes the number of value combina-
tions of the input variables, r the number of values of the output variable, and
n(x1, ..., xk, y) denotes the number of cases with that value combination. The
parameter α denotes the equivalent sample size. Its value can be chosen by the
user.

Hellinger (ϕHel). Another possibility is to use the Hellinger distance [12].
It defines the distance between two probability distributions P (z) and Q(z) as
follows:

H(P,Q) =
∑

z

(√
P (z)−

√
Q(z)

)2

where the sum is taken over all possible values z. In our case, the distributions
of interest are

P (y | x1, ..., xk)

for each possible value combination x1, ..., xk. The overall distance measure be-
comes

ϕHel(p) = D(P̂G, P̂Ḡ) =
∑

x1,...,xk

∑
y

(√
P̂G(y|x1, ..., xk)−

√
P̂Ḡ(y|x1, ..., xk)

)2

where P̂G denotes the probability estimates on G. Intuitively, we measure the
distance between the conditional distribution of y in G and Ḡ for each possi-
ble combination of input values, and add these distances to obtain an overall
distance. Clearly, this measure is aimed at producing subgroups for which the
conditional distribution of y is substantially different from its conditional distri-
bution in the overall database.



4 Experiments

This section illustrates exceptional model mining on two real-life datasets, using
different quality measures. Although our implementation in Safarii essentially
is multi-relational [5], the two dataset we present are propositional. For each
test, Safarii returns a configurable number of subgroups ranked according to
the quality measure of choice. The following experiments only present the best
ranking subgroup and take a closer look at the interpretation of the results.

4.1 Analysis of Housing Data

First, we analyse the Windsor housing data3 [8]. This dataset contains informa-
tion on 546 houses that were sold in Windsor, Canada in the summer of 1987.
The information for each house includes the two attributes of interest, lot size
and sales price, as plotted in Fig. 1. An additional 10 attributes are available to
define candidate subgroups, including the number of bedrooms and bathrooms
and whether the house is located at a desirable location. The correlation between
lot size and sale price is 0.536, which implies that a larger size of the lot coincides
with a higher sales price. The fitted regression function is:

ŷ = 34136 + 6.60 · x

As this function shows, on average one extra square meter corresponds to a 6.6
dollar higher sales price. Given this function, one might wonder whether it is
possible to find specific subgroups in the data where the price of an additional
square meter is significantly less, perhaps even zero. In the next paragraphs, we
show how EMM may be used to answer this question.

Significance of Correlation Difference. Looking at the restrictions defined
in Section 3.1 we see that the support has to be over 25 in order to be confident
about the test results for this measure. This number was used as minimum
support threshold for a run of Safarii using ϕscd. The following subgroup (and
its complement) was found to show the most significant difference in correlation:
ϕscd(p1) = 0.9993.

p1 : drive = 1 ∧ rec room = 1 ∧ nbath ≥ 2.0

This is the group of 35 houses that have a driveway, a recreation room and at
least two bathrooms. The scatter plots for the subgroup and its complement are
given in Fig. 2. The subgroup shows a correlation of rG = −0.090 compared to
rḠ = 0.549 for the remaining 511 houses. A tentative interpretation could be
that G describes a collection of houses in the higher segments of the markets
where the price of a house is mostly determined by its location and facilities.
The desirable location may provide a natural limit on the lot size, such that this
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Fig. 2. Housing - ϕscd: Scatter plot of lot size and sales price for drive = 1 ∧
rec room = 1 ∧ nbath ≥ 2 (left) and its complement (right).

is not a factor in the pricing. Figure 2 supports this hypothesis: houses in G tend
to have a higher price.

In general sales price and lot size are positively correlated, but EMM dis-
covers a subgroup with a slightly negative correlation. However, the value in the
subgroup is not significantly different from zero: a test of

H0 : bp1 = 0 against Ha : bp1 6= 0,

yields a p-value of 0.61. The scatter plot confirms our impression that sales price
and lot size are uncorrelated within the subgroup. For purposes of interpreta-
tion, it is interesting to perform some post-processing. In Table 1 we give an
overview of the correlations within different subgroups whose intersection pro-
duces the final result, as given in the last row. It is interesting to see that
the condition nbath ≥ 2 in itself actually leads to a slight increase in correla-
tion compared to the whole database, but the combination with the presence
of a recreation room leads to a substantial drop to r = 0.129. When we add
the condition that the house should also have a driveway we arrive at the fi-
nal result with r = −0.090. Note that adding this condition only eliminates 3
records (the size of the subgroup goes from 38 to 35) and that the correlation
between sales price and lot size in these three records (defined by the condition
nbath ≥ 2 ∧ ¬drive = 1 ∧ rec room = 1) is −0.894. We witness a phenomenon
similar to Simpson’s paradox: splitting up a subgroup with positive correlation
(0.129) produces two subgroups both with a negative correlation (−0.090 and
−0.894, respectively).

