1. Consider the Kripke structure K depicted below. The states are $\{s_0, s_1, s_2\}$, with s_0 as the initial state. We use $Prop = \{stable, waiting, x=y\}$. Which propositions hold (and otherwise) at each state can be seen below.

Consider the property $\phi = \lozenge\square(x=y)$.

(a) What does the formula say?

Answer: Eventually, $x = y$ will continue to hold.

(b) What is its negation?

Answer: Well, $\neg\square\phi = \lozenge\neg\phi$ and $\neg\lozenge\phi = \square\neg\phi$.

So, the negation of the above is: $\square\lozenge(x \neq y)$.

(c) Give a Buchi automaton A_\neg, that represent this negation.

Answer: A standard Buchi with b_1 as the accepting state:

(d) Construct the automaton $K \cap A_\neg$.

Answer: We’ll first convert the Kripke K to its Buchi equivalent. We’ll move the labels from the states to the arrows. You need to do it in such a way, that the set of generated sentences are still the same. You can do this in two ways:

i. We notice that when an execution pass a state s in K, its next step must pass an outgoing arrow from s. So, we move labels from any state s to all its outgoing arrows.

An issue arises if you have a terminal state t (a state with no successor). However, recall that in our context we have assumed that our state automata do not contain such a state.

This approach gives us the Buchi automaton shown below; we have a single accepting set F consisting of all states in the automaton:
ii. Analogously, you can move labels of s to all its incoming arrows. For each initial state s_0 of K, we additionally add a new dummy initial state z_0, and an arrow from z_0 to s_0, so that we can also move the labels of s_0 to an arrow.

This gives the following automaton: we have a single accepting set F consisting of all states in the automaton:

I’ll take the first version, since it is a bit smaller. Below K refers to this Buchi-equivalent of the original K.

Let $\Sigma_K = \{ s_0, s_1, s_2 \}$ be K’s set of states. Similarly let $\Sigma_{A\neg} = \{ b_0, b_1 \}$ be $A\neg$’s set of states.

Let’s call $K \cap A\neg$, the automaton I. The states of I will be drawn from $\Sigma_K \times \Sigma_{A\neg}$.

I would start from (s_0, b_0); that is, the combined starting states of both K and $A\neg$. I will contains only transitions that would be allowed by both K and $A\neg$. So, there is a transition :

$$(s, b) \xrightarrow{A} (t, c)$$

only if $s \xrightarrow{A} t$ and $b \xrightarrow{A} c$.

Do keep in mind that the notation like $b \xrightarrow{p \notin A} c$ that we used in the picture of $A\neg$ represents a family of arrows from b to c, each is labelled by a subset A of $Prop$ such that $p \notin A$.

The accepting states of I would be all those states (s, b) where s is accepting in K and b is accepting in $A\neg$. However, since all states of K is accepting, only b determines if (s, b) would be accepting.

Now we can quite easily construct I:
Where $A = \{ \text{stable}, x=y \}$ and $B = \{ \text{waiting}, x=y \}$.

The states $\{ (s_0, b_1), (s_2, b_1) \}$ above are accepting.

(e) So, does K satisfies the property ϕ?

Answer: No. For example run $(s_0, b_0), (s_1, b_0), (s_0, b_1), (s_1, b_0), (s_0, b_1), ...$ is an accepting run in I. And therefore $L(I)$ cannot be empty. Notice that this run is also a counter example for the property $\Diamond \Box (x = y)$.

That is, if you project the run to the states of K:

$s_0, s_1, s_0, s_1, ...$

it shows you a run in the original program that violates $\Diamond \Box (x = y)$.

2. Verify if following properties are valid properties of K from No. 1:

(a) $\Box \Box (x = y)$

(b) $\neg \text{waiting} \cup (\text{waiting} \land x=y)$

3. What does this formula $\phi = \Box (\text{waiting} \rightarrow (\text{waiting} \land \text{stable}))$ say? Verify if it is a valid property of K.

Answer:

It says: whenever waiting holds, then either it holds forever, or at some point it stops to hold; but then stable has to hold.

Let’s do some calculation to simplify $\neg \phi$:

$\neg (\Box (\text{waiting} \rightarrow (\text{waiting} \land \text{stable})))$

$= \Diamond (\text{waiting} \land \neg (\text{waiting} \land \text{stable}))$

$= \Diamond (\text{waiting} \land (\text{waiting} \land \neg \text{stable}) \cup (\neg \text{waiting} \land \neg \text{stable}))$

This formula has a nested $\cup (\Diamond$ actually abbreviates $true \cup g$), which makes it a bit harder to figure out what the corresponding Buchi automaton. Here is the automaton:

```
   waiting∈ , stable∉       waiting, stable ∉
   *  b1                      *  b2

   waiting∈ , stable∉
   *  b2
```

with a single accepting state, namely b_2.

We use $∈$ and $∉$ abbreviation on the label. To remind you, their meaning are as follows (see also the LN):
• $s \stackrel{p \in}{\rightarrow} t$ represents a family of arrows $s \stackrel{A}{\rightarrow} t$ such that $p \in A$.
• $s \stackrel{p,q \in}{\rightarrow} t$ represents a family of arrows $s \stackrel{A}{\rightarrow} t$ such that $p \in A$ AND $q \in A$.
• $s \stackrel{p,q \notin}{\rightarrow} t$ represents a family of arrows $s \stackrel{A}{\rightarrow} t$ such that $p \notin A$ AND $q \notin A$.
• $s \stackrel{l_1,l_2}{\rightarrow} t$ abbreviates two families of arrows: $s \stackrel{l_1}{\rightarrow} t$ and $s \stackrel{l_2}{\rightarrow} t$.

The set F of the accepting states of this intersection automaton consists of all (s, b_2), for any $s \in \Sigma_K$. However, no such state is reachable from the initial state, as you can see above. Therefore, the language of the above automaton is empty. This implies that no counter example exists for ϕ. Therefore ϕ is valid on K.

\[
\begin{array}{ccc}
(s_0, b_0) & \xrightarrow{\{\text{stable, } x=y\}} & (s_0, b_1) \\
\downarrow & & \downarrow \\
(s_1, b_0) & \xrightarrow{\{\text{waiting, } x=y\}} & (s_2, b_0) \\
\downarrow & & \downarrow \\
\emptyset & \xrightarrow{\{\text{waiting, } x=y\}} & \emptyset \\
\end{array}
\]