Airline Reservation Systems

Gerard Kindervater
KLM – AMS/RX
Objective of the presentation

- To illustrate
 - what happens when passengers make a reservation
 - how airlines decide what fare to charge to passengers
Basic Disciplines

- Economics
 - supply / demand / fares

- Econometrics
 - models / optimization techniques

- Computer Science
 - process management
Travel Example (1)

- **Route**
 - Amsterdam → Houston → Amsterdam

- **Availability request**
 - airline office / website
 - biased
 - travel agent / website
 - neutral
5 Travel Example (2)

- Result
 - many alternatives
 - journey & fare
 - different journey (route or date) → different fare
 - airline / route
 - flights (different expected load factor)
 - same journey → different fares
 - fare conditions
 - cancellation / change / service level / ...
 - origin of availability request (point of sale)
6 System Components

• Reservation system (RS)
 - controls bookings based on flight statuses
 - global systems: Amadeus, Galileo, Worldspan, …
 - airline systems: Arco, Alpha3, Corda, …

• Revenue management system (RMS)
 - computes flight settings
 - sends the settings to the reservation system
 - systems: PROS, Sabre, AirFrance/KLM, …
Reservation Systems (RS)

- **Airline reservation system (ARS)**
 - airline owned
 - Arco, Alpha3, Corda, …

- **Central reservation system (CRS)**
 - airline independent
 - Amadeus, Galileo, Worldspan, …
Airline Reservation System (ARS)

- Responsible for the airline’s own data
 - flight schedule / fares / passenger data / …

- Decides whether or not to accept a passenger and determines the fare the passenger will have to pay

- Communication with
 - other airlines (ARS’s)
 - travel agents / passengers
 - central reservation systems (CRS’s)
 - …
Central Reservation System (CRS)

- Makes reservations for passengers in ARS’s

- Responsible for its bookings
 - reservation / ticketing / consistency with data in ARS

- Communication with
 - airlines (ARS’s)
 - travel agents / passengers
 - ...
Overview Picture
Availability Request

- Passenger (travel agent / website) connects to ARS / CRS

- ARS / CRS knows where the passenger is located

- Fare offered depends on location (point of sale) of passenger and path from passenger to ARS
 - passenger (Berlin) → United → United (flight IAH-FRA)
 - passenger (Berlin) → Lufthansa → United (flight IAH-FRA)
 - passenger (Oslo) → United → United (flight IAH-FRA)
 → United may (most likely will) offer different fares

- Travel websites (Priceline / CheapTickets) try several paths (by faking a change of location!)
Revenue Management Systems (RMS)

- Reservation systems
 - accept passengers and determine the fare to pay

- Revenue management system
 - computes settings to be used by reservation systems when accepting passengers
 - PROS, Sabre, AirFrance/KLM, …
Airline Passenger Revenue Management

- Process of maximizing seat revenue through:
 - pricing
 - market segmentation
 - “different products at different prices”
 - inventory control
 - limit the number of seats available to specific market segments
 - anticipate on future cancellations and no-shows
Pricing (1)

- Market segmentation
 - single fare class

![Diagram showing fare, revenue, dilution, untapped revenue, unaccommodated demand, and demand curve with expected seats sold on the x-axis.]
• Market segmentation
 - multiple fare classes with different restrictions
Inventory Control

- Maximize total revenue
 - compute the “optimal” passenger mix
 - number of passengers / fare
 - allow (limited) overbooking
 - number of denied boardings (close to) zero
 - yield of accepting extra passengers higher than denied boarding costs
Example

- Amsterdam (AMS) – Houston (IAH/HOU)
- Departure date: 13 December 2009
- Booking date: 8 December 2009
(RS) Availability AMS - IAH / 13 DEC

<table>
<thead>
<tr>
<th>Date</th>
<th>Flight Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>13DEC SUN 0001-0300* AMS HOU</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>AMS IAH 1050 1420 KL 661 J4C3I2X9S9B9M9K9H9</td>
</tr>
<tr>
<td></td>
<td>74E 0 1030 L9Q9T9V9</td>
</tr>
<tr>
<td>02</td>
<td>AMS IAH 1405 1820 KL 663 J9C9I9</td>
</tr>
<tr>
<td></td>
<td>737 0 1115</td>
</tr>
</tbody>
</table>

* AMS = Amsterdam, NL
 IAH = Houston, TX

Notes:
- **KL 661** and **KL 663** are KLM flights.
- **J4C3I2X9S9B9M9K9H9** and **J9C9I9** are flight numbers.
- **74E** and **737** are aircraft types.
- **0001-0300** indicates departure times.
- **L9Q9T9V9** is a flight code.

