Chapter 2:

Preliminaries
Random variables

Let $V = \{V_1, \ldots, V_n\}$, $n \geq 1$, be a set of random variables. Each variable $V_i \in V$ can take on one of $m \geq 2$ values; for now we consider 2-valued variables:

- $V_i = true$, denoted by v_i;
- $V_i = false$, denoted by $\neg v_i$ (or by $\overline{v_i}$).

The set V spans a Boolean Algebra of logical propositions \mathcal{V}:

- $T(\text{rue}), F(\text{alse}) \in \mathcal{V}$;
- for all variables $V_i \in V$ we have that $v_i \in \mathcal{V}$;
- for all $x \in \mathcal{V}$ we have that $\neg x \in \mathcal{V}$;
- for all $x, y \in \mathcal{V}$ we have that $x \land y \in \mathcal{V}$ and $x \lor y \in \mathcal{V}$.

The elements of \mathcal{V} obey the usual rules of propositional logic.
The joint probability distribution

Definition:

Let \mathcal{V} be the Boolean Algebra of propositions spanned by a set of random variables \mathcal{V}. Let $\Pr : \mathcal{V} \to [0, 1]$ be a function such that

- Pr is **positive**: for each $x \in \mathcal{V}$ we have that $\Pr(x) \geq 0$ and, more specifically, $\Pr(\mathsf{F}) = 0$;
- Pr is **normed**: $\Pr(\mathsf{T}) = 1$;
- Pr is **additive**: we have, for each $x, y \in \mathcal{V}$ with $x \land y \equiv \mathsf{F}$, that $\Pr(x \lor y) = \Pr(x) + \Pr(y)$.

The function \Pr is a joint probability distribution on \mathcal{V}; the function value $\Pr(x)$ is the probability of x.

Independence of propositions

Definition: Let \mathcal{V} be the Boolean Algebra of propositions spanned by a set of random variables V. Let \Pr be a joint probability distribution on V.

Two propositions $x, y \in \mathcal{V}$ are called **independent** in \Pr if

$$\Pr(x \wedge y) = \Pr(x) \cdot \Pr(y)$$

The propositions $x, y \in \mathcal{V}$ are called **conditionally independent** given the proposition $z \in \mathcal{V}$ if we have that

$$\Pr(x \wedge y | z) = \Pr(x | z) \cdot \Pr(y | z)$$
The two notions of independence (1)

• Consider two propositions $x, y \in \mathcal{V}$ such that x and y are independent 1:

Can $z \in \mathcal{V}$ exist such that x and y are dependent given z?

• Yes:

1The square has area 1, representing the total probability mass.
The two notions of independence (2)

- Consider two propositions $x, y \in \mathcal{V}$ such that x and y are dependent:

 \[x \quad y \]

 Can $z \in \mathcal{V}$ exist such that x and y are conditionally independent given z?

- Yes:

 \[x \quad y \quad z \]
Configurations

Let V be a set of random variables and let $W \subseteq V$.

- a configuration c_W of W is a conjunction of value assignments to the variables from W;
- convention: $c_\emptyset = T$;
- w is used to denote a specific configuration of W.
- W also indicates all possible configurations to the set W (notation abuse!): W is then considered to be a template that can be filled in with any configuration c_W.

Example: Let $W = \{V_1, V_3, V_7\}$. $W = V_1 \land V_3 \land V_7$ denotes a configuration template: filling in values for V_i results in proper propositions/configurations. Some configurations c_W of W are:

\[
V_1 = true \land V_3 = true \land V_7 = false \\
v_1 \land \neg v_3 \land v_7 \\
\neg v_1 \land v_3 \land \neg v_7
\]
Conventions and notation

In the remainder of this course, for distributions on $\Pr(V)$:

- rather than talking about propositions $x \in \mathcal{V}$ spanned by \mathcal{V}
- we refer to configurations $c_{\mathcal{V}}$ of \mathcal{V}

<table>
<thead>
<tr>
<th>Variables/templates (capital)</th>
<th>Set (bold faced)</th>
<th>Singleton</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{V}</td>
<td>\mathcal{V}</td>
<td>\mathcal{V}</td>
</tr>
<tr>
<td>$c_{\mathcal{V}}, v$</td>
<td>$c_{\mathcal{V}}, v$</td>
<td></td>
</tr>
</tbody>
</table>

