1. **Program Semantic** [1.5 pt].

Consider a simple programming language L_0 where we can write a program like this:

```plaintext
vars x, y, z;
init x > 0 && 10 > y;
{ z := 0; if x/y > 2 then z := 2 else z := 1 }
```

The `init`-part specifies allowed initial states: the program can only execute on an initial state on which the `init`-predicate would evaluate to true. If the program is invoked on such a state, it will then execute its body-statement. At the end, the program’s final state will be returned. It will furthermore mark the state as either ‘normal’ or ‘exceptional’. A state is marked as exceptional if the program terminates by throwing an exception. In the above case, this would happen if for example the value of y is 0 in the division x/y.

The full syntax of our programming language is as follows:

```plaintext
Program  →  vars variables ; (variables declaration)
         | init expression ; (allowed initial state)
         | body;

variables →  one or more identifiers (variable-name) separated by "," 

body     →  "{" one or more statements separated by "," "}"

statement →  identifier := expression (assignment)
           | if expression then body else body

expression →  integer constants like 0,1,2,...
            | "undefined"
            | identifier
            | expression + expression (the div operator)
            | expression / expression (testing equality)
            | expression == expression (greater than)
            | expression && expression (‘and’ operator)

• $e_1/e_2$ results in `undefined` if $e_2$ evaluates to zero.
• All the binary operators above, $e_1 op e_2$, result in `undefined` if one of its arguments evaluates to `undefined`.
• An assignment $x := e$ throws an exception if $e$ evaluates to `undefined`. The program will then break its execution, and its state is left as it was just before the assignment.
• The statement `if e then ... else ...` throws an exception if $e$ evaluates to `undefined`. The program will then break its execution, and its state is left as it was just before the if.
Your tasks:

(a) Provide a denotational semantic for the above programming language. You will need to provide the functions $E$, $S$, and $P$ that describe the semantic of respectively expressions, statements, and programs. Hint: choose a proper semantical domain for each.

(b) Suppose we extend the syntax so that we can also write a post-condition. A post-condition will be written as a pair $\text{post } p \hspace{1em} \text{exceptional } q$ to mean that the program should either terminate normally in a state satisfying $p$, or terminate exceptionally in a state satisfying $q$. For example, the post-condition below is a valid one:

```plaintext
vars x, y, z;
init x > 0 && 10 > y;
post z > 0 exceptional z == 0
{} if x/y > 2 then z := 2 else z := 1
```

Extend your denotational semantic so that the above semantic of post-condition is defined (and reasonable).

Answer:
Grading: a=1, b=0.5.

Let $Val$ be a domain of values consisting of integers and boolean values. Let $\perp$ be a shorthand for $\text{undefined}$. Let $Val^\perp$ be $Val \cup \{\perp\}$.

Let $Vars$ be the universe of variable names. We will represent a state with a function of this type:

$$State = Vars \rightarrow Val$$

Because $S_0$ only have global variables, in the following semantic we will not make explicit which variables are actually in the scope.

The semantic of expressions is defined by $E : expr \rightarrow State \rightarrow Val^\perp$ as follows:

(a) The definition for literals is obvious, with this addition: $E[\text{undefined}] = (\lambda s. \perp)$.

(b) $E[x] = (\lambda s. s x)$.

(c) $E[e_1/e_2] = (\lambda s. \text{ if } v_1 = \perp \lor v_2 = \perp \lor v_2 = 0 \text{ then } \perp \text{ else } v_1/v_2 )$

where

$$v_1 = E[e_1] \ s \ , \ v_2 = E[e_2] \ s$$

(d) For other binary operators $\oplus$:

$$E[e_1 \oplus ^n e_2] = (\lambda s. \text{ if } v_1 = \perp \lor v_2 = \perp \text{ then } \perp \text{ else } v_1 \oplus v_2 )$$

where

$$v_1 = E[e_1] \ s \ , \ v_2 = E[e_2] \ s$$

We will flag states with either $N$ or $E$ to mark it as either normal or exceptional. Let $State^+ = State \times \{N, E\}$; so it is the domain of marked states.

