Exercises PVL LTL

Wishnu Prasetya

October 31, 2018

1. Below you see a Kripke structure; let’s call it M. Give its explicit definition in terms of a tuple etc (see the formal definition in the slides).

![Kripke structure diagram]

(a) Why don’t we have final states there?
(b) How is the notion of ‘execution’ defined for a Kripke structure? And what is an ’abstract execution’?
(c) Give an execution of M that satisfies the property $X(busy \ U (x=0))$. Does M satisfies the property?
(d) So, given a property Kripke structure M, an (abstract) execution Π, and a property ϕ, and an natural number i, what is the difference between:

- $M |\models= \phi$
- $\Pi |\models= \phi$
- $\Pi, i |\models= \phi$

2. Express the following requirements in LTL. Make the necessary assumptions if you have to; but be reasonable.

(a) P and Q cannot not use a resource r simultaneously.

Answer:

$\square \neg (use(P,r) \land use(Q,r))$

where $use(P,r)$ is a predicate which is true while and as long as P is using r. Importantly note that it does not represent a program call.

(b) Whenever P requests access to r, eventually it will get the access.

Answer:

$\square (req(P,r) \rightarrow \diamond use(P,r))$

where $req(P,r)$ is a predicate which is true while and as long as P is requesting for r.
(c) Whenever P requests access to r, eventually it will get the access; but only if P persists on maintaining the request.

Answer:

$$\Box (\text{req}(P, r) \rightarrow (\text{req}(P, r) \lor \neg \text{req}(P, r) \lor \text{use}(P, r)))$$

(d) P cannot access r without first requesting it; and it cannot do so (make a request) without first releasing r (if it was busy using r).

Answer:

$$\Box (! \neg \text{req}(P, r) \land \neg \text{use}(P, r)) \lor (\text{req}(P, r) \land \neg \text{use}(P, r))$$

$$\Box (\text{use}(P, r) \land \neg \text{req}(P, r)) \lor \neg \text{use}(P, r) \land \neg \text{req}(P, r))$$

3. Construct Buchi automata representing the following LTL formulas:

(a) $p \, W \, q$, where p, q are atomic propositions.

Answer:

$$\begin{array}{c}
\text{0} \\
p \in \\
\text{1} \\
q \in \\
\ast
\end{array}$$

Where the above is a standard Buchi with both states accepting.

(b) $\neg (x>0 \, U \, x=y)$

Answer: Note that $\neg (p \, U \, q) = (p \land \neg q) \, W \, (\neg p \land \neg q)$. So the above property is equivalent to:

$$(x>0 \land \neg x=y) \, W \, (\neg x>0 \land \neg x=y)$$

This results in the following standard Buchi automaton. Both states are accepting.

$$\begin{array}{c}
\text{0} \\
x>0, x=y \notin \\
\text{1} \\
\ast
\end{array}$$

(c) $p \, U \, (q \, U \, r)$, where p, q are atomic propositions.

Answer: The following standard Buchi with $\{0, 1\}$ as initial states, and state 3 as the only accepting state.

(d) $(X \, x>0) \, U \, x=y$

Answer: A standard Buchi, with 2 as the accepting state.

(e) $\Diamond \Box (x>0 \rightarrow x=y)$

Answer: Notice first that $x>0 \rightarrow x=y$ can also be written as $\neg(x>0) \lor x=y$. Below is a standard Buchi with 1 as the accepting state.
(f) \((p \cup q) \textbf{W} r \)

Answer: Using this standard Buchi, with \{0, 2\} as the initial states:

With \(F = \{1, 3, 5\} \) as the accepting states. Accepting via 1 describes executions whose prefix repeatedly satisfy \(p \cup q \), zero or more times, and ends up in \(q \) (in the case of at least one time \(p \cup q \)); and then it is followed up with \(r \).

Accepting via 3 describes the scenario of executions that remain in \(p \cup q \) forever, without ever to go over to \(r \).

Finally, accepting via 5 describes executions whose prefix repeatedly satisfy \(p \cup q \), zero or more times, and then they go over to \(r \); thus still owing one future \(q \), but this future \(q \) is met (after \(r \)).