Motion and Manipulation

Kinematics for Articulated Structures: the Denavit-Hartenberg Representation
Denavit-Hartenberg Representation

- Systematic assignment of coordinate frames to the links and joints of a robotic arm.
 - A joint axis connects two adjacent links
 - A link connects two successive joints
Joint Parameters

• Joint axis:
 - Revolute: rotation
 - Prismatic: slide

• Joint k connects link $k-1$ and link k.

• Frame axis z_{k-1} is aligned with joint axis k
Joint Parameters

- **Joint angle** θ_k: angle of rotation about z_{k-1} to make x_{k-1} parallel with x_k.

- **Joint distance** d_k: distance of translation along z_{k-1} to make x_{k-1} intersect x_k.

\[\begin{align*}
\theta_k & : \text{ angle of rotation about } z_{k-1} \\
d_k & : \text{ distance of translation along } z_{k-1}
\end{align*} \]
Joint Parameters

Parameters specify relative positions and orientations of two successive links.

- Revolute joint: θ_k variable and d_k fixed.

- Prismatic joint: d_k variable and θ_k fixed.
Link Parameters

- Link k connects joint k and joint $k+1$.

![Diagram](image.png)
Link Parameters

- **Link twist angle** α_k: angle of rotation about x_k to make z_{k-1} parallel with z_k.

- **Link length** a_k: distance of translation along x_k to make z_{k-1} intersect z_k. [Diagram showing z_{k-1}, a_k, z_k, and x_k.]
Link Parameters

Parameters specify relative positions and orientations of two successive joints.

- Both α_k and a_k are fixed.
Robotic Arm

- n-Axis robot: 4n parameters
- Per axis:
 - 3 fixed parameters
 - 1 variable parameter: joint variable
Tool or Hand

- approach vector r_3 aligned with tool roll axis
- sliding vector r_2 aligned with open-close axis
- normal vector r_1
Denavit-Hartenberg Algorithm

- Assigns coordinate frames to links/joints and determines joint and link parameters in a systematic way to establish that all coordinate transformations have a standard form.
Denavit-Hartenberg Algorithm

Outline:

- Joint numbering.
- Assignment of base frame.
- Assignment of frames 1 through k-1.
- Assignment of tool frame.
- Computation of joint and link parameters.
Joint Numbering

- Number the joints from 1 to n starting with the base and ending with the tool yaw, pitch, and roll, in that order.
Assignment of Base Frame

- Assign a right-handed orthonormal coordinate frame L_0 to the robot base, making sure that z_0 aligns with the axis of joint 1.
Assignment of Frame 1 through \(k-1 \)

\[
\text{for } k=1 \text{ to } n-1 \text{ do}
\]
- Align \(z_k \) with the axis of joint \(k+1 \)
- Locate the origin of \(L_k \) at the intersection of the \(z_k \) and \(z_{k-1} \) axes. If they do not intersect, use the intersection of \(z_k \) with a common normal between \(z_k \) and \(z_{k-1} \).
- Select \(x_k \) to be the orthogonal to both \(z_k \) and \(z_{k-1} \). If \(z_k \) and \(z_{k-1} \) are parallel, point \(x_k \) away from \(z_{k-1} \).
- Select \(y_k \) to form a right-handed orthonormal coordinate frame \(L_k \).
Assignment of Tool Frame

- Set the origin of L_n at the tool tip. Align z_n with the approach vector, y_n with the sliding vector, and x_n with the normal vector of the tool.
Computation of Parameters

\textbf{for} \ k=1 \ \textbf{to} \ n \ \textbf{do}

• Locate (auxiliary) point b_k at the intersection of the x_k and z_{k-1} axes. If they do not intersect, use the intersection of x_k with a common normal between x_k and z_{k-1}.

• Compute θ_k as the angle of rotation from x_{k-1} to x_k measured about z_{k-1}.

• Compute d_k as the distance from the origin of frame L_{k-1} to point b_k measured along z_{k-1}.

• Compute a_k as the distance from point b_k to the origin of frame L_k measured along x_k.

• Compute α_k as the angle of rotation from z_{k-1} to z_k measured about x_k.

Arm Equation

- Determine coordinate transformation from L_k into L_{k-1}.

![Diagram](image)
Arm Equation

- Place moving frame M at L_{k-1} and move towards L_k. Maintain transformation.
Arm Equation

- \(M \) coincides with \(L_{k-1} \).
- \(T := I \).
Arm Equation

- Rotate M by θ_k about z.
- x-axis of M is now parallel with x_k.
- $T := T \circ \text{Rot}_3(\theta_k) = \text{Rot}_3(\theta_k)$
Arm Equation

- Translate M by d_k along z.
- x-axis of M is now collinear with x_k.
- $T := T \circ \text{Tran}_3(d_k e_3) = \text{Rot}_3(\theta_k) \circ \text{Tran}_3(d_k e_3)$
Arm Equation

- Translate M by a_k along x.
- x-axis of M is now coincides with x_k.
- \[T = T \circ \text{Tran}_1(a_k e_1) \]
 \[= \text{Rot}_3(\theta_k) \circ \text{Tran}_3(d_k e_3) \circ \text{Tran}_1(a_k e_1) \]
Arm Equation

- Rotate M by α_k about x.
- M now coincides with L_k.
- $T := T \circ \text{Rot}_1(\alpha_k)$
 $= \text{Rot}_3(\theta_k) \circ \text{Tran}_3(d_k, e_3)$
 $\circ \text{Tran}_1(a_k, e_1) \circ \text{Rot}_1(\alpha_k)$

\[y = y_k \]
\[z = z_k \]

Joint k, Link k, Joint $k+1$
Coordinate Transformation Matrix

\[T(\theta_k, d_k, a_k, \alpha_k) = \]

\[\text{Rot}_3(\theta_k) \circ \text{Tran}_3(d_k e_3) \circ \text{Tran}_1(a_k e_1) \circ \text{Rot}_1(\alpha_k) = \]

\[\text{Screw}_3(\theta_k, d_k) \circ \text{Screw}_1(a_k, a_k) \]

maps coordinates with respect to \(L_k \) into coordinates with respect to \(L_{k-1} \).
Kinematics for the Arm

- Joint variables \(q = (q_1 \ q_2 \ q_3 \ \cdots \ q_n)^T \)

\[
0T_n(q) = 0T_1(q_1)^1T_2(q_2)^2T_3(q_3)^3\cdots^n-1T_n(q_n) = \begin{pmatrix} R(q) & t(q) \\ 0^T & 1 \end{pmatrix}
\]

\(R(q) \) gives directions of the x-, y-, and z-axes of \(L_n \) with respect to the x-, y-, and z-axes of \(L_0 \).