- conjunctions are often left implicit: e.g. $v_1 \land v_2$ denotes $v_1 \land v_2$;
- note the following differences (!)

probabilities: $\Pr(c_{\mathcal{V}}), \Pr(c_{\mathcal{V}}), \Pr(v), \Pr(v), \Pr(v \mid c_E)$
distributions: $\Pr(\mathcal{V}), \Pr(\mathcal{V}), \Pr(\mathcal{V} \mid e)$
distribution sets: $\Pr(\mathcal{V} \mid \mathcal{E}), \Pr(\mathcal{V} \mid \mathcal{E})$
Independence of variables

Definition: Let V be a set of random variables and let $X, Y, Z \subseteq V$. Let \Pr be a joint distribution on V.

The set of variables X is called **conditionally independent of** the set Y given the set Z in \Pr, if we have that

$$\Pr(X | Y \land Z) = \Pr(X | Z)$$

Remarks:

- the expression $\Pr(X | Y \land Z) = \Pr(X | Z)$ represents that $\Pr(c_X | c_Y \land c_Z) = \Pr(c_X | c_Z)$ holds for all configurations c_X, c_Y and c_Z of X, Y and Z;
- $\Pr(X | Y \land Z) = \Pr(X | Z) \Rightarrow
 \Pr(X \land Y | Z) = \Pr(X | Z) \cdot \Pr(Y | Z)$ (what about \Leftarrow).
Chapter 3:

Independences and Graphical Representations
A qualitative notion of independence

Observation:

People are capable of making statements about independences among variables without having to perform numerical calculations.

Conclusion:

In human reasoning behaviour, the qualitative notion of independence is more fundamental than the quantitative notion of independence.
The (probabilistic) independence relation of a joint distribution

Definition: Let V be a set of random variables and let \Pr be a joint probability distribution on V.

The independence relation I_{\Pr} of \Pr is a set $I_{\Pr} \subseteq \mathcal{P}(V) \times \mathcal{P}(V) \times \mathcal{P}(V)$, defined for all $X, Y, Z \subseteq V$ by

$$(X, Z, Y) \in I_{\Pr} \text{ if and only if } \Pr(X \mid Y \land Z) = \Pr(X \mid Z).$$

Remarks:

- $(X, Z, Y) \in I_{\Pr}$ will be written as $I_{\Pr}(X, Z, Y)$;
- $(X, Z, Y) \notin I_{\Pr}$ will be written as $\neg I_{\Pr}(X, Z, Y)$;
- a statement $I_{\Pr}(X, Z, Y)$ is called an independence statement for the joint distribution \Pr.

Properties of I_{Pr}: symmetry

Lemma: $I_{Pr}(X, Z, Y)$ if and only if $I_{Pr}(Y, Z, X)$

Proof:

\[I_{Pr}(X, Z, Y) \iff \Pr(X \mid Y \land Z) = \Pr(X \mid Z) \]

\[\iff \frac{\Pr(X \land Y \land Z)}{\Pr(Y \land Z)} = \frac{\Pr(X \land Z)}{\Pr(Z)} \]

\[\iff \frac{\Pr(X \land Y \land Z)}{\Pr(X \land Z)} = \frac{\Pr(Y \land Z)}{\Pr(Z)} \]

\[\iff \Pr(Y \mid X \land Z) = \Pr(Y \mid Z) \]

\[\iff I_{Pr}(Y, Z, X) \]
Properties of I_{Pr}: decomposition

Lemma: $I_{Pr}(X, Z, Y \cup W) \Rightarrow I_{Pr}(X, Z, Y) \land I_{Pr}(X, Z, W)$

Proof: (sketch) (Note: $c_{Y \cup W} = c_Y \land c_W$) Suppose that

$Pr(X \mid Y \land W \land Z) = Pr(X \mid Z)$. Then, by definition,

$$Pr(X \land Y \land W \land Z) = Pr(Y \land W \land Z) \cdot \frac{Pr(X \land Z)}{Pr(Z)}$$

