Department of Information and Computing Sciences

Departement Informatica Onderwijs
Bachelor Informatica Informatiekunde Kunstmatige intelligentie Master Computing Science Game&Media Technology Artifical Intelligence Business Informatics

Onderwijs Informatica en Informatiekunde

Vak-informatie Informatica en Informatiekunde

Network science

Website:website containing additional information
Course code:INFOMNWSC
Credits:7.5 ECTS
Period:period 4 (week 17 through 26, i.e., 23-4-2018 through 29-6-2018; retake week 28)
Participants:up till now 33 subscriptions
Schedule:Official schedule representation can be found in Osiris
lecture   Mon 11.00-12.4517-20 RUPPERT-B Erik Jan van Leeuwen
Wed 9.00-12.4517-27 UNNIK-222
Network science is an exciting new field that studies large and complex networks, such as social, biological, and computer networks. The class will address topics from network structure and growth to community detection and the spread of epidemics. We study the diverse algorithmic techniques and mathematical models that are used to analyze such large networks, and give an in-depth description of the theoretical results that underlie them.

List of potential topics
Basic algorithms for network science, lower bounds for polynomial-time problems, sampling algorithms, streaming algorithms, sublinear algorithms, power law algorithms, spreading phenomena, community detection, graph partitioning algorithms, phylogeny.

The course assumes that you have basic skills in algorithms and mathematics. In particular, the course assumes familiarity with basic graph algorithms (shortest paths, flows), such as offered in Algoritmiek, and NP-completeness, such as offered in Algoritmiek or Algorithms for Decision Support. Having taken Algorithms and Networks is helpful, but not required.
Literature:Warning: literature is subject to change
M.E.J. Newman, Networks: An introduction
A. Barabasi, Network Science, for free online
Other relevant books and papers will be added on the course web page.
Course form:The course will have two lectures a week and several assignments.
Exam form:TBD
Minimum effort to qualify for 2nd chance exam:TBD