1. Below you see a Kripke structure; let’s call it M. Give its explicit definition in terms of a tuple etc (see the formal definition in the slides).

(a) Why don’t we have final states there?
(b) How is the notion of ‘execution’ defined for a Kripke structure? And what is an ‘abstract execution’?
(c) Give an execution of M that satisfies the property $\mathbf{X} (\text{busy U } (x=0))$. Does M satisfies the property?
(d) So, given a property Kripke structure M, an (abstract) execution Π, and a property ϕ, and an natural number i, what is the difference between:
 - $M \models \psi$
 - $\Pi \models \psi$
 - $\Pi \models_i \psi$

2. Express the following requirements in LTL. Make the necessary assumptions if you have to; but be reasonable.

(a) P and Q cannot not use a resource r simultaneously.
(b) If P requests access to r, eventually it will get the access.
(c) If P requests access to r, eventually it will get the access; but only if P persists on maintaining the request.
(d) P cannot access r without first requesting it; and it cannot do so (make a request) without first releasing r (if it was busy using r).

3. Construct Buchi automata representing the following LTL formulas:

(a) $p \mathbf{W} q$, where p, q are atomic propositions.
(b) $\neg (x>0 \mathbf{U} x=y)$
(c) $p \mathbf{U} (q \mathbf{U} r)$, where p, q are atomic propositions.
(d) $(\mathbf{X} x>0) \mathbf{U} x=y$
(e) $\Diamond \Box (x>0 \Rightarrow x=y)$
(f) $(p \mathbf{U} q) \mathbf{W} r$