Airline Logos:
- **AIR FRANCE**
- **KLM**
FLIGHT: KL661 13DEC09 SUN 10:50

LAST BID/BKT UPD: 08DEC/1614Z AMS–IAH

<table>
<thead>
<tr>
<th>BDG</th>
<th>SA</th>
<th>SS</th>
<th>TSFS</th>
<th>AU</th>
<th>BID</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>AMS</td>
<td>4</td>
<td>43</td>
<td>47</td>
<td>42</td>
</tr>
<tr>
<td>M</td>
<td>AMS</td>
<td>40</td>
<td>218</td>
<td>258</td>
<td>233</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAB</th>
<th>BKT</th>
<th>BA</th>
<th>PR</th>
<th>BND</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1384</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>883</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAB</th>
<th>BKT</th>
<th>BA</th>
<th>PR</th>
<th>BND</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>1</td>
<td>40</td>
<td>0</td>
<td>1946</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>0</td>
<td>1070</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>1</td>
<td>834</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>39</td>
<td>3</td>
<td>702</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>36</td>
<td>3</td>
<td>572</td>
<td></td>
</tr>
</tbody>
</table>

...
(RMS) Flight Status AMS - IAH / 13 DEC

<table>
<thead>
<tr>
<th>Flight</th>
<th>Airport Pair</th>
<th>Flt. Dept. Date</th>
<th>DoW</th>
<th>Cabin</th>
<th>Used Bidprice C</th>
<th>Used Bidprice M</th>
<th>AU</th>
<th>TSFS</th>
<th>ASS</th>
<th>Exp. Load Factor (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KL0661</td>
<td>AMS-IAH</td>
<td>13-Dec-09</td>
<td>Sun</td>
<td>[CM]</td>
<td>1745</td>
<td>180</td>
<td>275</td>
<td>305</td>
<td>261</td>
<td>91</td>
</tr>
<tr>
<td>KL0663</td>
<td>AMS-IAH</td>
<td>13-Dec-09</td>
<td>Sun</td>
<td>[C]</td>
<td>0</td>
<td>44</td>
<td>46</td>
<td>33</td>
<td>33</td>
<td>75</td>
</tr>
</tbody>
</table>
(RMS) Forecast Flight KL 661 / 13 DEC

<table>
<thead>
<tr>
<th>SubClass</th>
<th>Actual Seats Sold</th>
<th>Exp. Seats Sold</th>
<th>Overruled NSS</th>
<th>Exp. Demand to Come</th>
<th>Overruled Demand to Come</th>
<th>Forecast</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>4</td>
<td>2.42</td>
<td></td>
<td>1.61</td>
<td>1.46</td>
<td>3.89</td>
</tr>
<tr>
<td>C</td>
<td>9</td>
<td>7.98</td>
<td></td>
<td>1.82</td>
<td>1.76</td>
<td>9.74</td>
</tr>
<tr>
<td>I</td>
<td>7</td>
<td>5.61</td>
<td></td>
<td>1.83</td>
<td>1.71</td>
<td>7.33</td>
</tr>
<tr>
<td>Z</td>
<td>23</td>
<td>18.44</td>
<td></td>
<td>2.09</td>
<td>1.98</td>
<td>20.43</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0.00</td>
<td></td>
<td>0.09</td>
<td></td>
<td>0.09</td>
</tr>
<tr>
<td>S</td>
<td>0</td>
<td>0.00</td>
<td></td>
<td>2.49</td>
<td>2.50</td>
<td>2.50</td>
</tr>
<tr>
<td>B</td>
<td>12</td>
<td>10.70</td>
<td></td>
<td>4.50</td>
<td>4.34</td>
<td>15.04</td>
</tr>
<tr>
<td>M</td>
<td>14</td>
<td>11.35</td>
<td></td>
<td>6.39</td>
<td>6.34</td>
<td>17.69</td>
</tr>
<tr>
<td>K</td>
<td>24</td>
<td>19.66</td>
<td></td>
<td>3.95</td>
<td>3.92</td>
<td>23.59</td>
</tr>
<tr>
<td>H</td>
<td>5</td>
<td>3.52</td>
<td></td>
<td>3.19</td>
<td>3.17</td>
<td>6.69</td>
</tr>
<tr>
<td>L</td>
<td>18</td>
<td>15.35</td>
<td></td>
<td>2.91</td>
<td>2.75</td>
<td>18.11</td>
</tr>
<tr>
<td>Q</td>
<td>16</td>
<td>13.56</td>
<td></td>
<td>4.02</td>
<td>3.91</td>
<td>17.47</td>
</tr>
<tr>
<td>T</td>
<td>62</td>
<td>48.68</td>
<td></td>
<td>5.27</td>
<td>4.69</td>
<td>53.37</td>
</tr>
<tr>
<td>N</td>
<td>0</td>
<td>0.00</td>
<td></td>
<td>0.00</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>V</td>
<td>66</td>
<td>61.30</td>
<td>61.30</td>
<td>4.34</td>
<td>4.20</td>
<td>65.50</td>
</tr>
<tr>
<td>W</td>
<td>1</td>
<td>0.97</td>
<td></td>
<td>0.62</td>
<td></td>
<td>1.59</td>
</tr>
</tbody>
</table>
(RMS) Fares AMS - IAH / 13 DEC

