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Abstract. Sequence alignment is an important task for molecular biolo-
gists. Because alignment basically deals with approximate string match-
ing on large biological sequence collections, it is both data intensive and
computationally complex. There exist several tools for the variety of
problems related to sequence alignment. Our first observation is that the
term ’sequence database’ is used in general for textually formatted string
collections. A second observation is that the search tools are specifically
dedicated to a single problem. They have limited capabilities to serve
as a solution for related problems that require minor adaptations. Our
aim is to show the possibilities and advantages of a DBMS-based ap-
proach toward sequence alignment. For this purpose, we will adopt tech-
niques from single sequence alignment to speed up multiple sequence
alignment. We will show how the problem of matching a protein string
family against a large protein string database can be tackled with q-
gram indexing techniques based on relational database technology. The
use of Monet, a main-memory DBMS, allows us to realize a flexible en-
vironment for developing searching heuristics that outperform classical
dynamic programming, while keeping up satisfying sensitivity figures.

1 Introduction

There is no doubt about the importance of sequence alignment for molecular
biologists. Homology searching comes down to matching a specific string, the
query, to a large collection of already known strings, the database. The database
can either contain nucleotide strings, based on the ACGT-alphabet or amino
acid strings, based on a twenty letter alphabet. Evolutionary changes force us
to deal with inexact matching. So essentially we are talking about approximate
string matching on large string collections.

Traditionally, sequence databases have a pure textual format. The actual
string contents are mixed with identifiers and annotation. Moreover, dedicated
tools like Blast ([3], [4], [1]) and HMMER ([9]) are used for searching. In other
words, if a DBMS is used at all, it is only used as a storage engine. So, the
challenge for the database community is to show that the query facilities of a
DBMS can simplify searching and make it more flexible.
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Single sequence alignment, i.e. the matching of one query string to a large
string collection, has been exhaustively investigated ([5]). The exact solution is
provided by a dynamic programming algorithm (Smith-Waterman). The need
for quick response led to the development of Blast, a heuristic alignment tool
based on q-gram indexing.

The q-gram indexing techniques on which the Blast heuristics are based, can
be easily translated to a relational database environment. The indexing is real-
ized at the logical level: the q-gram set is added as a table. The filtering process
based on q-gram indexing can be concisely expressed in relational algebra. Vari-
ations in the filtering heuristics can be investigated by minor changes in the
query expression.

To illustrate the versatility of the DBMS approach, we will focus on multi-
ple sequence alignment. The notion of multiple sequence alignment deals with
matching a collection of related protein strings (a so called family) to a database.
This collection can be represented by a Hidden Markov Model (HMM). Models
representing a protein string collection are known as profile HMM’s. Matching
a profile HMM to a protein string database is generally solved using Viterbi-like
dynamic programming principles. The HMMER-package by Sean Eddy ([9]) is
a freely available, open source implementation of these techniques. A typical
matching operation using HMMER with a medium size database will take sev-
eral minutes on commodity hardware. The answer is exact, in the sense that it
finds all matches within some similarity distance.

In this paper, we will describe a generalized, Blast-like, heuristic search method
based on q-gram indexing. Adapting these ideas to the context of multiple align-
ment turns out to be surprisingly straightforward, due to the flexibility that our
DBMS provides. This way, our database supports both single string queries and
family queries. The implementation of our methods on the Monet main-memory
DBMS enables us to reduce the reponse time compared to HMMER significantly,
while keeping up satisfactory sensitivity figures.

2 Preliminaries

In this section, we will introduce the concepts needed to discuss the domain of
protein sequence alignment.

2.1 Strings

Our basic objects of interest are strings and q-grams. We will define them here.

– A string is a mapping from an integer interval [k..n] to the set of characters.
We have the notion of substring. Our alphabet is limited to the twenty amino
acid symbols.

– A q-gram is a string of length q, a fixed number that typically is 3 for protein
databases. We will use the value q = 3 in our examples. The term word is a
synonym for q-gram and more common in the Blast community.
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– A position specific q-gram is a combination of a q-gram and the position in
the string where it refers to. Example: in the string ACDEG, with starting
position 1, we identify the position specific q-grams (1, ACD), (2, CDE),
(3, DEG).

– Basically, our database is a set of strings which all have k = 1.
– A hitlist is a set of position specific q-grams.

2.2 A Relational View on Q-Gram Indexing

In general, sequence databases are files in a character based format, like the
Fasta format. In Fasta collections, the strings are listed interleaved with their
annotation. We represent a string collection by two tables: Strings and Annots.

Strings(id, string)
Annots(id, annot)

Strings are internally identified with a system generated id. It maintains the
connection between the protein strings, the annotation strings and the q-grams.
So for each string in Strings, we have a describing tuple in Annots.