Significance of Slope Difference. In this section, we perform EMM on the
housing data using the Significance of Slope Difference (ϕssd) as the quality
measure. The highest ranking subgroup consists of the 226 houses that have a

3 Available from the Journal of Applied Econometrics Data Archive at
http://econ.queensu.ca/jae/



Table 1. Different subgroups of the housing data, and their sample correlation coeffi-
cients and supports.

Subgroup r n

Whole dataset 0.536 546
nbath ≥ 2 0.564 144
drive = 1 0.502 469
rec room = 1 0.375 97
nbath ≥ 2 ∧ drive = 1 0.509 128
nbath ≥ 2 ∧ rec room = 1 0.129 38
drive = 1 ∧ rec room = 1 0.304 90
nbath ≥ 2 ∧ rec room = 1 ∧ ¬drive = 1 −0.894 3
nbath ≥ 2 ∧ rec room = 1 ∧ drive = 1 −0.090 35
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Fig. 3. Housing - ϕssd: Scatter plot of drive = 1 ∧ basement = 0 ∧ nbath ≤ 1 (left),
and its complement (right).

driveway, no basement and at most one bathroom:

p2 : drive = 1 ∧ basement = 0 ∧ nbath ≤ 1

The subgroup G and its complement Ḡ (320 houses) lead to the following two
fitted regression functions, respectively:

ŷ = 41568 + 3.31 · x
ŷ = 30723 + 8.45 · x

The subgroup quality is ϕssd > 0.9999, meaning that the p-value of the test

H0 : bp2 = bp̄2 against Ha : bp2 6= bp̄2

is virtually zero. There are subgroups with a larger difference in slope, but the
reported subgroup scores higher because it is quite big. Figure 3 shows the scatter
plots of lot size and sales price for the subgroup and its complement.
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Fig. 4. Gene Expression - ϕabs: Scatter plot of 11 band = ‘no deletion’ ∧
survivaltime ≤ 1919 ∧ XP 498569.1 ≤ 57 (left; r = −0.950) and its complement
(right; r = 0.363).

4.2 Analysis of Gene Expression Data

The following experiments demonstrate the usefulness of exceptional model min-
ing in the domain of bioinformatics. In genetics, genes are organised in so-called
gene regulatory networks. This means that the expression (its effective activity)
of a gene may be influenced by the expression of other genes. Hence, if one gene is
regulated by another, one can expect a linear correlation between the associated
expression-levels. In many diseases, specifically cancer, this interaction between
genes may be disturbed. The Gene Expression dataset shows the expression-
levels of 313 genes as measured by an Affymetrix microarray, for 63 patients
that suffer from a cancer known as neuroblastoma [9]. Additionally, the dataset
contains clinical information about the patients, including age, sex, stage of the
disease, etc.

Correlation model experiment. As a demonstration of a correlation model,
we analyse the correlation between ZHX3 (‘Zinc fingers and homeoboxes 2’)
and NAV3 (‘Neuron navigator 3’), in terms of the absolute difference of cor-
relations ϕabs. These genes show a very slight correlation (r = 0.218) in the
whole dataset. The remaining attributes (both gene expression and clinical in-
formation) are available for building subgroups. As the ϕabs measure does not
have any provisions for promoting larger subgroups, we use a minimum support
threshold of 10 (15% of the patients). The largest distance (ϕabs(p3) = 1.313)
was found with the following condition:

p3 : 11 band = ‘no deletion’ ∧ survivaltime ≤ 1919 ∧XP 498569.1 ≤ 57

Figure 4 shows the plot for this subgroup and its complement with the regres-
sion lines drawn in. The correlation in the subgroup is rG = −0.95 and the
correlation in the remaining data is rḠ = 0.363. Note that the subgroup is very
“predictable”: all points are quite close to the regression line, with R2 ≈ 0.9.