<table>
<thead>
<tr>
<th>Orig.</th>
<th>Dest.</th>
<th>POS</th>
<th>Dom. SubClass</th>
<th>PNY</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMS</td>
<td>HOU</td>
<td>NL</td>
<td>J</td>
<td>3129</td>
</tr>
<tr>
<td>AMS</td>
<td>HOU</td>
<td>NL</td>
<td>C</td>
<td>2628</td>
</tr>
<tr>
<td>AMS</td>
<td>HOU</td>
<td>NL</td>
<td>I</td>
<td>1909</td>
</tr>
<tr>
<td>AMS</td>
<td>HOU</td>
<td>NL</td>
<td>Z</td>
<td>1323</td>
</tr>
<tr>
<td>AMS</td>
<td>HOU</td>
<td>NL</td>
<td>Y</td>
<td>2143</td>
</tr>
<tr>
<td>AMS</td>
<td>HOU</td>
<td>NL</td>
<td>D</td>
<td>342</td>
</tr>
<tr>
<td>AMS</td>
<td>HOU</td>
<td>NL</td>
<td>X</td>
<td>2081</td>
</tr>
<tr>
<td>AMS</td>
<td>HOU</td>
<td>NL</td>
<td>S</td>
<td>1512</td>
</tr>
<tr>
<td>AMS</td>
<td>HOU</td>
<td>NL</td>
<td>B</td>
<td>1149</td>
</tr>
<tr>
<td>AMS</td>
<td>HOU</td>
<td>NL</td>
<td>M</td>
<td>815</td>
</tr>
<tr>
<td>AMS</td>
<td>HOU</td>
<td>NL</td>
<td>K</td>
<td>690</td>
</tr>
<tr>
<td>AMS</td>
<td>HOU</td>
<td>NL</td>
<td>H</td>
<td>586</td>
</tr>
<tr>
<td>AMS</td>
<td>HOU</td>
<td>NL</td>
<td>L</td>
<td>503</td>
</tr>
<tr>
<td>AMS</td>
<td>HOU</td>
<td>NL</td>
<td>Q</td>
<td>440</td>
</tr>
<tr>
<td>AMS</td>
<td>HOU</td>
<td>NL</td>
<td>T</td>
<td>398</td>
</tr>
<tr>
<td>AMS</td>
<td>HOU</td>
<td>NL</td>
<td>E</td>
<td>288</td>
</tr>
<tr>
<td>AMS</td>
<td>HOU</td>
<td>NL</td>
<td>N</td>
<td>228</td>
</tr>
<tr>
<td>AMS</td>
<td>HOU</td>
<td>NL</td>
<td>V</td>
<td>228</td>
</tr>
<tr>
<td>AMS</td>
<td>HOU</td>
<td>NL</td>
<td>U</td>
<td>192</td>
</tr>
<tr>
<td>AMS</td>
<td>HOU</td>
<td>NL</td>
<td>W</td>
<td>174</td>
</tr>
<tr>
<td>AMS</td>
<td>HOU</td>
<td>NL</td>
<td>G</td>
<td>257</td>
</tr>
</tbody>
</table>
Expected Marginal Seat Revenue (EMSR)

- **Heuristic (Belobaba 1989)**
 - flight based, several variants
 - simple, fast, reliable
 - works well with any reasonable stochastic demand forecast

- **Idea**: reserve seats for higher valued demand

- **Steering mechanism**
 - bucket: set of fares
 - bucket protection: number of seats reserved for passengers paying at least a fare associated with that bucket
Towards Network-Optimization (1)

- Problem: How to deal with connecting passengers?