For $Pr(X \mid Y \land Z)$ we find that

$$Pr(X \mid Y \land Z) = \frac{Pr(X \land Y \land Z)}{Pr(Y \land Z)}$$

$$= \sum_{c_W} \frac{Pr(X \land Y \land Z \land c_W)}{Pr(Y \land Z)}$$

$$= \frac{Pr(X \land Z)}{Pr(Z)} = Pr(X \mid Z) \quad \blacksquare$$
Properties of I_{Pr}: weak union, contraction

Lemma:

- if $I_{Pr}(X, Z, Y \cup W)$ then $I_{Pr}(X, Z \cup W, Y)$ (weak union);
- if $I_{Pr}(X, Z, W)$ and $I_{Pr}(X, Z \cup W, Y)$ then $I_{Pr}(X, Z, Y \cup W)$ (contraction)
- (for strictly positive Pr also the intersection property holds; see syllabus)

Proof: left as exercise 3.1.

What about \Leftarrow?
The definition of the independence relation

Joint Distribution Pr

Independence relation I_{Pr}

Properties: symmetry, decomposition, weak union, contraction

Independence relation I

Axioms: symmetry, decomposition, weak union, contraction
The (qualitative) independence relation I

Definition:
Let V be a set of random variables and let $X, Y, Z, W \subseteq V$.

An independence relation I on V is a ternary relation $I \subseteq \mathcal{P}(V) \times \mathcal{P}(V) \times \mathcal{P}(V)$ that satisfies the following properties:

- if $I(X, Z, Y)$ then $I(Y, Z, X)$;
- if $I(X, Z, Y \cup W)$ then $I(X, Z, Y)$ and $I(X, Z, W)$;
- if $I(X, Z, Y \cup W)$ then $I(X, Z \cup W, Y)$;
- if $I(X, Z, W)$ and $I(X, Z \cup W, Y)$ then $I(X, Z, Y \cup W)$.

The first property is called the symmetry axiom; the second is called the decomposition axiom; the third is referred to as the weak union axiom; the last one is called contraction.
Lemma:
Let I be an independence relation on a set of random variables V. We have that

$$\text{if } I(X, Z, Y) \text{ and } I(X \cup Z, Y, W) \text{ then } I(X, Z, W)$$

for all $X, Y, Z, W \subseteq V$.

Proof:
We observe that

$$I(X \cup Z, Y, W) \implies_{\text{symm}} I(W, Y, X \cup Z) \implies_{\text{weakunion}}$$

$$\implies I(W, Y \cup Z, X) \implies_{\text{symm}} I(X, Y \cup Z, W)$$

From $I(X, Z, Y)$, $I(X, Y \cup Z, W)$ and the contraction axiom, we have that $I(X, Z, W \cup Y)$; decomposition now gives $I(X, Z, W)$.

\[\blacksquare\]
Representing independences

Different ways exist of representing an independence relation:

• all independence statements of the relation are explicitly stated;
• only the independence statements of a suitable subset of the relation are explicitly stated — all other statements are implicitly represented by means of the axioms;
• the independence relation is coded in a graph;
• . . .
An example

Consider $V = \{V_1, V_2, V_3, V_4\}$ and independence relation I on V:

\[
\begin{align*}
I(\{V_1\}, \emptyset, \{V_4\}) & \quad I(\{V_2\}, \emptyset, \{V_4\}) & \quad I(\{V_4\}, \emptyset, \{V_1\}) \\
I(\{V_2\}, \emptyset, \{V_4\}) & \quad I(\{V_1, V_4\}, \emptyset, \{V_2\}) & \quad I(\{V_4\}, \{V_1\}, \{V_2\}) \\
I(\{V_3\}, \emptyset, \{V_4\}) & \quad I(\{V_2, V_4\}, \emptyset, \{V_1\}) & \quad I(\{V_4\}, \{V_1\}, \{V_3\}) \\
I(\{V_4\}, \emptyset, \{V_1\}) & \quad I(\{V_2\}, \emptyset, \{V_1, V_4\}) & \quad I(\{V_4\}, \{V_1\}, \{V_2, V_3\}) \\
I(\{V_4\}, \emptyset, \{V_2\}) & \quad I(\{V_1\}, \emptyset, \{V_2, V_4\}) & \quad I(\{V_1\}, \{V_2\}, \{V_4\}) \\
I(\{V_4\}, \emptyset, \{V_3\}) & \quad I(\{V_2\}, \{V_1\}, \{V_4\}) & \quad I(\{V_3\}, \{V_2\}, \{V_4\}) \\
I(\{V_4\}, \emptyset, \{V_3\}) & \quad I(\{V_2\}, \{V_1\}, \{V_4\}) & \quad I(\{V_4\}, \{V_2\}, \{V_1\}) \\
I(\{V_1, V_2\}, \emptyset, \{V_4\}) & \quad I(\{V_3\}, \{V_1\}, \{V_4\}) & \quad I(\{V_4\}, \{V_2\}, \{V_1\}) \\
I(\{V_1, V_3\}, \emptyset, \{V_4\}) & \quad I(\{V_2, V_3\}, \{V_1\}, \{V_4\}) & \quad I(\{V_4\}, \{V_2\}, \{V_3\}) \\
I(\{V_2, V_3\}, \emptyset, \{V_4\}) & \quad I(\{V_4\}, \{V_1, V_2\}, \{V_3\}) & \quad I(\{V_4\}, \{V_2\}, \{V_1, V_3\}) \\
I(\{V_4\}, \emptyset, \{V_1, V_2\}) & \quad I(\{V_2\}, \{V_1, V_3\}, \{V_4\}) & \quad I(\{V_1\}, \{V_3\}, \{V_4\}) \\
I(\{V_4\}, \emptyset, \{V_1, V_3\}) & \quad I(\{V_4\}, \{V_1, V_3\}, \{V_2\}) & \quad I(\{V_2\}, \{V_3\}, \{V_4\}) \\
I(\{V_4\}, \emptyset, \{V_2, V_3\}) & \quad I(\{V_1\}, \{V_2, V_3\}, \{V_4\}) & \quad I(\{V_1, V_2\}, \{V_3\}, \{V_4\}) \\
I(\{V_4\}, \emptyset, \{V_2, V_3\}) & \quad I(\{V_4\}, \{V_2, V_3\}, \{V_1\}) & \quad I(\{V_1\}, \{V_4\}, \{V_2\}) \\
I(\{V_4\}, \emptyset, \{V_2, V_3\}) & \quad I(\{V_4\}, \{V_3\}, \{V_1, V_2\}) & \quad I(\{V_2\}, \{V_4\}, \{V_1\}) \\
I(\{V_4\}, \emptyset, \{V_1, V_2, V_3\}) & \quad I(\{V_4\}, \{V_3\}, \{V_1\}) & \quad I(\{V_3\}, \{V_1, V_2\}, \{V_4\}) \\
I(\{V_4\}, \emptyset, \{V_1, V_2, V_3\}) & \quad I(\{V_4\}, \{V_3\}, \{V_1\}) & \quad I(\{V_3\}, \{V_1, V_2\}, \{V_4\})
\end{align*}
\]
The representation of an independence relation in an undirected graph

Consider an independence relation I and an undirected graph:

The global idea is:

- represent each variable V_i by a node V_i in the graph, and v.v.;
- code the independence statements of I by means of missing edges.
The separation criterion: introduction

Definition:
Let $G = (V_G, E_G)$ be an undirected graph with edges E_G and nodes $V_G = \{V_1, \ldots, V_n\}$, $n > 1$.

Let s be a path in G from a node V_i to a node V_j.

The path s is blocked by a set of nodes $Z \subseteq V_G$, if at least one node from Z is on the path s.

If s is not blocked by Z, the path is called active given Z.
The separation criterion

Definition:
Let $G = (V_G, E_G)$ be an undirected graph. Let $X, Y, Z \subseteq V_G$ be sets of nodes in G.

The set Z separates the set X from Y in G— Notation: $\langle X \mid Z \mid Y \rangle_G$— if every simple path in G from a node in X to a node in Y is blocked by Z.