The semantic of statements is defined by $S : State^+ \rightarrow State^+$ as follows:

(a) A body is either empty of a non-empty list of statements:

$$S[\[] (s, m) = (s, m) \hspace{1em} \text{– empty body does nothing}$$

$$S[S_1 : \text{rest}] (s, E) = (s, m) \hspace{1em} \text{– if we are already in an exceptional state}$$

$$S[S_1 : \text{rest}] (s, N) = S[\text{rest}] (S[S_1] (s, N))$$

(b) Assignment, we only need to define it when it is executed on a normal state:

$$S[v := e] (s, N) = \text{ if } v = \perp \text{ then } (s, E) \text{ else } (\text{update } s \ x \ v, N)$$

where

$$v = E[e] \ s$$
(c) If-then-else, we only need to define it when it is executed on a normal state:

\[ S[\text{if } g \text{ then } S_1 \text{ else } S_2](s, N) = \text{ if } v=\bot \text{ then } (s, E) \text{ else } (\text{if } v=true \text{ then } r_1 \text{ else } r_2) \]

where

\[ v = E[g] \ b s \]
\[ r_1 = S[S_1](s, N) \]
\[ r_2 = S[S_2](s, N) \]

The semantic of a whole program is defined as a function from states that satisfy the init-predicate to State+. For simplicity, states that do not satisfy the init-predicate will be mapped to \( \bot \). This is defined through the semantic function \( P : Program \to State \to (State^+ \cup \{\bot\}) \) as follows:

\[ P[\text{vars... init p body}] s = \text{ if } E[p](s) = true \text{ then } S[\text{body}](s, N) \text{ else } \bot \]

For the second question, where a program is extended with a post-condition to form a specification. The specification is valid if the program always ends with the specified post-condition. We define the semantic function: \( \text{Hoare} : Spec \to Bool \) as follows:

\[ \text{Hoare}[\text{vars... init p post qN exceptional qE body}] s = \exists s. \text{ case } P[\text{vars... init p body}] s \text{ of } \]
\[ (t, N) \to (E[qN] t = true) \]
\[ (t, E) \to (E[qE] t = true) \]
\[ \bot \to \text{true} \]

2. Loop Invariant [1.5 pt].

Give an invariant for each of the GCL loops below. It should be an invariant that is consistent, strong enough to realize the asked post-condition, and realistic to be established by the pre-condition or initialization of the loop. Use the partial correctness interpretation of Hoare triples.

Below, \( a \) is an infinite array of int; \( b \) is of type bool; other variables are of type int.

(a) \{ x = 100 \} while x>0 do \{ x:= x-2 \} \{ x=0 \}  
Answer: \( x \geq 0 \) and even(\( x \))

(b) \{ x=10 \land y=0 \} while x>0 do \{ x:= x-1 ; y := y+10 \} \{ x+y=100 \}  
Answer: \( x \geq 0 \land 10x+y=100 \)

(c) \{ x=100 \land y=1 \} while x>y do \{ y := y+2 \} \{ y=128 \}  
Answer: \( \exists k : k \geq 0 ; y = 2^k \) \land \( y \leq 128 \land x=100 \). The last conjunct can be kept implicitly since the program does not modify \( x \).

(d) Here is a program to check if an array consists of only 0’s:
\{ k=0 \land allzeros=true \}  
while k<N \land allzeros do \{ allzeros := (a[k]=0) ; k:=k+1 \}  
\{ allzeros = (\forall i : 0 \leq i < N : a[i] = 0) \}
Answer: \( \text{allzeros} = (\forall i : 0 \leq i < k : a[i] = 0) \)
\( \land \)
\( 0 \leq k \land (k \leq N \lor N < 0) \)
The \( N < 0 \) part is for the case that the program starts with negative \( N \), in which case it will immediately break the loop. I will not count it wrong if you forget this part.

(e) \{ \text{true} \}

\( k, \text{found} := 0, \text{false} ; \)
while \( \neg \text{found} \) do \{ \text{found} := (a[k]=0) ; \ k:=k+1 \} \}

\{ \ k \geq 0 \ \land \ a[k-1]=0 \ \}

Answer: \( \text{found} = (\exists i : 0 \leq i < k : a[i] = 0) \)
\( \land \ (\forall i : 0 \leq i < k-1 : a[i] \neq 0) \)
\( \land \ 0 \leq k \)
3. **Weakest pre-condition** [1.5 pt].

