Homework 2
Motion and Manipulation

Deadline: October 18, 2017, at 15:15

Note: Solutions should be handwritten. Write your name and student number on each page you hand in. Homework 2 consists of ten exercises. Each exercise is worth 1 point. Motivate all your answers. Show the derivations.

1: Configuration Space

Determine the configuration space for a system of two ball-shaped entities \(A_1 \) and \(A_2 \) moving in contact in a three-dimensional Euclidean workspace.

2: Configuration Space

Consider a rotating and translating polyhedral entity \(A \) in a three-dimensional Euclidean space and let \(v \) be one of the vertices on its boundary. Determine the configuration space for \(A \) when its vertex \(v \) is constrained to move in the plane \(z = 0 \).

3: Configuration Space

Consider a system of two square entities \(A_1 \) and \(A_2 \) translating in a two-dimensional Euclidean workspace.
(a.) Determine the configuration space of the system when \(A_1 \) and \(A_2 \) move independently.
(b.) Determine the configuration space of the system when \(A_1 \) and \(A_2 \) must touch at all times.

4: Minkowski Sums

Consider a two-dimensional Euclidean space. What is the area of the Minkowski sum of a square with side length 3 and disk with radius 1?

5: Minkowski Sums and Configuration Space Obstacles

Consider a two-dimensional Euclidean space. Let \(p_1 = (0, 0) \), \(p_2 = (4, 0) \), \(p_3 = (4, 4) \), \(p_4 = (2, 4) \), \(p_5 = (2, 2) \), and \(p_6 = (0, 2) \). Let \(B \) be the non-convex object bounded by the edges \(p_1 p_2 \), \(p_2 p_3 \), \(p_3 p_4 \), \(p_4 p_5 \), \(p_5 p_6 \), and \(p_6 p_1 \). Let \(A \) be the line segment with endpoints \((0, 0) \) and \((3, 3) \)
(a.) Determine \(A \oplus B \) and list its vertices.
(b.) Now assume that \(A \) is a moving entity that is only allowed to translate and \(B \) is an obstacle. Determine the configuration space obstacle \(C_{obs} \) corresponding to all placements at which \(A \) intersects \(B \). List the vertices of \(C_{obs} \).
6: Minkowski Sums and Configuration Space Obstacles

When does the configuration space obstacle corresponding to all placements at which a translating entity \(A \) intersects an obstacle \(B \) equal the Minkowski sum \(A \oplus B \)?

7: Minkowski Sums

Consider a two-dimensional Euclidean space. Let \(p_1 = (1, 0) \), \(p_2 = (5, 0) \), \(p_3 = (2, 1) \), \(p_4 = (3, 3) \), and \(p_5 = (1, 3) \). Let \(A \) be the non-convex object bounded by the edges \(p_1p_2 \), \(p_2p_3 \), \(p_3p_4 \), \(p_4p_5 \), and \(p_5p_1 \).

(a.) Let \(B \) be the triangle with corners \((1, 1)\), \((2, 0)\), and \((2, 2)\). Determine the Minkowski sum \(A \oplus B \), and list its vertices.

(b.) Let \(B' \) be the triangle with corners \((2, 3)\), \((3, 2)\), and \((3, 4)\). How do the vertices of the Minkowski sum \(A \oplus B' \) relate to those of the Minkowski sum \(A \oplus B \)?

8: Configuration Space Obstacles

Consider a three-dimensional Euclidean space with a box-shaped obstacle \(B \) with corners \((0, 0, 0)\), \((2, 0, 0)\), \((0, 3, 0)\), \((2, 3, 0)\), \((0, 0, 4)\), \((2, 0, 4)\), \((0, 3, 4)\), and \((2, 3, 4)\) and a tetrahedral translating entity \(A \) with corners \((0, 0, 0)\), \((1, 0, 0)\), \((0, 1, 0)\), and \((0, 0, 1)\). Determine the configuration space obstacle \(C_{\text{obs}} \) corresponding to all placements at which \(A \) intersects \(B \). List the vertices of \(C_{\text{obs}} \).

9: Minkowski Sums

Let \(-X = \{ -x \mid x \in X \} \). For two arbitrary sets \(A \) and \(B \) in two-dimensional Euclidean space prove that if \((0, 0) \in A \oplus (-B)\) then also \((0, 0) \in B \oplus (-A)\).

10: Free Space

Construct a situation in which the free space of a translating unit square entity \(A \) moving among four unit square obstacles \(B_1, \ldots, B_4 \) consists of two disconnected components.