Multimedia Retrieval
2018-2019
Evaluation, The user

Egon L. van den Broek
Accompanying literature

- The book’s chapters 10, 20, and 21
Evaluation, part II: The user, in three parts

Introduction

1. Performance metrics
2. Self-reported metrics (user perception)
3. Physiological metrics
INTRODUCTION
<table>
<thead>
<tr>
<th>Technique</th>
<th>Good for</th>
<th>Kind of data*</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interviews</td>
<td>Exploring issues</td>
<td>Some quantitative but mostly qualitative</td>
<td>Interviewer can guide interviewee if necessary.</td>
<td>Time-consuming. Artificial environment may intimidate interviewee</td>
</tr>
<tr>
<td>Focus groups</td>
<td>Collecting multiple viewpoints</td>
<td>Some quantitative but mostly qualitative</td>
<td>Highlights areas of consensus and conflict.</td>
<td>Possibility of dominant characters</td>
</tr>
<tr>
<td>Questionnaires</td>
<td>Answering specific questions</td>
<td>Quantitative and qualitative</td>
<td>Can reach many people with low resource</td>
<td>The design is crucial. Response rate may be low. Responses may not be what you want</td>
</tr>
<tr>
<td>Direct observation in the field</td>
<td>Understanding context of user activity</td>
<td>Mostly qualitative</td>
<td>Observing actual work gives insights that other techniques can't give</td>
<td>Very time-consuming. Huge amounts of data</td>
</tr>
<tr>
<td>Direct observation in a controlled environment</td>
<td>Capturing the detail of what individuals do</td>
<td>Quantitative and qualitative</td>
<td>Can focus on the details of a task without interruption</td>
<td>Results may have limited use in the normal environment because the conditions were artificial</td>
</tr>
<tr>
<td>Indirect observation</td>
<td>Observing users without disturbing their activity; data captured automatically</td>
<td>Quantitative (logging) and qualitative (diary)</td>
<td>User doesn't get distracted by the data gathering; automatic recording means that it can extend over long periods of time</td>
<td>A large amount of quantitative data needs tool support to analyze (logging); participants’ memories may exaggerate (diary)</td>
</tr>
</tbody>
</table>

* For a discussion of qualitative and quantitative see Section 8.2

Table 7.1 Overview of data gathering techniques and their use
Usability criteria

Specific criteria to assess the usability of your system, via measurement of user performance. For example,

• Efficiency: Time needed to complete a task
• Learnability: Time needed to learn a task
• Memorability: Number of errors made (after a while)
Criteria for User eXperience (UX)

“User eXperience refers to all aspects of someone’s interaction with a product, application, or system” (Tullis & Albert, 2013) For example,

• How many errors do users make in trying to log onto a retrieval system?
• How many users get frustrated trying to read the advanced settings file trying to get the system working the way they want?
Usability Metrics

• Ways of measuring/evaluating the UX
• Reveal *something* about the UX; but,
 – What to measure?
 – When to measure?
 – How to gather, analyze and interpret data
• Three main types of usability metrics:
 – Performance metrics
 – Self-reported metrics (user perception)
 – Behavioural and physiological metrics
Measurements for Usability / UX

• Performance
e.g., criteria that explicitly measure effectiveness, efficiency, and learnability

• Perceived experience
e.g., satisfaction, expectation, perceived ease of use, perceived usefulness, awareness, and pleasure

• Physiology and behaviour
e.g. eye-movement, neural activity, facial expressions, and stress
Validity

Whether an instrument actually measures what it sets out to measure

- *Construct validity*: the degree to which a measure relates to other variables as expected within a system of theoretical relationships
- *Content validity*: the degree to which a measure corresponds to the content of the construct it was designed to cover
- *Criterion validity*: evidence that scores from an instrument correspond with concurrent external measures conceptually related to the measured construct
- *Ecological validity*: evidence that the results of a study can be applied to real-world conditions
Reliability

whether an instrument can be interpreted consistently across different situations
PERFORMANCE METRICS
Performance metrics

• **task-success** (measures effectiveness, efficiency, ...)
• **time-on-task** (measures efficiency, learnability...)
• **steps-to-completion** (measures efficiency, ...)
• **efficiency** (measures efficiency, ...)
• **lostness** (measures efficiency, ...)
• **errors**
Performance metrics: task-success

• “how effectively are users able to complete a given set of tasks?”