(a) Consider the loop below, with the given post-condition; $x$ is of type integer:

\[
\text{while } x > 0 \text{ do } \{ \text{assert even}(x) ; \ x := x - 2 \} \{ \text{even}(x) \}
\]

where \( \text{even}(x) \) is a predicate that means that \( x \) is an even integer.

Calculate the \( \text{wlp} \) of the loop above using the fix-point iteration.

**Answer:**

\[ W_0 = \text{true} \]
\[ W_{i+1} = (x \leq 0 \land \text{even}(x)) \lor (x > 0 \land \text{wlp} \ 	ext{body } W_i) \]

So, we get as \( W_1 \):

\[ W_1 = (x \leq 0 \land \text{even}(x)) \lor (x > 0 \land \text{even}(x)) \]

which can be simplified to simply \( \text{even}(x) \).

Then \( W_2 \):

\[ W_2 = (x \leq 0 \land \text{even}(x)) \lor (x > 0 \land \text{even}(x) \land \text{even}(x - 2)) \]

Hence we reach the a fix point, thus concluding that the \( \text{wlp} \) is \( \text{even}(x) \).

(b) Suppose we want to have a non-deterministic conditional statement in our programming language. We will denote it with the following multi-armed \textit{if}, with \( n \geq 1 \):

\[
\text{if } g_1 \rightarrow S_1 \\
\ldots \\
g_n \rightarrow S_n
\]

\( g_1 \ldots g_n \) are 'guards'; these are boolean expressions. \( S_1 \ldots S_n \) are statements.

This is how the above statement works. Suppose we execute it on a state \( s \). If there are multiple guards that evaluate to true on \( s \), one will be selected non-deterministically, e.g. \( g_k \), and the corresponding \( S_k \) is then executed.

If no guard evaluates to true on \( s \), the whole statement simply does a skip.

Give a reasonable definition of the \( \text{wlp} \) of such a statement.

**Answer:** The \( \text{wlp} \) wrt to a post-condition \( Q \) is:

\[
(\forall k : 1 \leq k \leq n : g_k \Rightarrow \text{wlp} S_k Q) \land ((\forall k : 1 \leq k \leq n : \neg g_k) \Rightarrow Q)
\]

Note that converting this to a disjunctive form as we did to a normal if-then-else does not give an equivalent formula (and wrong):

\[
(\exists k : 1 \leq k \leq n : g_k \land \text{wlp} S_k Q) \lor ((\forall k : 1 \leq k \leq n : \neg g_k) \land Q)
\]

It worked with the normal if-then-else because the guard can only be either \( g \) or \( \neg g \); so there is no non-determinism there.

(c) Give the definition of \textit{repby} and propose a definition of the \( \text{wlp} \) of assignments that target a two dimensional array.

**Answer:**

\[
a(i, j \text{ repby}_2 e) = a(i \text{ repby}_1 (a[i](j \text{ repby}_1 e)))
\]

So, \( a(i, j \text{ repby}_2 e)[i][j] = a(i \text{ repby}_1 (a[i](j \text{ repby}_1 e)))[i][j] \), which is equal to:

\[
(a[i](j \text{ repby}_1 e))[j]
\]

which is equal to \( e \). If we assume \( j \neq 0 \), then notice that \( a(i, j \text{ repby}_2 e)[i][0] \) by applying the same unfolding is:

\[
(a[i](j \text{ repby}_1 e))[0]
\]

which is then equal to \( a[i][0] \).
4. Basic HOL [1 pt].

(a) In HOL, a tactic is a function of the type:

\[ \text{goal} \rightarrow (\text{goal list} \# \text{proofFunction}) \]

where \text{goal} = (\text{term list} \# \text{term}) and \text{proofFunction} = \text{thm list} \rightarrow \text{thm}.

The combinator \text{TAC} : \text{tactic} \rightarrow \text{tactic} \rightarrow \text{tactic} applies two tactics one after another. That is, \( t_1 \ \text{TAC} \ t_2 \) applies \( t_1 \) on the given goal, then it applies \( t_2 \) on all the subgoals produced by \( t_1 \). Note that \text{TAC} produces a new tactic (you can see it in its type!) that internally does what is said in the previous sentence.

Give the definition of \text{TAC}. You can give the definition in terms of a pseudo-code (it does not have to be in ML).