The Q-grams table contains a set of position specific q-grams. It serves as the
index for matching hits between query data and the string database. Note that,
on the physical level, we do not make use of either traditional indexing support
or specialized string indexing techniques, such as suffix trees. We rely on the
power of our main-memory DBMS to process the queries efficiently.

Q-grams(id,j,qg)

The position of the q-grams in the strings is denoted by a j in the database
strings and an i in the query. The annotation table joins in (literally) at a very
late stage.

BLASTP works as follows. A query string is, like the database strings, de-
composed into q-grams. Suppose we have the query string denoted by qs and a
database string by s.

qs = CWYWRWYY
s = RRWYWAWYYRR

In Table 1, we see a q-gram decomposition of the query string. We see a few
q-gram matches between qs and s. (2, WY W ) in qs matches (3, WY W ) in s;
(6, WY Y ) in qs matches (7, WY Y ) in s.

Because the distance between the matching q-grams is equal in the two strings,
we say that they are ’on the same diagonal’. Technically, the notion of diagonal
is represented by the difference of the q-gram positions: 6-2 = 7-3. The essence of
the BLASTP filtering approach comes down to looking for two non-overlapping
q-gram hits on the same diagonal within a certain distance (default 40).

To improve sensitivity for BLASTP, we also have the notion of ’similar’ q-
grams. The q-grams (1, CWY ) in qs and (2, RWY ) in s will generally be iden-
tified as similar, due to the notion of evolutionary distance (see [2] for further
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Table 1. Example database and query

Strings
id string
1 RRWYWAWYYRR
2 RRRWYWAWYWRR
3 RRWYWAAWYYRR

Annots
id annot
1 comments on string 1 ..
2 comments on string 2 ..
3 comments on string 3 ..

Qgrams
id j qg
1 1 RRW
1 2 RWY
1 3 WYW
... ... ...
3 10 YRR

Query
i qg
1 CWY
2 WYW
... ...
6 WYY

details). This means that we should extend the basic q-gram set of a query string
with similar q-grams.

Our query string defines a hitlist containing, among others, (1, CWY ),
(1, RWY ), (2, WY W ) and (6, WY Y ). It depends on the parameter settings
which similar q-grams will show up in our hitlist.

2.3 Profile HMM Matching

We now direct our attention toward the problem of matching a family of related
sequences to a string database. A profile HMM ([6]) is a probabilistic model that
represents a collection of related protein strings, often called a family. Figure 1
shows the basic HMM-architecture as used in the HMMER package ([9]). By

Fig. 1. HMM-architecture, as used in the HMMER package
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matching a string to a HMM, we get a quantitative expression for the level of
’relatedness’ between this string and the family that is represented by this model.
Algorithms exist to calculate the optimal matching. They are based on dynamic
programming techniques ([2], [5]). Note that these algorithms are exact: they
find all matches with at least a specified minimal similarity.

The optimal match of a string to an HMM is represented by a path through
the model. The begin and end-state are straightforward. The M-states represent
a match. For each possible character, it specifies the ’emission probability’, i.e.
the probability of finding this character on this position. The I-states and D-
states represent gaps in the match. By adding the rewards for matching and the
penalties for mismatching, we get a final value expressing the relatedness.

To get a feeling for the principle, let us take a look at this small fraction of a
four string family. The ’-’ represents a gap.

AFVEFEDP
GFVEFEDY
AFV-FEDP
AFVRF-DK

Because of these strings have length eight, we need an HMM with eight match-
ing states. Matching state M1 (corresponding to the first column in the family)
emits character A with probability 3/4 and G with probability 1/4. State M2
emits F with probability 1: there is ’consensus’, just as in columns 3, 5, 6 and
7. State M4 emits character E with probability 2/3 and R with probability 1/3.
State M8 emits P with probability 1/2 and emits Y and K with probability 1/4.
Note that, if we would match the last string to this HMM, the optimal path for
traversing the model would go from state M5 to state M7 through state D6,
resulting in a gap in position 6.

In the model, these probabilities are transformed to the log-odds of the em-
mission probabilities, according to the random amino acid distribution model.
This log-odds conversion enables us to transform multiplication of probabili-
ties into additions. States D1 and D4 are optional, depending on the choice
to match globally (i.e. matching the whole model) or locally (i.e. matching the
model partially).

A profile HMM defines a hitlist in a straightforward way. For each position we
inspect the corresponding matching state with its characters and corresponding
log-odds values. The most extended hitlist generated from our example family
would be
(1, AFV ), (1, GFV ), (2, FV E), (2, FV R), (3, V EF ), (3, V RF ), ..., (6, EDP ).

We will use limited HMM-hitlists for filtering purposes, thereby focussing on
position-character combinations with high probability. This choice is made at the
character level, taking into consideration only the characters that have position
specific emmission log-odds values meeting a threshold value T .