- Example:
 - 1 open seat on a flight from Geneva to Amsterdam
 - 2 passengers:
 - 1 passenger flying Geneva - Amsterdam willing to pay a high (business class) fare
 - 1 passenger flying Geneva - Amsterdam - Tokyo willing to pay a low (economy class) fare only
 - which passenger should get the seat on the flight from Geneva to Amsterdam?
Towards Network-Optimization (2)

- Flight oriented algorithms (like the one of Belobaba) are suboptimal for the global network

- Network carriers have >70% connecting traffic
 - Lufthansa, British Airways, Delta Airlines, KLM, …

- Huge data volumes
<table>
<thead>
<tr>
<th>Origin</th>
<th>Dest.</th>
<th>Actual Seats Sold</th>
<th>Exp. Net Seats Sold</th>
<th>Overruled NSS</th>
<th>Exp. Demand to Come</th>
<th>Overruled Demand to Come</th>
<th>Forecast</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMS</td>
<td>IAH</td>
<td>57</td>
<td>50.63</td>
<td>10.10</td>
<td>60.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEL</td>
<td>IAH</td>
<td>13</td>
<td>10.26</td>
<td>1.09</td>
<td>11.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IST</td>
<td>IAH</td>
<td>13</td>
<td>7.86</td>
<td>1.25</td>
<td>9.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABZ</td>
<td>IAH</td>
<td>10</td>
<td>9.00</td>
<td>2.69</td>
<td>11.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVG</td>
<td>IAH</td>
<td>9</td>
<td>7.68</td>
<td>1.50</td>
<td>9.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BGO</td>
<td>IAH</td>
<td>8</td>
<td>7.23</td>
<td>0.59</td>
<td>7.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAI</td>
<td>IAH</td>
<td>8</td>
<td>4.31</td>
<td>0.80</td>
<td>5.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMM</td>
<td>IAH</td>
<td>8</td>
<td>6.57</td>
<td>2.02</td>
<td>8.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSL</td>
<td>IAH</td>
<td>8</td>
<td>7.30</td>
<td>0.83</td>
<td>8.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DXB</td>
<td>IAH</td>
<td>7</td>
<td>5.95</td>
<td>1.15</td>
<td>7.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAH</td>
<td>IAH</td>
<td>6</td>
<td>3.74</td>
<td>1.12</td>
<td>4.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRD</td>
<td>IAH</td>
<td>6</td>
<td>5.52</td>
<td>0.20</td>
<td>5.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATH</td>
<td>IAH</td>
<td>5</td>
<td>4.73</td>
<td>0.81</td>
<td>5.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCN</td>
<td>IAH</td>
<td>5</td>
<td>4.75</td>
<td>0.20</td>
<td>4.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABV</td>
<td>IAH</td>
<td>4</td>
<td>2.47</td>
<td>1.22</td>
<td>2.77</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Network Inventory Control

- Maximize total revenue
 - compute the “optimal” passenger mix
 - number of passengers / route / fare
 - allow (limited) overbooking
 - number of denied boardings (close to) zero
 - yield of accepting extra passengers higher than denied boarding costs
Input (1)

- Schedule and capacity
 - flight departure and arrival times
 - cabin capacities
 - sales restrictions
Input (2)

• Demand and cancellation forecast

 - based on observed bookings in the past

 - low level:
 - route (origin / destination / flight list)
 - point of sale
 - passenger type
 - day of week / season
 - fare class

 - overrules for specific departure dates
Models

- **Notations**

 - **OD**: dated route (origin, destination, flight list) / fare class / point of sale / passenger type

 - for each **OD**
 - \(X_{OD} \): number of passengers to accept (booking limit)
 - \(D_{OD} \): probabilistic demand
 - \(F_{OD} \): fare