• clear end-state?
 – Find the best live performance of The Prodigy.
 versus
 – List all possible lists of courses to complete your MSc.
(Levels of) task sucesso

- Complete sucesso
 - With/Without assistance

- Partial sucesso
 - With/Without assistance

- Failure
 - Participant thought it was complete, but it wasn’t
 - Participant gave up
Table 2.3 Choosing the Right Statistics for Different Data Types and Usability Metrics

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Common Metrics</th>
<th>Statistical Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal (categories)</td>
<td>Task success (binary), errors (binary), top-2-box scores</td>
<td>Frequencies, crosstabs, Chi-square</td>
</tr>
<tr>
<td>Ordinal (ranks)</td>
<td>Severity ratings, rankings (designs)</td>
<td>Frequencies, crosstabs, chi-square, Wilcoxon rank sum tests, Spearman rank correlation</td>
</tr>
<tr>
<td>Interval</td>
<td>Likert scale data, SUS scores</td>
<td>All descriptive statistics, t-tests, ANOVAs, correlation, regression analysis</td>
</tr>
<tr>
<td>Ratio</td>
<td>Completion time, time (visual attention), average task success (aggregated)</td>
<td>All descriptive statistics (including geometric means), t-tests, ANOVAs, correlation, regression analysis</td>
</tr>
</tbody>
</table>
Measuring efficiency

• the amount of effort that a user expends to find what he searches for

• two types of effort
 – Cognitive effort – involves finding the right place to perform an action (e.g. finding a link on a web page), deciding what action is necessary (should I click on this link?), and interpreting the results of the action
 – Physical effort – involves the physical effort required to take an action

• simple and compound measures
Measuring efficiency

• Simple metrics
 – time-on-task
 – steps-to-completion
 (number of steps or actions to complete a task)

• Compound metrics
 – efficiency
 – lostness
Performance metrics: \textit{time-on-task}

- How much time is required to complete a task?
- How to measure?
- All tasks? Only successful tasks?

The faster a participant can complete a task, the better the UX?

- hotel /airplane ticket reservation
- searching nice games
Performance metrics: efficiency

- Compound efficiency metric:
 - combination of task success and time-on-task
 - typically measured per task; alternative = per participant

\[
\text{efficiency} = \frac{\text{task completion rate}}{\text{mean time per task}}
\]

or, alternatively:

\[
\text{efficiency} = \frac{\text{number of successfully completed tasks}}{\text{total time spent}}
\]
Performance metrics: \textit{lostness}

A compound efficiency metric (Smith, 1996)

\[
L = \sqrt{(N/S - 1)^2 + (R/N - 1)^2}
\]

\textit{N}: The number of \textit{different} web pages visited while performing the task.

\textit{S}: The \textit{total} number of pages visited while performing the task, counting revisits to the same page.

\textit{R}: The \textit{minimum} (optimum) number of pages that must be visited to accomplish the task.
• example
Measuring learnability

• measure how performance changes over time
• (how any efficiency metric changes over time)
• how much time and effort is required to become proficient using the product or application
• collecting data multiple times (trials)
• within-subjects design
Performance metrics: **time-on-task**

multiple trials for single subject (same task); gives ‘learning curve’

FIGURE 4.13
An example of how to present learnability data based on time-on-task.
Severity ratings of usability issues

A combination of:
• frequency
• impact
• persistence

0 = I don't agree that this is a usability problem at all.
1 = Cosmetic problem only: need not be fixed unless extra time is available on project.
2 = Minor usability problem: fixing this should be given low priority.
3 = Major usability problem: important to fix, so should be given high priority.
4 = Usability catastrophe: imperative to fix this before product can be released.
SELF-REPORTED METRICS
Self-reported metrics

• What to measure?
• How to measure?
 – Single-item formats
 – Multiple-item formats: indexes and scales: *general and usability-specific*
• Gathering self-reported data
 – Pre/Post-task
 – Pre/Post-test
• Analyzing self-reported data
What to measure?

• Characteristics (e.g., age, level of education, gender, and occupation)
• Attitudes: What people say they want
• Beliefs: What people think is true.
• Behaviors: What people say they do or what you observe they do.
Single-item formats

I think that I would like to use this system frequently:

___ Strongly Disagree
___ Disagree
___ Neither agree not disagree
___ Agree
___ Strongly Agree

e.g., well-known ‘Likert scale’*

* in fact a misnomer: it’s not a scale but a well-known question format
Guidelines single-items formats

• **Avoid "acquiescence bias":** people are more likely to agree with a statement than to disagree with it (Cronbach, 1946)
 – You need to balance positively-phrased statements (such as "I found this interface easy to use") with negative ones (such as "I found this interface difficult to navigate").