Answer:

\[
(t_1 \ \text{TAC} \ t_2)g = \text{let} \ (\text{subgoals},pf_1) = t_1 \ g \ (\text{moregoals},pf_s) = \text{unzip} \ (\text{map} \ t_2 \ \text{subgoals}) \ \\
\text{lengths} = \text{map} \ \text{length} \ \text{moregoals} \ \\
in \ (\text{concat} \ \text{moregoals},(\lambda \text{thmlist}.\text{pf}_1 [f \ \text{thms} | (f,\text{thms}) \in pf_s \times \text{segmentize} \ \text{lengths} \ \text{thmlist}]))
\]

where \text{segmentize} \ ns \ s \ divides \ s \ in \ segments \ of \ lengths \ as \ in \ ns:

\[
\text{segmentize} \ [] [] = [] \\
\text{segmentize} \ (n : \text{rest}) s = \text{take} \ n \ s : \text{segmentize} \ \text{rest} \ (\text{drop} \ n \ s)
\]

(b) Show how the quantifiers \( \forall \) and \( \exists \) are defined in the primitive HOL. If you use operators other than function application, \( \lambda \), =, \( \Rightarrow \), and T define your operators as well.

Answer:

\[
\forall P = (P = (\lambda x. T)) \\
\exists P = P(@P)
\]

where @ is defined through an axiom, namely, for all \( P, x, P \ x \Rightarrow P(@P) \)

5. Hoare Logic [0.5 pt, challenging].

Consider again the language \( L_0 \) in the question No. 1. Propose how to calculate the wlp of the statements in \( L_0 \). Keep in mind that we have defined a post-condition in \( L_0 \) to be a pair of predicates \( Q_N, Q_E \) specifying the program final state when it ends normally, and when it ends exceptionally.

Answer: The idea is to define \text{wlp} \ S \ Q_N to calculate the weakest pre-condition (a single predicate) so that we will end up either normally in \( Q_N \) or exceptionally in \( Q_E \). Below \( Q_E \) is always the same \( Q_E \) as the top-level \( Q_E \):

(a) Assignment. We take into account that the program break if \( e \) evaluates to \( \perp \), in which case the resulting state should satisfy \( Q_E \).

\[
\text{wlp} \ (x := e) \ Q_N = (e \neq \perp \Rightarrow Q_N[e/v]) \land (e = \perp \Rightarrow Q_E)
\]

(b) If-then-else. We take into account that the program break if \( g \) evaluates to \( \perp \), in which case the resulting state should satisfy \( Q_E \).

\[
\text{wlp} \ (\text{if} \ g \ \text{then} \ S_1 \ \text{else} \ S_E) \ Q_N = (g \neq \perp \land g \Rightarrow \text{wlp} \ S_1 \ Q_N) \land (g \neq \perp \land \neg g \Rightarrow \text{wlp} \ S_E \ Q_N) \land (g = \perp \Rightarrow Q_E)
\]

(c) The \text{wlp} of sequential composition (in a body) can be defined as usual:

\[
\text{wlp} \ [] \ Q_N = Q_N \\
\text{wlp} \ (S_1; \text{rest}) \ Q_N = \text{wlp} \ S_1 \ (\text{wlp} \ \text{rest} \ Q_N)
\]
6. **HOL** [4 subquestions for total 4 pt, time: 48 hrs].

From the PV website, you can download the file hol_exam1718.smx. This is basically the same as in the HOL-tutorial.

It contains the following parts:

**Section 1** defines an embedding of a subset of GCL in HOL. It also contains an example of how a simple GCL program is expressed in HOL.

**Section 2** defines the semantic of GCL constructs, the semantic of Hoare triple, and provides a definition of wlp.

**Section 3** provides the proofs of some basic laws of Hoare logic, for example these:

**Pre-condition strengthening:**

\[
\begin{align*}
\{ q \} \text{ stmt } \{ r \} , & \quad p \Rightarrow q \\
\{ p \} \text{ stmt } \{ r \}
\end{align*}
\]

**Post-condition weakening:**

\[
\begin{align*}
\{ p \} \text{ stmt } \{ q \} , & \quad q \Rightarrow r \\
\{ p \} \text{ stmt } \{ r \}
\end{align*}
\]

**Section 4** proves the soundness the wlp defined in Section 3. 'Sound' here means that any final state that results from executing a GCL statement stmt from any state in the pre-condition produced by wlp stmt q will satisfy q. In other words, the following Hoare triple is always valid:

\[
\{ \text{wlp stmt q} \} \text{ stmt } \{ q \}
\]

for any GCL statement stmt.

