Welcome!
Today's Agenda:

- GPU Execution Model
- GPGPU Flow
- GPGPU Low Level Notes
- P3
Recap

- The GPU is a co-processor, which needs a host.
- GPUs have a history of fixed-function pipelines.
- Typical GPU work is fundamentally data-parallel.
- GPU programming is similar to SIMD programming.
- For parallel tasks, a GPU is very fast (worth the effort!).
SIMT Recap

S.I.M.T.: Single Instruction, Multiple Thread.

for (float i = 0.0; i < 4095.0f; i += 1.0) {
 dz = (float2)(2.0f * (z.x * dz.x - z.y * dz.y) + 1.0f, 2.0f * (z.x * dz.y + z.y * dz.x));
 z = cmul(z, z) + c;
 float a = sin(tm * 1.5f + i * 2.0f) * 0.3f + i * 1.3f;
 float t = (float2)(cos(a) * z.x + sin(a) * z.y, -sin(a) * z.x + cos(a) * z.y);
 if (fabs(t.x) > 2.0f && fabs(t.y) > 2.0f) { i = it; break; }
}

float z2 = z.x * z.x + z.y * z.y, t = log(z2) * sqrt(z2) / length(dz), r = sqrt(z2);
float q = zoom * 0.016f * (1.0f / j.x + 1.0f / j.y), d = length(j), w = q * d / 400.0f;
float s = q * d / 80.0f, f = 0.0f, g = 0.0f;
SIMT Recap

S.I.M.T.: Single Instruction, Multiple Thread.

```
for (float i = 0.0; i < 4095.0f; i += 1.0)
{
    dz = (float2)(2.0f * (z.x * dz.x - z.y * dz.y) + 1.0f, 2.0f * (z.x * dz.y + z.y * dz.x));
    z = cmul( z, z ) + c;
    float a = sin( tm * 1.5f + i * 2.0f ) * 0.3f + i * 1.3f;
    float2 t = (float2)(cos( a ) * z.x + sin( a ) * z.y, -sin( a ) * z.x + cos( a ) * z.y);
    if (fabs( t.x ) > 2.0f && fabs( t.y ) > 2.0f) { it = i; break; }
}
float z2 = z.x * z.x + z.y * z.y, t = log( z2 ) * sqrt( z2 ) / length( dz ), r = sqrt( z2 );
float q = zoom * 0.016f * (1.0f / j.x + 1.0f / j.y), d = length( j ), w = q * d / 400.0f;
float s = q * d / 80.0f, f = 0.0f, g = 0.0f;
```
SIMT Recap

S.I.M.T.: Single Instruction, Multiple Thread.

Adding two arrays, C/C++ way:

```c
for( int i = 0; i < N; i++ ) c[i] = a[i] + b[i];
```

Adding two arrays in MatLab:

```matlab
c = a + b
```

Adding two arrays using SIMD:

```c
void add(int* a, int* b, int* c, int N) {
    for( int i = 0; i < N; i += 4 )
    {
        __m128 a4 = ((__m128*)a)[i];
        __m128 b4 = ((__m128*)b)[i];
        ((__m128*)c)[i] = a4 + b4;
    }
}
```

Adding two arrays using SIMT:

```c
void add(int* a, int* b, int* c)
{
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    c[i] = a[i] + b[i];
    c[i] += a[b[i]];
    // via a lut
    // look ma, no loop!
}
```
SIMD versus SIMT

void add(int* a, int* b, int* c, int N)
{
 for (int i = 0; i < N; i += 4)
 {
 __m128 a4 = ((__m128*)a)[i];
 __m128 b4 = ((__m128*)b)[i];
 ((__m128*)c)[i] = a4 + b4;
 }
}

Benefit of SIMT:
- Easier to read and write; similar to regular scalar flow.

void add(int* a, int* b, int* c)
{
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 c[i] = a[i] + b[i];
 c[i] += a[b[i]]; // via a lut
 // look ma, no loop!
}

Drawbacks of SIMT:
- Redundant data (here: pointers a, b and c).
- Redundant data (variable i).
- A ‘warp’ is 32-wide, regardless of data size.
- Scattered memory access is not discouraged.
- Control flow.
- We need tons of registers.
Model

Register Pressure

On a CPU:

- **AX** ('accumulator register')
- **BX** ('base register')
- **CX** ('counter register')
- **DX** ('data register')
- **BP** ('base pointer')
- **SI** ('source index')
- **DI** ('destination index')
- **SP** ('stack pointer')

For CPUs:

- **AX**, **BX**, **CX**, **DX**:
 - 8-bit registers
 - **AH**, **AL** (8-bit)
 - **BH**, **BL**
 - **CH**, **CL**
 - **DH**, **DL**

For 64-bit CPUs:

- **EAX**, **EBX**, **ECX**, **EDX**, **EBP**, **ESI**, **EDI**, **ESP**: 32-bit registers
- **RAX**, **RBX**, **RCX**, **RDX**, **RBP**, **RSI**, **RDI**, **RSP**: 64-bit registers
- **XMM0..XMM7**, **YMM0..YMM15**, **ZMM0..ZMM31**: 128-bit registers
Model

Register Pressure

On a CPU:

- RAX (64-bit)
- RBX
- RCX
- RDX
- RBP
- RSI
- RDI
- RSP
- R8..R15
- YMM0..YMM15 (256-bit)
Register Pressure

On a GPU:

- Each thread in a warp needs its own registers (32 * N);
- The GPU relies on SMT to combat latencies (32 * N * M).

SMT on the CPU: each core avoids latencies.

- Super-scalar execution
- Out-of-order execution
- Branch prediction
- Cache hierarchy
- Speculative prefetching

And, as a 'last line of defense', if a latency happens anyway:

- SMT
Register Pressure

On a GPU:

- Each thread in a warp needs its own registers (32 * N);
- The GPU relies on SMT to combat latencies (32 * N * M).

SMT on the GPU: primary weapon against latencies.

A GPU does not rely as much on the caches as a CPU does.

As a consequence, (lack of) data locality has a much smaller impact on performance.
Register Pressure

On a CPU, hyperthreading typically *hurts* single thread performance ➔ SMT is limited to 2, max 4 threads.

On a GPU, 2 warps per SM is not sufficient: we need 4, 8, 16 or more.

For 16 warps per SM we get:

\[32 \times N \times 16, \text{ where } N \text{ is the number of registers one thread wishes to use.}\]

On a typical CPU we have 32 registers or more available, many of these 256-bit (8-wide AVX registers), others 64-bit.

On a modern GPU, we get 256KB of register space per SM:

\[32 \times 32 \times 64 = 65536 \text{ 32-bit registers per SM.}\]
Control Flow

```c
if (threadIdx.x < 16)
{
    for ( int i = 0; i < threadIdx.x; i++)
    {
        // ...
    }
}
else
{
    if (y == 5)
    {
        // ...
    }
    else
    {
        // ...
    }
}
```
Control Flow

```c
while (1) {
    // ...
    if (Rand() < 0.05f) break;
}
```

```c
while (1) {
    if (threadIdx.x == 0) {
        if (Rand() < 0.05f) a[0] = 1;
        if (a[0] == 1) break;
    }
}
```

Careful: thread 0 is not necessarily the first one to reach the break.
Model

Control Flow

while (1) {
 // ...
 if (Rand() < 0.05f) break;
}

while (1) {
 if (threadIdx.x == 0) {
 if (Rand() < 0.05f) a[0] = 1;
 __syncthreads();
 }
 if (a[0] == 1) break;
}
Synchronization

CPU / GPU synchronization: *streams* (CUDA), *queues* (OpenCL).

An OpenCL command is executed *asynchronously*: it simply gets added to the queue.

Example:

```cpp
void Kernel::Run()
{
    glFinish();    // wait for OpenGL to finish
    clEnqueueNDRangeKernel( queue, kernel, 2, 0, workSize, localSize, 0, 0, 0 );
    clFinish( queue );   // wait for OpenCL to finish
}
```
Synchronization

Fundamental approach to synchronization of GPU threads: don’t do it.

...But, if you must:

```c
__syncthreads();
```

For free:

```c
__shared__ int firstSlot;
int myIndex = threadIdx.x;
array[firstSlot + myIndex] = resultOfComputation;
```

WarpS execute in lockstep, and are therefore synchronized*.

*: On Volta and Turing use __synccrarp(), see: https://devblogs.nvidia.com/inside-volta, section “Independent Thread Scheduling”.
Synchronization

Threads on a single SM can communicate via global memory, or via shared memory.