Summarizing, we see that the q-gram indexing principles can be extended
from single protein query strings to profile HMM’s. Both can serve as a query,
because from a technical point of view, the matching object is in both cases a
hitlist.
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3 Filtering

As we have seen, the classical BLASTP approach uses the two-hit-diagonal fil-
tering principle. Thresholds to limit the hitlist can, to some extend, be set by the
user, influencing sensitivity and selectivity. In the case of profile HMM matching,
we have added a tuning parameter n, making the number of required hits on
the diagonal a user defined variable. It is clear that by increasing n, we increase
selectivity and decrease sensitivity. Note that the principle of n-hit diagonal
filtering corresponds to the framecount notion of CAFE ([11]).

We will describe how n-hit diagonal filtering can be expressed as a relational
query. We choose to formulate the constituent expressions in an extended version
of the relational algebra (RA). See [10] for details.

Note that the query, essentially a hitlist, might represent both a single string
and a profile HMM. A hit represents an exact match between a q-gram in the
query and a q-gram in the database. Recall that in the hitlist, at the same
position, more than one (similar) q-gram may occur.

Hits := πid,diag←(j−i)(Qgrams �� Query) (1)

According to the n-hit diagonal filtering method, candidates are defined by n
hits in the same string and on the same diagonal. We first apply a self join on
Hits to find hit pairs on the same diagonal. We need a copy of the hits table to
express this self join. Hits2 should be interpreted as an alias of (or view on) the
Hits table, not as a physical copy.

Hits2 := πid2,i2,j2,diag2(Hits) (2)

Pairs := πid,diag,j,j2(Hits ��θ Hits2) (3)

where θ denotes the join condition:

θ : (id = id2, diag = diag2, |j − j2| ≤ A)

Here A denotes the range, i.e. the maximal distance between two hits. Note
that, en passant, we have by now expressed BLASTP filtering. Enforcing the
n-diagonal is expressed by the grouping operator Γgrp;function of the relational
algebra.

Filter := σcnt≥(n−1)(Γid,diag,j;cnt()(Pairs) (4)

Note that we select on n − 1 values within the group because j itself is already
one hit. The relevant strings can now be selected.

Candidates := Strings � Filter (5)

This approach can be refined by taking in account the actual hit positions in
the database and query string. That allows us to define a substring as a candidate
for matching in stead of the complete string. Defining the boundaries however
is quite tricky, because the HMM allows gapping. We will stick to the approach
of pure string filtering as defined by the last step.
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4 The Monet Approach

Our DBMS of choice is Monet (version 4.10.2), developed at the CWI in Am-
sterdam ([7], ([8]). To realize a full-fledged Monet based profile search tool, we
should incorporate the hmmsearch method into our system to execute the ex-
pansion phase. For our project, this approach was to laborious, although all the
required information was in the database. To get an impression whether our
filtering approach would be fruitful, we simply wrote the filtered strings into a
file in Fasta format and let the HMMER hmmsearch tool run on this selection in
stead of the full database. As long as the selectivity was reasonable, the overhead
of generating the output after the filtering step could be ignored.

There were two reasons to choose Monet.

– main-memory approach
Monet is a main-memory DBMS (MMDBMS). The data and, possibly, in-
dexes are supposed to be resident in main-memory. Where the classical
DBMS focuses on minimizing IO, Monet gains performance by optimizing
for main-memory access and by applying cache-conscious techniques. The
data easily fits in main memory and it results in a very short running time
for the initial join.

– layered levels of access and extensibility
Monet provides the developer with a extensible relational algebra. It offers
the possibility to write specific algebraic operators in C, using an API to
access the binary tables, and add them to the Mil collection of standard
algebraic operators. This makes sense in the case of very performance critical
operations. For performance reasons, we decided to write a Mil-extension to
execute the combined self-join-grouping step.

The memory requirements of our approach can be quantified easily. A protein
collection in Fasta format (i.e. protein character strings and annotation mixed)
has a total size of B bytes. All the protein character strings together contain N
characters, where N is practically equal to the number of q-grams. The number
of protein strings is L. For the selection of the Swissprot database we used, the
values are approximately L = 100, 000, N = 38, 000, 000 and B = 48, 000, 000.

The tables Strings and Annots can be mapped easily to Monet, requiring
8L+B bytes. The Qgrams table is split into three columns according to Monet’s
binary data model. The column id can be represented in a minimal sense with a
virtual identifier. For the column qg, we used two-byte integers. The total space
requirement for the Qgrams table now is 14N bytes, which is about 0,5 GB for
the 48 MB Swissprot selection, easily fitting in main memory.

4.1 HMMER

The HMMER package ([9]) by Sean Eddy provides us with several tools to
build and use HMM’s. Our main tool of interest is hmmsearch, that matches a
profile HMM to a string database. Hmmsearch was run with an expectation value
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parameter E < 0.1. This value expresses the probability that a match is found
purely by chance.