Remarks:

- the above notion is known as the separation criterion for undirected graphs;
- if there is no path between the nodes X and Y in a graph G, then $\langle X \mid \emptyset \mid Y \rangle_G$.
Which of the following separation statements are valid?

a) $\langle \{V_1\} \mid \{V_2\} \mid \{V_3, V_6\} \rangle_G$

b) $\langle \{V_4\} \mid \{V_2, V_5\} \mid \{V_6\} \rangle_G$

c) $\langle \{V_4\} \mid \{V_1, V_2, V_5\} \mid \{V_6\} \rangle_G$

d) $\langle \{V_1\} \mid \{V_4\} \mid \{V_5\} \rangle_G$

e) $\langle \{V_1, V_5, V_6\} \mid \emptyset \mid \{V_7\} \rangle_G$

f) $\langle \{V_2\} \mid \{V_5\} \mid \{V_7\} \rangle_G$

g) $\langle \{V_1\} \mid \{V_5\} \mid \{V_2\} \rangle_G$
Independence relations and undirected graphs

Definition: Let I be an independence relation on a set of random variables V. Let $G = (V_G, E_G)$ be an undirected graph with $V_G = V$.

- **graph G is called a dependency map** (D-map) for I if for all $X, Y, Z \subseteq V$ we have:

 \[\text{if } I(X, Z, Y) \text{ then } \langle X \mid Z \mid Y \rangle_G; \]

- **graph G is called an independency map** (I-map) for I if for all $X, Y, Z \subseteq V$ we have:

 \[\text{if } \langle X \mid Z \mid Y \rangle_G \text{ then } I(X, Z, Y); \]

- **graph G is called a perfect map** (P-map) for I if G is both a dependency map and an independency map for I.
undirected D-maps: what do they tell?

Let I be an independence relation and G an undirected graph.

Consider a D-map for I, then

V_1 and V_2 neighbours $\implies V_1, V_2$ dependent

$\neg \langle \{V_1\} \mid Z \mid \{V_2\} \rangle_G$ $\neg I(\{V_1\}, Z, \{V_2\})$

V_1 and V_2 non-neighbours \implies ??

$\langle \{V_1\} \mid Z \mid \{V_2\} \rangle_G$ dependent

independent

$\text{conditionally independent}$

Note: statements hold for all $Z \subseteq V_G \setminus (\{V_1\} \cup \{V_2\})$!
An example

Consider the independence relation I on $V = \{V_1, \ldots, V_4\}$, defined by

$$I(\{V_1\}, \{V_2, V_3\}, \{V_4\}) \text{ and } I(\{V_2\}, \{V_1, V_4\}, \{V_3\})$$

Which of the following undirected graphs are examples of D-maps for I?
Undirected I-maps: what do they tell?

Let I be an independence relation and G an undirected graph.

Consider an I-map for I, then

V_1 and V_2 non-neighbours $\implies V_1, V_2$ (cond.) independent

\[\langle \{V_1\} \mid Z \mid \{V_2\} \rangle_G \]

$I(\{V_1\}, Z, \{V_2\})$

V_1 and V_2 neighbours $\implies ??$

\[\neg \langle \{V_1\} \mid Z \mid \{V_2\} \rangle_G \]

dependent

independent

conditionally independent

Note: statements hold for all $Z \subseteq V_G \setminus (\{V_1\} \cup \{V_2\})$!
An example

Consider the independence relation I on $V = \{V_1, \ldots, V_4\}$, defined by

$$I(\{V_1\}, \{V_2, V_3\}, \{V_4\}) \text{ and } I(\{V_2\}, \{V_1, V_4\}, \{V_3\})$$

Which of the following undirected graphs are examples of I-maps for I?
Properties of I

Let I be an independence relation on a set of random variables V.

Lemma:
Every independence relation I has an undirected D-map.

Proof:
The undirected graph $G = (V, \emptyset)$ is a D-map for I. ■

Lemma:
Every independence relation I has an undirected I-map.