DTM experiment. For the DTM classification experiments on the Gene Ex-
pression dataset, we have selected three binary attributes. The first two at-
tributes, which serve as input variables of the decision table, are related to ge-
nomic alterations that may be observed within the tumor tissues. The attribute
1p band (x1) describes whether the small arm (‘p’) of the first chromosome
has been deleted. The second attribute, mycn (x2), describes whether one spe-
cific gene is amplified or not (multiple copies introduced in the genome). Both
attributes are known to potentially influence the genesis and prognosis of neu-
roblastoma. The output attibute for the classification model is NBstatus (y),
which can be either ‘no event’ or ‘relapse or deceased’. The following decision
table describes the conditional distribution of NBstatus given 1p band and mycn
on the whole data set:

mycn =‘amplified’ mycn = ‘not amplified’
1p band = ‘deletion’ 0.333 (3) 0.667 (3)
1p band = ‘no change’ 0.625 (8) 0.204 (49)

In order to find subgroups for which the distribution is significantly different, we
run EMM with the Hellinger distance ϕHel as quality measure. As our quality
measures for classification do not specifically promote larger subgroups, we have
selected a slightly higher minimum support constraint: minsup = 16, which
corresponds to 25% of the data. The following subgroup of 17 patients was the
best found (ϕHel = 3.803):

p4 : prognosis = ‘unknown’

mycn =‘amplified’ mycn = ‘not amplified’
1p band = ‘deletion’ 1.0 (1) 0.833 (6)
1p band = ‘no change’ 1.0 (1) 0.333 (9)

Note that for each combination of input values, the probability of ‘relapse or
deceased’ is increased, which makes sense when the prognosis is uncertain. Note
furthermore that the overall dataset does not yield a pure classifier: for every
combination of input values, there is still some confusion in the predictions.
In our second classification experiment, we are interested in “predictable” sub-
groups. Therefore, we run EMM with the ϕBDeu measure. All other settings are
kept the same. The following subgroup (n = 16, ϕBDeu = −1.075) is based on
the expression of the gene RIF1 (‘RAP1 interacting factor homolog (yeast)’)

p5 : RIF1 >= 160.45

mycn =‘amplified’ mycn = ‘not amplified’
1p band = ‘deletion’ 0.0 (0) 0.0 (0)
1p band = ‘no change’ 0.0 (0) 0.0 (16)

In this subgroup, the predictiveness is optimal, as all patients turn out to be
tumor-free. In fact, the decision table ends up being rather trivial, as all cells
indicate the same decision.



Logistic regression experiment. In the logistic regression experiment, we
take NBstatus as the output y, and age (age at diagnosis in days) as the predictor
x. The subgroups are created using the gene expression level variables. Hence,
the model specification is

logit{P (NBstatus = ‘relapse or deceased’)} = a+ b · p+ c · age+ d · (p · age).

We find the subgroup

p6 : SMPD1 ≥ 840 ∧HOXB6 ≤ 370.75

with a coverage of 33, and quality ϕsed = 0.994. We find a positive coefficient of
x for the subgroup, and a slightly negative coefficient for its complement. Within
the subgroup, the odds of NBstatus = ‘relapse or deceased’ increase with 44%
when the age at diagnosis increases with 100 days, whereas in the complement
the odds decrease with 8%. More loosely, within the subgroup an increase in age
at diagnosis decreases the probability of survival, whereas in the complement an
increase in age slightly increases the probability of survival. Such reversals of the
direction of influence may be of particular interest to the domain expert.

5 Conclusions and Future Research

We have introduced exceptional model mining (EMM) as an extension of the
well-known subgroup discovery framework. By focusing on models instead of
single target variables, many new interesting analysis possibilities are created.
We have proposed a number of model classes that can be used in EMM, and
defined several quality measures for them. We illustrated the use of EMM by
its application to two real datasets. Like subgroup discovery, EMM is an ex-
ploratory method that requires interaction with a user that is knowledgable in
the application domain. It can provide useful insights into the subject area, but
does not result in ready-to-use predictive models.

We believe there are many possibilities to extend the work presented in this
paper. One could look at different models, for example naive Bayes for classifica-
tion problems or graphical models for modelling the probability distribution of
a number of (discrete) variables. Whatever the selected class of models, the user
should specify a quality measure that relates to the more fundamental questions
a user may have about the data at hand. In the case of our housing example, the
choice for the difference in slope is appropriate, as it captures a relevant aspect
of the data, namely a significant change in price per square meter. For similar
reasons, we used the difference between the coefficients of the explanatory vari-
able (age at diagnosis) in the subgroup and its complement as a quality measure
for logistic regression models.

Specifying an appropriate quality measure that is inspired by a relevant ques-
tion of the user becomes less straightforward when more complex models are
considered, although of course one can always focus on some particular aspect
(e.g. coefficients) of the models. However, even for sophisticated models such



as support vector machines or Bayesian networks, one can think of measures
that make sense, such as the linear separability or the edit distance between two
networks [14], respectively.

From a computational viewpoint, it is advisable to keep the models to be
fitted simple, since many subgroups have to be evaluated in the search process.
For example, fitting a naive Bayes model to a large collection of subgroups can
be done quite efficiently, but fitting a support vector machine could prove to be
too time consuming.
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