1 Part I

1. I provide you with two proofs. The first one is shorter.

PROOF Top
[A1:] ¬(∀i:0≤i<n:b[i])
[A2:] (∀i:j≤i<n:b[i])
[G:] ¬(∀i:0≤i<j:b[i])

BEGIN
1. { see the subproof below } (∀i:0≤i<j:b[i]) ⇒ false
 PROOF SP1
 [A1:] (∀i:0≤i<j:b[i])
 [G:] false
 BEGIN
 1. { rewriting Top.A1 using Negate-∀ (Theorem A.4.7) }
 (∃i:0≤i<n:¬b[i])
 2. { Applying ∃-elimination on 1 } [SOME i] 0≤i<n ∧ ¬b[i]
 3. { see the subproof below } j≤i ⇒ false
 PROOF SP1.A
 [A1:] j≤i
 [G:] false
 BEGIN
 1. { SP1.2 implies i < n, put this in conjunction to A1 above }
 j≤i<n
 2. { ∀-elimination on Top.A2 using 1 above } b[i]
 3. { contradiction between 2 and the 2nd conjunct of SP1.2 }
 false
 END
 4. { see the subproof below } i<j ⇒ false
 PROOF SP1.B
 [A1:] i<j
 [G:] false
 BEGIN
 1. { SP1.2 implies 0 ≤ i, put this in conjunction to A1 above }
 0≤i<j
 2. { ∀-elimination on SP1.A1 using 1 above } b[i]
 3. { contradiction between 2 and the 2nd conjunct of SP1.2 }
 false
 END
 END

5. { trivial } j≤i ∨ i<j

6. { applying the Case-split Rule (Rule A.1.9) on 3,4,5 } false

END

2. { Contraduction Rule (Rule A.1.3) on 1 } ¬(∀i:0≤i<j:b[i])
END
Below is another way (more lengthy) to prove the same goal. The general idea is that \(A2 \) together with the negation of \(G \) implies \((\forall i : 0 \leq i < n : b[i])\), which is then in contradiction with \(A1 \), and thus closing a proof-by-contradiction. However, the previously mentioned implication actually assumes that \(j \) is in the interval \([0..n]\), which is nowhere assumed in \(A1 \) nor \(A2 \). This creates another proof obligation, namely that we have to prove the goal from the case where \(j \) is actually outside the domain of \([0..n]\).

PROOF Top

\[A1: \neg(\forall i : 0 \leq i < n : b[i]) \]
\[A2: (\forall i : j \leq i < n : b[i]) \]
\[G: \neg(\forall i : 0 \leq i < j : b[i]) \]

BEGIN

1. \{ see the subproof below \} \((\forall i : 0 \leq j < n : b[i]) \Rightarrow \text{false}\)

PROOF SP1

\[A1: (\forall i : 0 \leq j < n : b[i]) \]
\[G: \text{false} \]

BEGIN

1. \{ see the subproof below \} \(0 \leq j \leq n \Rightarrow \text{false} \)

PROOF SP1.A

\[A1: 0 \leq j \leq n \]
\[G: \text{false} \]

BEGIN

1. \{ conjunction of Top.A2 and SP1.A1 \} \((\forall i : 0 \leq i < j : b[i]) \land (\forall i : j \leq i < n : b[i])\)

2. \{ rewriting 1 with Domain Split (Theorem A.4.12) \} \((\forall i : 0 \leq i < j \lor j \leq i < n : b[i])\)

3. \{ Domain Merging (Theorem A.4.16) says that \(0 \leq i < j \lor j \leq i < n \) is equivalent to \(0 \leq i < n \), provided \(j \) is between 0 and \(n \), but this is justified by \(A1 \) above \} \((\forall i : 0 \leq i < n : b[i])\)

4. \{ contradiction between 4 and top.A1 \} \text{false}

END

2. \{ see the subproof below \} \(\neg(\exists j : j \leq n) \Rightarrow \text{false} \)

PROOF SP1.B

\[A1: \neg(0 \leq j \leq n) \]
\[G: \text{false} \]

BEGIN

1. \{ applying de Morgan on \(A1 \) and simplifying the result \} \(j < 0 \lor j > n \)

2. \{ HINTrewriting Top.A1 using Negate-\(\forall \) (Theorem A.4.7) \((\exists i : 0 \leq i < n : \neg b[i]) \)
3. \{ Applying \exists\text{-elimination on 1 } \} \{\text{SOME } i\} 0 \leq i < n \land \neg b[i] \\

4. \{ see the proof below \} j < 0 \Rightarrow false

PROOF SP1.B.1
[A1:] j < 0
[G:] false
BEGIN
1. \{ SP1.B.3’s left conjunct together with A1 imply: \} j \leq i < n
2. \{ \forall\text{-elimination on Top.A2 using 1 above } \} b[i]
3. \{ contradiction between 2 and the 2nd conjunct of SP1.B.3 \} false
END

5. \{ prove this yourself \} j > n \Rightarrow false

6. \{ applying the Case-split Rule (Rule A.1.9) on 1,4,5 \} false

END

3. \{ applying the Case-split Rule (Rule A.1.9) on 1,2,3 \} false

END

2. \{ Contradiction Rule (Rule A.1.3) on 1 \} \neg(\forall i : 0 \leq i < j : b[i])

END