Proof:
The undirected graph $G' = (V, V \times V)$ is an I-map for I. ■
Consider the independence relation I on $\mathbf{V} = \{V_1, \ldots, V_4\}$, defined by

$$I(\{V_1\}, \{V_2, V_3\}, \{V_4\}) \text{ and } I(\{V_2\}, \{V_1, V_4\}, \{V_3\})$$

The following undirected graph is a perfect map for I:

![Graph with nodes V_1, V_2, V_3, V_4 connected in a square]

Is this P-map for I unique? Does every I have a P-map?
An example

Consider an experiment with two coins and a bell: the bell sounds iff the two coins have the same outcome after a toss.

Consider: variable C_1: the outcome of tossing coin one;
variable C_2: the outcome of tossing coin two;
variable B: whether or not the bell sounds;
independence relation I for this experiment.

We have, among others, that

\[
I(\{C_1\}, \emptyset, \{C_2\}) \quad \neg I(\{C_1\}, \{B\}, \{C_2\})
\]
\[
I(\{C_1\}, \emptyset, \{B\}) \quad \neg I(\{C_1\}, \{C_2\}, \{B\})
\]
\[
I(\{C_2\}, \emptyset, \{B\}) \quad \neg I(\{C_2\}, \{C_1\}, \{B\})
\]

This independence relation is an example of an independence relation with an induced dependency.
An example

Reconsider the experiment with the two coins and the bell.

• the following graph is a D-map for the independence relation I of this experiment:

• the following graph is an I-map for I:

• Does I have a perfect map?
The representation of an independence relation in a directed graph

Consider an independence relation I and a directed graph G:

The global idea is:

- represent each variable V_i of I by a node V_i in G, and v.v.;
- code the independence statements of I by means of missing arcs in the graph;
- use the direction of the arcs to represent induced dependencies.
The formalism of the directed graph is more expressive than the formalism of the undirected graph:
Causality?

Consider the following examples:

- length → age → reading
- weather → harvest → grain price
- burglar → alarm → earthquake
Introduction, continued

We aim to represent the following (in)dependences with directed graphs:

- \(I(\{V_2\}, \emptyset, \{V_3\}) \) and \(\neg I(\{V_2\}, \{V_1\}, \{V_3\}) \):

- \(I(\{V_2\}, \{V_1\}, \{V_3\}) \) and \(\neg I(\{V_2\}, \emptyset, \{V_3\}) \):

- \(I(\{V_2\}, \{V_1\}, \{V_3\}) \) and \(\neg I(\{V_2\}, \emptyset, \{V_3\}) \):
The d-separation criterion: introduction

Definition: Let \(G = (V_G, A_G) \) be an acyclic directed graph (DAG), and let \(s \) be a chain in \(G \) between \(V_i \) and \(V_j \in V_G \).

Chain \(s \) is blocked (or: in-active) by a set \(Z \subseteq V_G \) if \(s \) contains a node \(W \) for which one of the following holds:

- \(W \in Z \) and \(W \) has at most one incoming arc on chain \(s \):
 \[
 V_i/V_j = \begin{array}{c}
 \circlearrowleft \\
 \circlearrowright \\
 V_i/V_j = W
 \end{array}
 \]
- \(\sigma^*(W) \cap Z = \emptyset \) and \(W \) has two incoming arcs on chain \(s \):
 \[
 \begin{array}{c}
 \circlearrowleft \\
 \circlearrowright \\
 W
 \end{array}
 \]
An example

Consider the following DAG and some of its chains:

1) V_4, V_2, V_5 from V_4 to V_5
2) V_1, V_2, V_5, V_6, V_7 from V_1 to V_7
3) V_3, V_4, V_6, V_5 from V_3 to V_5
4) V_2, V_4 from V_2 to V_4

Which of these chains is blocked by which of the following sets?

$\{V_2\}, \{V_5\}, \{V_2, V_5\}, \{V_4\}, \{V_6\}, \{V_4, V_6\}$
The d-separation criterion

Definition:
Let $G = (V_G, A_G)$ be an acyclic directed graph. Let $X, Y, Z \subseteq V_G$ be sets of nodes in G.

The set Z d-separates X from Y in G—notation: $\langle X \mid Z \mid Y \rangle^d_G$—if every simple chain in G from a node in X to a node in Y is blocked by Z.