 - for each **flight j**
 - \(C_j \): remaining capacity (= capacity - actual seats sold)
 (single cabin flights only)
Stochastic Model

• Maximize

\[E(\sum_{OD} F_{OD} \cdot \min \{ X_{OD}, D_{OD} \}) \]

• Subject to

\[\sum_{OD \supseteq \text{flight } j} X_{OD} \leq C_j \quad \text{(for all flights } j) \]

\[X_{OD} \geq 0 \text{ and integer} \quad \text{(for all OD’s)} \]
Deterministic Model (1)

- Approximation of stochastic model

- Maximize
 \[\sum_{OD} F_{OD} \cdot X_{OD} \]

- Subject to
 \[\sum_{OD \ni \text{flight } j} X_{OD} \leq C_j \]
 \[0 \leq X_{OD} \leq ED_{OD} \]
 (for all OD's)
Deterministic Model (2)

• Advantages
 - simple (linear programming)
 - well solvable (large instances)
 - easily extendable to multi-cabin flights

• Disadvantages
 - fractional solutions
 - deterministic (average demand)
 → how to handle unexpected booking behavior?
Dual Formulation (1)

• Decision variables
 - for each OD: $W_{OD} \geq 0$
 - for each dated flight j: $B_j \geq 0$

• Minimize
 $$\sum_{OD} D_{OD} \cdot W_{OD} + \sum_j C_j \cdot B_j$$

• Subject to
 $$W_{OD} \geq F_{OD} - \sum_{OD \geq \text{flight } j} B_j \quad \text{(for all OD’s)}$$
• $W_{OD} & B_j$
 - marginal values w.r.t. demand and capacity

• Terminology
 - B_j: bid price of flight j

 - $F_{OD} - \sum_{OD \supseteq vlucht j} B_j: OD$ (customer) contribution

→ notation: $CuCo_{OD}$
Unexpected Booking Behavior

- Acceptance strategy for passengers willing to fly a certain OD

 - accept the passengers if
 \[CuCo_{OD} = F_{OD} - \sum_{OD \supseteq \text{flight } j} B_j > 0 \]

 - refuse the passengers if
 \[CuCo_{OD} = F_{OD} - \sum_{OD \supseteq \text{flight } j} B_j < 0 \]

 - conditionally accept the passengers if
 \[CuCo_{OD} = F_{OD} - \sum_{OD \supseteq \text{flight } j} B_j = 0 \]
Optimization Frequency

- **Best strategy**
 - after each accepted booking
 - if expected bookings fail to happen
 → practically infeasible

- **Second best strategy**
 - at regular time intervals: daily, weekly, …
 - on demand: heavy booking activity, schedule changes, …
 → how to avoid loss of revenue?
• Use Belobaba’s algorithm as secondary tool

• Create flight forecast based on customer contribution

• Steering mechanism
 - bucket: customer contribution values
 - bucket protection: number of seats reserved for passengers paying at least a fare associated with that bucket

• Availability request
 - return minimum bucket availability of all flights in the itinerary
Cancellations & No-shows (1)

- Overbooking of flights in order to prevent empty seats

- Risk based overbooking
 - limit expected number of denied boardings
 → increase the number of available seats

- Cost based overbooking
 - limit expected denied boarding costs
 → extra terms in the objective function
Cancellations & No-shows (2)

- Overbooking on bookings on hand
 - all passenger data are known
 - cancellation forecast model may be trusted

- Overbooking on demand to come
 - optimization model computes demand to accept
 - actual accepted demand may differ
 - to be applied with care
Issue: Buy-Down (1)

- Models assume market segmentation
 - passengers willing to pay a specific fare will actually buy a ticket at that fare

- Assumption is valid in case of (strict) fare restrictions
 - minimum / maximum stay
 - no rerouting
 - no refunds
 - ...
Issue : Buy-Down (2)

- Fare restrictions disappear gradually …

→ Passengers will buy cheapest ticket in the market
 → direct loss of revenue
 → lower demand forecast for higher fares
 → indirect loss of revenue in the future (spiral down)

- New sell-up models incorporate customer behavior
 - mixed integer / nonlinear / fare adjustments
Issue: Buy-Down (3)

→ Airlines will not always offer low fare tickets in order to fill up (empty) flights