In CUDA:

```c
__global__ void reverse( int* d, int n )
{
    __shared__ int s[64];
    int t = threadIdx.x;
    int tr = n-t-1;
    s[t] = d[t];
    __syncthreads();
    d[t] = s[tr];
}
```
Synchronization

Threads on a single SM can communicate via global memory, or via shared memory.

In OpenCL:

```c
__kernel void reverse( global int* d, int n )
{
    __local int s[64];
    int t = get_local_id(0);
    int tr = n-t-1;
    s[t] = d[t];
    barrier( CLK_LOCAL_MEM_FENCE);
    d[t] = s[tr];
}
```
Today's Agenda:

- GPU Execution Model
- GPGPU Flow
- GPGPU Low Level Notes
- P3
Flow

A Typical GPGPU Program

Calculating anything using a GPU kernel:

1. Setup input data on the CPU
2. Transfer input data to the GPU
3. Operate on the input data
4. Transfer the result back to the CPU
5. Profit.

Amdahl’s law:

\[\text{Speedup} < \frac{1}{1-p} \]

where \(p \) is the portion of the code that is parallelizable.
Flow

A Typical GPGPU Program

2. Transfer input data to the GPU.

```c
void add(int* a, int* b, int* c)
{
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    a[i] = b[i] + c[i];
}
```
A Typical GPGPU Program

2. Transfer input data to the GPU.

Optimizing transfers:

- Reduce the *number* of transfers first, then their size.
- Only send changed data.
- Use asynchronous copies.

If possible:

- Produce the input data on the GPU.

For visual results:

- Store visual output directly to a texture.

```c
void add(int* a, int* b, int* c)
{
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    a[i] = b[i] + c[i];
}
```
Asynchronous Copies

OpenCL supports multiple queues:

```cpp
queue = clCreateCommandQueue( context, devices[...], 0, &error );
```

Kernels and copy commands can be added to any queue:

```cpp
cEnqueueNDRangeKernel( queue, kernel, 2, 0, workSize, 0, 0, 0, 0 );
cEnqueueWriteBuffer( Kernel::GetQueue(), ... );
```

Queues can wait for a signal from another queue:

```cpp
cEnqueueBarrierWithWaitList( ... );
```

CUDA provides similar functionality.
Asynchronous Copies

Today's Agenda:

- GPU Execution Model
- GPGPU Flow
- GPGPU Low Level Notes
- P3
Your Mission

“Optimize an application using the process and means discussed in INFOMOV.”

“An application”:

1. One of your own. Requirement: functionality must be ‘done’, optimization may not purely be a port to C/C++.
2. One of Roland’s Projects. Additional benefit: goodies if you win. Also: winning. Will be introduced today in The Final Hour.
3. One of my projects. Options: animation module of Lighthouse 2, and a simpler application. Simple application grade will be capped at 7.
4. A single-header library from GitHub. Lists: here and here. You will have to setup your own test case, and you are expected to submit the optimized code (INFOMOV-branded) to the original repo.
5. Any GitHub / open source project, if you think you can handle it. Warning: last option on this list for a reason.
Your Mission

“Optimize an application using the process and means discussed in INFOMOV.”

“The Process”:

1. Establish optimization goal (optional).
2. Profile.
3. Apply high-level optimization (on hotspot).
4. Profile.
5. Multi-thread / vectorize / apply GPGPU, if applicable.
6. Profile.
7. Apply low-level optimizations.
8. Repeat step 6 and 7 until time runs out.

Your report should provide clear proof that you approached the optimization in a structured manner, i.e. it will provide profiling information at every step.
Your Mission

“Optimize an application using the process and means discussed in INFOMOV.”

“Means”:

1. High-level optimizations (typically those that change algorithmic complexity).
2. Low-level optimizations (see “Rules of Engagement”).
3. Data-Oriented Design.
4. Anything else to please the cache.
5. SIMD.
6. GPGPU.
7. Compiler output inspection, compiler choice, compiler settings.

Note that overclocking is not in this list.
Your Mission

“Optimize an application using the process and means discussed in INFOMOV.”

Notes:

1. Do not alter functionality.
2. If you skip optimizations to maintain readability: indicate this in the report.
3. Multiple teams may work on the same base code. Do not share optimized code in these cases; sharing ideas is still allowed however.

Don’t forget to maintain a healthy work/life balance. Or fix that after the deadline.
END of "GPGPU (3)"

next lecture: "fixed point"