**Section 5** shows how to prove the correctness of the example from Section 1, with respect to some post-condition.

The problems that you have to solve are listed below. Send your solution in the form of a modified script hol_exam1718.smx, that contains all your proofs. Rename the file to yourname_hol_exam1718.smx, and mark the parts that contain your proofs.

(a) (0.5 pt) Extend Section 5. Give a representation of a GCL statement that calculates \(\min(x, y)\) and stores the result in \(x\). **Prove** that your statement satisfies this Hoare triple:

\[
\{(x = X) \land (y = Y)\} \text{ your-stmt } \{(x = X) \lor (x = Y)\} \land x \leq X \land x \leq Y
\]

Do note that in HOL, "=" has a low priority; so you usually need to bracket its use. Also note that to finish (directly prove) a goal that purely involves integer arithmetic, you can use COOPER_TAC (rather than PROVE_TAC; in fact, the latter won’t work in such a situation).

(b) (0.5 pt) Extend Section 3. Prove the following law about Hoare triples (I will spell out the law this time):

For any statement stmt (in our GCL), and any predicates \(p_1, p_2, q_1, q_2\): if \(\{ p_1 \} \text{ stmt } \{ q_1 \}\) and \(\{ p_2 \} \text{ stmt } \{ q_2 \}\) are two valid specifications, then the following are also valid:

i. \(\{ p_1 \land p_2 \} \text{ stmt } \{ q_1 \land q_2 \}\)

ii. \(\{ p_1 \lor p_2 \} \text{ stmt } \{ q_1 \lor q_2 \}\)
(c) (1 pt) Introduce a concept of program refinement. A GCL statement $stmt_1$ is said to refine another statement $stmt_2$ if all Hoare triple specifications that are valid for $stmt_2$ are also valid for $stmt_1$.

Task: propose a reasonable condition under which the GCL statement "assume $p$; $stmt_1$" would refine the statement "assume $p$; if $g$ then $stmt_1$ else $stmt_2$".

Prove your claim in HOL (put it in Section-3).

(d) (1 pt) You need to extend Section 1 and Section 2. We want to introduce a new construct:

$$\text{PERM } stmt_1 \ stmt_2$$

This will execute either the sequence $stmt_1 ; stmt_2$ or the sequence $stmt_2 ; stmt_1$. The choice is non-deterministic.

Propose the wlp of such a construct, and prove the soundness of your proposal. That is, you want to prove:

$$\{ \text{wlp (PERM } stmt_1 \ stmt_2) \ q \} \ \text{PERM } stmt_1 \ stmt_2 \ \{ \ q \}$$

*Hint:* add a non-deterministic-choice operator to GCL, then re-prove SOUND_wlp.thm.

(e) (0.5pt) Consider the following construct of for-loop:

$$\text{for } \text{invariant } (\text{init} ; g ; \text{incr}) \ \text{body}$$

where $\text{init}$ is an assignment; $g$ is a predicate; $\text{incr}$ and $\text{body}$ are statements; and $\text{invariant}$ is a proposed invariant for the loop.

The execution of such a loop proceeds as 'usual', namely as follows. First $\text{init}$ is executed, then we start to iterate. If the guard $g$ evaluates to true we will do the $\text{body}$ followed by $\text{incr}$. Then $g$ is evaluated again. If it is true, we do another iteration and so on. If $g$ is false when it is evaluated, the loop terminates.

Prove that the wlp of such a loop is sound. This should be quite easy if you have done the H3 assignment.

(f) (0.5, challenging) Extend Section 3. Someone proposes the following law on Hoare triples:

$$\{p_1\} \ stmt \ \{q_1\} \ , \ \{p_2\} \ stmt \ \{q_2\} \ \rightarrow \ \{p_1 \lor p_2\} \ stmt \ \{q_1 \land q_2\}$$

Please notice the subtle difference with the previous law in 6b. Prove or disapprove this law. (yes, you can disapprove a law proposal in HOL, because it is higher order, but you would first need to formulate the disapproval).