Remarks:

- The above notion is known as the d-separation criterion;
- $\langle X \mid \emptyset \mid Y \rangle^d_G$ indicates that all chains between X and Y, if any, contain a head-to-head node;
- if X and Y are not d-separated by Z, we say that they are d-connected given Z.
An example

Consider the following DAG and d-separation statements:

\[a) \quad \langle \{V_1\} \mid \{V_2, V_3\} \mid \{V_5\}\rangle^d_G \]
\[b) \quad \langle \{V_1\} \mid \{V_4\} \mid \{V_5\}\rangle^d_G \]
\[c) \quad \langle \{V_2\} \mid \{V_1\} \mid \{V_3\}\rangle^d_G \]
\[d) \quad \langle \{V_2\} \mid \{V_1, V_5\} \mid \{V_3\}\rangle^d_G \]
\[e) \quad \langle \{V_2\} \mid \emptyset \mid \{V_3\}\rangle^d_G \]
\[f) \quad \langle \{V_1\} \mid \{V_3, V_4\} \mid \{V_2\}\rangle^d_G \]

Which d-separation statements are valid in the graph?
Bayes-Ball for determining d-separation

Determine if \(\langle X \mid Z \mid Y \rangle^d_G \) by dropping bouncing balls at \(X \) and following the 10 rules of Bayes-ball:

- \(Z \) is shaded
- a chain is active until a ball travelling along it meets a stop
- any node visited by a Bayes ball cannot be in \(Y \)
Independence relations and directed graphs

Definition:
Let I be an independence relation on a set of random variables V. Let $G = (V_G, A_G)$ be an acyclic directed graph with $V_G = V$.

- the graph G is called a (directed) dependency map (D-map) for I if for every $X, Y, Z \subseteq V$ we have that:

 if $I(X, Z, Y)$ then $\langle X | Z | Y \rangle^d_G$;

- the graph G is called a (directed) independency map (I-map) for I if for every $X, Y, Z \subseteq V$ we have that:

 if $\langle X | Z | Y \rangle^d_G$ then $I(X, Z, Y)$;

- the graph G is called a (directed) perfect map (P-map) for I if G is both a dependency map and an independency map for I.
Directed D-maps: what do they tell?

Let I be an independence relation and G a DAG.

Consider a D-map for I, then

V_1 and V_2 neighbours $\implies V_1, V_2$ dependent

$\neg \langle \{V_1\} \mid Z \mid \{V_2\} \rangle_G \implies \neg I(\{V_1\}, Z, \{V_2\})$

V_1 and V_2 non-neighbours \implies ??

$\langle \{V_1\} \mid Z \mid \{V_2\} \rangle_G$

dependent

independent

conditionally dependent ($Z = \emptyset$)

conditionally independent ($Z \neq \emptyset$)

Note: statements hold for all $Z \subseteq V_G \setminus (\{V_1\} \cup \{V_2\})$!
An example

Consider the independence relation I on $V = \{V_1, \ldots, V_4\}$ defined by

$$I(\{V_1\}, \emptyset, \{V_2\}) \text{ and } I(\{V_1, V_2\}, \{V_3\}, \{V_4\})$$

Which of the following DAGs are D-maps for I?
Directed I-maps

Let I be an independence relation and G a DAG.

Consider an I-map for I, then

V_1 and V_2 non-neighbours $\implies V_1, V_2$ (cond.) independent, or cond. dependent (= induced)

$$\langle \{V_1\} \mid Z \mid \{V_2\} \rangle_G \quad I(\{V_1\}, Z, \{V_2\})$$

V_1 and V_2 neighbours $\implies ??$

$$\neg \langle \{V_1\} \mid Z \mid \{V_2\} \rangle_G \quad \text{dependent}
\text{independent}
\text{conditionally dependent}
\text{conditionally independent}$$

Note: statements hold for all $Z \subseteq V_G \setminus (\{V_1\} \cup \{V_2\})$!
Consider the independence relation I on $V = \{V_1, \ldots, V_4\}$ defined by

$$I(\{V_1\}, \emptyset, \{V_2\}) \text{ and } I(\{V_1, V_2\}, \{V_3\}, \{V_4\})$$