The package contains a tutorial with two prepared HMM’s, that we used
gratefully. The first one is the ’RNA recognition motif (rrm)’ HMM. It has a
size of 77 matching states. The second one is the ’globins50’ alignment. It is
about twice as long as the ’RNA recognition motif’ HMM.

We used version 2.3.2 of HMMER.

5 Experiments and Discussion

Our results of the experiments on the Swissprot selection were compared to the
results of running hmmsearch from the HMMER package.

The choice of the threshold T for the emission log-odds is a bit of an art.
It should be positive to make sense, but values that are too high destroy the
sensitivity. We varied around T = 1, which turned out to be a good choice.

Selectivity was measured by simply counting the number of bytes of the result-
ing reduced string set after filtering, compared to the original string collection.
It is expressed as a percentage, where a low value indicates a strong selectivity.
Because hmmsearch behaves quite linear in the size of the string database, the
selectivity percentage gives a good indication of the response time behaviour on
the filtered string selection.

Sensitivity was measured by checking the presence of high scoring domains.
Apart from complete HMM alignments, hmmsearch gives a list of local high
scoring segments of the database. For each of these local matches, we checked if
there was overlap with the candidates we found. Sensitivity is also expressed as
a percentage, where a high value is good. We give figures for the complete set
of matches found by HMMER (sens100) and for the top k lists, where we only
compare the best k% of the HMMER results. We did this for k = 60, 40, 20. The
range parameter was fixed on 40 (the Blast default).

The most interesting tuning parameter is n, defining the number of diagonal
hits within the range. We mention only the interesting values of n, keeping
selectivity close to or less than 10%.

The tests were done on a dual processor Xeon 3.2 GHz machine with 4GB of
main memory and 2MB of cache, running under Linux.

In general, we observe that, with adequate tuning, we are able to combine
high top k sensitivities with selectivities around or less than 10%. Note that
the HMM-hitlist generation requires only a fraction of a second and gives the
hitlist size, so the user has the possibility to tune the parameters before running
the query. Keep in in mind that output lists will be inspected by biologists
manually. Therefore, we claim that referring to the ’upper half’ sensitivities is
justified, analogous to the practice with web search tools.

The measurements also suggest that the log-odds threshold T is less interest-
ing as a tuning parameter. Fixing T = 1 and varying n turns out to be a better
tuning principle.
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Table 2. Test results

HMM = rrm; runtime hmmsearch = 92 sec
T=1

Filtering time: 7.2 sec
n sens100 sens60 sens40 sens20 selectivity
7 64% 85.4% 96.7% 99% 1.04%
6 74.8% 93.1% 98.9% 100% 3.9%
5 85.8% 98.9% 100% 100% 16.6%
HMM = globins50; runtime hmmsearch = 166 sec

T=1
Filtering time: 3.3 sec

n sens100 sens60 sens40 sens20 selectivity
7 75.7% 100% 100% 100% 0.11%
6 81.4% 100% 100% 100% 0.2%
5 82.6% 100% 100% 100% 1.2%
4 87.4% 100% 100% 100% 9.2%

HMM = rrm; runtime hmmsearch = 92 sec
T=1.2

Filtering time: 3.4 sec
n sens100 sens60 sens40 sens20 selectivity
6 58.4% 78.8% 87.3% 92.3% 0.7%
5 74.8% 91.6% 95.1% 96.7% 3.9%
4 86.0% 97.4% 99.5% 100% 19.7%

HMM = rrm; runtime hmmsearch = 92 sec
T=0.8

Filtering time: 10.2 sec
n sens100 sens60 sens40 sens20 selectivity
8 64.3% 89.1% 96.2% 98.9% 0.7%
7 73.5% 93.8% 97.8% 100% 2.6%
6 84.0% 97.8% 100% 100% 9.2%

6 Conclusions

Our first goal was to investigate whether main-memory database technology can
be succesfully applied to biological sequence alignment. The paper shows that
the q-gram indexing techniques of Blast, designed for single sequence matching,
could be extended to the HMM matching problem with limited effort, due to the
support of the DBMS query facilities. The filtering and its tuning possibilities
are fully realized with the possibilities offered by Monet, in a rather concise
way. In particular, we extended the algebra with a new operator to calculate the
candidates efficiently. We were able to reach filtering times that were significantly
smaller than the running times of hmmsearch, resulting in filtered string sets with
the desired sensitivity and selectivity figures.

A secondary goal was to investigate whether Blast-like q-gram indexing tech-
niques could be applied to profile HMM-matching. Especially the behaviour on
the ’top k’ result lists is very satisfying when we restrict ourselves to the upper



468 H. Philippi

40 or 60 percent. With appropriate tuning of the querying parameters, we can
combine top k sensitivity figures close to 100% with selectivities of less than
10%.
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