• **Use 5-9 levels in a rating**
 – You gain no additional information by having more than 10 levels

• **Include a neutral point in the middle of the scale**
 – Otherwise you lose information by forcing some participants to take sides

• **Don’t use numbers, but if so: use positive integers**
 – 1-7 instead of -3 to +3
 (Participants are less likely to go below 0 than they are to use 1-3)

• **Use word labels for at least the end points.**
 – Hard to create labels for every point beyond 5 levels
 – Having labels on the end points only also makes the data more “interval-like”
Models with validated usability scales: SUS

- System Usability Scale
- “A quick and dirty usability scale”

System Usability Scale

1. I think that I would like to use this system frequently
2. I found the system unnecessarily complex
3. I thought the system was easy to use
4. I think that I would need the support of a technical person to be able to use this system
5. I found the various functions in this system were well integrated
6. I thought there was too much inconsistency in this system
7. I would imagine that most people would learn to use this system very quickly
8. I found the system very cumbersome to use
9. I felt very confident using the system
10. I needed to learn a lot of things before I could get going with this system
System Usability Scale (SUS)

1. I think that I would like to use this system frequently

2. I found the system unnecessarily complex

3. I thought the system was easy to use

4. I think that I would need the support of a technical person to be able to use this system

5. I found the various functions in this system were well integrated

6. I thought there was too much inconsistency in this system

7. I would imagine that most people would learn to use this system very quickly

8. I found the system very cumbersome to use

9. I felt very confident using the system

10. I needed to learn a lot of things before I could get going with this system

Total score = 22

SUS Score = 22 * 2.5 = 55
Measuring expectations:
Pre- and Post-Task Ratings

• Before the task:

How easy or difficult do you expect this task to be?

<table>
<thead>
<tr>
<th>Very easy</th>
<th>Very difficult</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

• After the task:

How easy or difficult was this task to do?

<table>
<thead>
<tr>
<th>Very easy</th>
<th>Very difficult</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Pre/Post- task ratings versus Pre/Post-session ratings

• task-level data: help identify areas that need improvement
 (quick ratings immediately after each task help pinpoint tasks and interface parts that are particularly problematic)

• session-level data: help to get a sense of overall usability
 (effective overall evaluation after each participant has had a chance to interact with the product more fully)
Post-session ratings: Examples

- Software Usability Scale (SUS) – 10 ratings
- Usefulness, Satisfaction, and Ease of use (USE)
- Questionnaire for User-Interface Satisfaction – QUIS * - 71 (long form), 26 (short form) ratings
- Software Usability Measurement Inventory (SUMI) * – 50 ratings
- After Scenario Questionnaire (ASQ) – three ratings
- Post Study System Usability Questionnaire (PSSOQ) - 19 ratings. Electronic version called the Computer System Usability Questionnaire (CSUQ)
- Website Analysis and MeasureMent Inventory (WAMMI) * – 20 ratings of website usability
- Computer System Usability Questionnaire (CSUQ)

* requires a license
PHYSIOLOGICAL METRICS
Physiological and behavioural metrics

- Verbal behaviours
 - Comments
 - Questions
 - Utterance of confusion / frustration

- Nonverbal behaviours
 - Facial expressions
 - Eye behaviour
 - Skin conductance
 - Heart rate
 - Blood flow
 - Temperature
 - Sleep / wake
Usability Test Observation Coding Form

Date: ___________________ Participant ID: ___________________ Task #: ___________________

Start Time: _______________ End Time: ___________________

Verbal Behaviors

- **Strongly positive comment**
- **Other positive comment**
- **Strongly negative comment**
- **Other negative comment**
- **Suggestion for improvement**
- **Question**
- **Variation from expectation**
- **Stated confusion**
- **Stated frustration**

Non-verbal Behaviors

- **Frowning/Grimacing/Unhappy**
- **Smiling/Laughing/Happy**
- **Surprised/Unexpected**
- **Furrowed brow/Concentration**
- **Evidence of Impatience**
- **Leaning in close to screen**
- **Variation from expectation**
- **Fidgeting in chair**
- **Random mouse movement**
- **Groaning/Deep sigh**
- **Rubbing head/eyes/neck**

Task Completion Status:

- **Incomplete:**
 - Participant gave up
 - Task “called” by moderator
 - Thought complete, but not

- **Complete:**
 - Fully complete
 - Complete with assistance
 - Partial completion

Notes:

Verbal Behaviors Notes

Non-verbal Behaviors Notes

Task Completion Status Notes:
Measuring physiological signals: equipment
Facial expressions

- Video-based systems
- Electromyogram sensors
pupils
Eye tracking (measuring attention)

Faces draw attention to them on webpages

Study 1: users are clearly drawn to faces when asked to look at pages and report what they remember

Are People Drawn to Faces on Webpages? – T. Tullis, M. Siegel & M. Sun In: CHI 2009, Boston, MA, USA.
Eye tracking (task-performance)

Study 2:
- a Portfolio Summary page was modified to contain either a photo of a woman’s face or no image
- tasks that had answers that could be found by reading information on the page
Eye tracking and task-performance

Study 2:
Contrary to expectation, a picture of a face in this context actually caused users to do worse on a task involving information adjacent to the face.
Thermal Imaging (measuring stress)

- Thermal imaging of the face
- Stresscam: a small thermal imaging camera
Thermal Imaging (measuring stress)

User stress is correlated with increased blood flow in the frontal vessel of the forehead. This increased blood flow dissipates convective heat.