Which of the following DAGs are I-maps for I?
Consider the independence relation I on $V = \{V_1, \ldots, V_4\}$ defined by

$$I(\{V_1\}, \emptyset, \{V_2\}) \text{ and } I(\{V_1, V_2\}, \{V_3\}, \{V_4\})$$

The following DAG is a perfect map for I:

Is this P-map for I unique?
An example

Consider the independence relation I on $\mathbf{V} = \{V_1, \ldots, V_4\}$ defined by

\[
I(\{V_1\}, \{V_2, V_3\}, \{V_4\}) \quad \text{and} \quad I(\{V_2\}, \{V_1, V_4\}, \{V_3\})
\]

The relation I does not have a directed perfect map. Consider for example the following DAG G:

In graph G we have that $\langle \{V_1\} \mid \{V_2, V_3\} \mid \{V_4\} \rangle^d_G$, but also that $\langle \{V_2\} \mid \{V_1\} \mid \{V_3\} \rangle^d_G$!
Independence relations and their graphical representation

Directed acyclic graphs

Undirected graphs

Independence relations

(Graph-isomorph: independence relation with perfect map.)
An I-map or a D-map?

Reconsider the independence relation I on $V = \{V_1, \ldots, V_4\}$ defined by

$$I(\{V_1\}, \{V_2, V_3\}, \{V_4\}) \text{ and } I(\{V_2\}, \{V_1, V_4\}, \{V_3\})$$

Compare the following two representations of independence relation I:

a D-map

and

an I-map
Recall what we were looking for...

- Compact representation of independence relation of \Pr;
- Factorise joint more efficiently than with chain rule \rightarrow store (conditional) distributions involving less variables:

\[
\Pr(V) = \Pr(V_n | V_{n-1} \land \ldots \land V_1) \cdot \ldots \cdot \Pr(V_2 | V_1) \cdot \Pr(V_1)
\] (chain rule)

\[
= \ldots
\]

\[
= \ldots
\]

\[
= \Pr(V_n) \cdot \ldots \cdot \Pr(V_2) \cdot \Pr(V_1)
\] (assuming mutual independence among all V_i)

- $\Pr(X \land Y) = \Pr(X) \cdot \Pr(Y)$ is mathematically correct only if X is truly independent of Y
A minimal I-map

Definition: Let I be an independence relation on a set of random variables V. Let $G = (V_G, A_G)$ be a graph with $V_G = V$.

The graph G is called a minimal I-map for I if the following conditions hold:

- G is an I-map for I, and
- no proper subgraph of G is an I-map for I.
An example

Consider the independence relation I on $V = \{V_1, \ldots, V_4\}$ defined by

$$I(\{V_1\}, \{V_2, V_3\}, \{V_4\}) \text{ and } I(\{V_2\}, \{V_1, V_4\}, \{V_3\})$$

The following DAG is a minimal I-map for I:

Is this minimal I-map for I unique?
Directed and undirected I-maps are related.

Definition: The moral graph of a DAG $G = (V_G, A_G)$ is the undirected graph obtained as follows:

- for each $V_k \in V_G$ add an edge between each pair of unconnected parents $V_i, V_j \in \rho_G(V_k)$;
- drop the directions of all arcs.

Definition: A graph is triangulated or chordal if any loop of length ≥ 4 contains a shortcut.

Proposition: Let I be an independence relation over V. Consider graphs $G = (V_G, A_G)$ and $G' = (V, E_{G'})$. Then,

\[
G \text{ is an I-map for } I \quad \iff \quad \text{moralisation+drop direction} \quad \iff \quad G' \text{ is an I-map for } I \quad \iff \quad \text{triangulation+add direction}
\]
Directed or undirected? (II)

Consider independence relation I_{Pr} over V and graph G with $V = V_G$. Consider the following properties (partly proven later):

- Let G be a DAG. Then G is a minimal directed I-map of I_{Pr} if and only if Pr factorises as
 \[Pr(V) = \prod_{V_i} Pr(V_i \mid \rho_G(V_i)) \]

- Let G be an undirected graph. Then G is an undirected I-map of I_{Pr} if and only if Pr can be written as
 \[Pr(V) = K \cdot \prod_{C_i} \Phi(C_i) \]
 what’s the meaning of these clique potentials?!?
 for some normalisation factor K.