Department of Information and Computing Sciences

Departement Informatica Onderwijs
Bachelor Informatica Informatiekunde Kunstmatige intelligentie Master Computing Science Game&Media Technology Artifical Intelligence Business Informatics

Onderwijs Informatica en Informatiekunde

Vak-informatie Informatica en Informatiekunde

Computational thinking

Course code:INFOMCTH
Credits:7.5 ECTS
Period:period 3 (week 6 through 15, i.e., 4-2-2019 through 12-4-2019; retake week 27)
Participants:up till now 13 subscriptions
Schedule:Official schedule representation can be found in Osiris
lecture   Wed 13.15-17.006-15 BBG-001 Anna-Lena Lamprecht
Fri 13.15-17.006 BBG-169
8-10 BBG-169
11 BBG-201
12-15 BBG-169
Note:No up-to-date course description available.
Text below is from year 2017/2018
Contents:This course is an introduction to computational thinking about data analysis problems, meant for students with little programming experience. Following a problem-based learning approach, they will learn how to get from a data analysis problem to an abstract workflow description and finally to a concrete software program that solves the problem. The course will cover standard processes for approaching data analysis problems (CRISP-DM model), abstract workflow description techniques (UML diagrams), elementary software design principles (reuse, modularisation), and basic programming skills (using the popular Python language). Finally, it will also address workflow management systems and the FAIR data principles. After finishing the course successfully, the students will be able to analyse data analysis problems from a computational perspective,decompose problems into the individual steps needed to solve it,describe the analysis workflow in the form of UML diagrams, find and use existing tools to implement the individual steps, and implement the overall workflow in Python.
Minimum effort to qualify for 2nd chance exam:To qualify for the retake exam, the grade of the original must be at least 4.