
Calculus

Motion and Manipulation



Linear Algebra: Vectors
• Directed line segment in n-dimensional space from the origin to a 

point x=(x1,…,xn): 

• Alternative notation

• Zero vector is vector with all entries xi=0



Vectors: Addition
• Sum x+y of two vectors of equal dimension n

• Head-to-tail method for graphical construction of vector sum

• Relevant to translation



Vectors: Scalar Multiplication
• Product cx of a scalar c and a vector of dimension n 

• Relevant to scaling



Vectors: Dot Product
• Dot product xy of two vectors of equal dimension n

• xx = |x|2 where |x| stands for the length or norm of vector x

• If θ is the angle between x and y then



Vectors: Cross Product in 3D
• Cross product x × y of two vectors of dimension 3

• Cross product x × y is perpendicular to x and y; the direction is 
given by the right hand rule

• If θ is again the angle between x and y then the magnitude of cross 
product x × y given by



Vectors: Linear Independence
• A set V of vectors is linearly independent if no vector from V can be

written as a linear combination of the other vectors from V

• A set V of vectors is a basis for a space S if the set V is linearly
independent and every vector in S can be written as a linear
combination of the vectors from V

• Basis is othogonal if the base vectors are mutually perpendicular

• Basis is orthonormal if it is orthogonal and the base vectors have 
unit length



Lines and Planes
• Vector equation of a line in 2D or 3D:

where p is the 2D or 3D vector corresponding to a point on the line and
s is a 2D or 3D direction vector of the line; λ is a parameter

• Vector equation of a plane in 3D:

where p is the 3D vector corresponding to a point on the plane and s 
and t are (linearly independent) direction vectors for the plane; λ and μ
are parameters



Linear Algebra: Matrices
• Rectangular array of entries, used to represent linear transformation

from n-dimensional to m-dimensional space

• Zero matrix is matrix with all entries aij = 0

• For m=n, the identity matrix, usually referred to as I, has aii=1 and
aij=0 for all i≠j

• Vector is an (n x 1)-matrix



Matrices: Transpose
The transpose AT of the m×n matrix 

is the n×m matrix with rows and columns of A exchanged so



Matrices: Addition
• Sum A+B of two m×n matrices



Matrices: Scalar Multiplication
• Product cA of a scalar c and an m×n matrix



Matrix-Vector Multiplication
• Product Ax of an m×n matrix A and vector x of dimension n with

with
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Scaling
• Uniform scaling in R2

Example: with a factor 2 with
respect to the origin: 



Scaling
• Non-uniform scaling in R2

Example



Reflection
• Reflection in R2

Example: in the line y=x 



Rotation
• Rotation in R2 by an angle θ about the origin

Regular angles:

Rules:
• sin (-x) = - sin x
• cos (-x) = cos x
• tan x = sin x / cos x

0 π/6 π/4 π/3 π/2

sin 0 1/2 √2/2 √3/2 1

cos 1 √3/2 √2/2 1/2 0



Rotation
• Rotation in R3 by an angle θ about the x-axis (R1), y-axis

(R2), and z-axis (R3)



Translation
• Translation by a vector t is not a linear transformation and 

can therefore not be formulated as a matrix-vector product 
involving a 2×2 matrix in R2 or a 3×3 matrix in R3

Solution: homogeneous coordinates, adding one dimension

Translation of point x=(x1,x2,x3) along a vector t=(t1,t2,t3)T: 



Homogeneous Coordinates
Let Ri(θ) be a (fundamental) rotation matrix, t be a translation
vector, I be the identity matrix, and 0 be the zero vector

• Homogeneous translation matrix

• Homogeneous rotation matrix



Matrix-Matrix Multiplication
• Product AB of m×n and n×p matrices

with



Matrix-Matrix Multiplication
Example



Matrix-Matrix Multiplication
Properties

• Distributive over addition:
– A(B+C) = AB+AC
– (A+B)C = AC + BC

• Associative
– (AB)C=A(BC)

• Not commutative, so in general
– AB≠BA



Composition
If A is the matrix of a linear transformation TA and B is the matrix of a 
linear transformation TB then
• C=BA corresponds to the linear transformation that first performs TA

and then TB and
• C=AB corresponds to the linear transformation that first performs TB

and then TA

Recall that AB≠BA



Example
Matrix for scaling after reflection

Image of (4,2)

(1,12)



Example
Matrix for reflection after scaling

Image of (4,2)



Another Example
• Rotation followed by translation

• Translation followed by rotation



Inverse
The inverse A-1 of a matrix A is a matrix that satisfies

• A-1 exists if and only if
– A is square (so if m=n) and
– the determinant of A is nonzero

• If A is the matrix of a linear transformation TA then A-1 is the matrix 
of the linear transformation that inverts TA



Determinants in 2D and 3D
• Determinant of a 2×2 matrix

• Determinant of a 3×3 matrix



Inverse
• Simple expression for inverse of a 2×2 matrix

• Similar expressions can be obtained for larger square matrices but a 
common approach is to use Gaussian elimination



Moore-Penrose Pseudoinverse
• If the m×n real matrix A has linearly independent columns (and so

m>n) then the n×m matrix

satisfies A+A = I and is referred to as a left inverse

• If the m×n real matrix A has linearly independent rows (and so
m<n) then the n×m matrix

satisfies A A+ = I and is referred to as a right inverse



Systems of Linear Equations
The system of m linear equations in n variables

can be also be written as a matrix equation Ax=b or 



Systems of Linear Equations
For a given matrix A and vector b solve x from

Focus on the case where m=n. Similar approaches apply when m<n or 
m>n



Gaussian Elimination
Augment matrix with righthand side of the equation, then transform
matrix into the identity matrix by repeatedly
• interchanging two rows
• multiplying a single row by a constant
• adding a multiple of one row to another row

Augmented matrix is nothing more than a compact representation of 
the original system 



Example
Solve

Gaussian elimination



Example



Example
Corresponds to system

which is equivalent to the original system 



Gaussian Elimination
Same approach works for matrix inversion: now place the identity
matrix right of the vertical bar

and then transform using the same three types of actions to get

Then C  = A-1

If A-1 is given then solving Ax=b for x can be accomplished by x=A-1b



Moore-Penrose Pseudoinverse
• If the m×n real matrix A has linearly independent rows (and so

m<n) then the system Ax=b is underdetermined and has infinitely
many solutions. The matrix-vector product A+b, where A+ is the 
right inverse, gives the minimum-norm solution

• If the m×n real matrix A has linearly independent columns (and so
m>n) then the system Ax=b is overdetermined and has no 
solutions. The matrix-vector product A+b, where A+ is the left
inverse, gives a least-squares approximation



Functions
Functions

• Polynomial functions

• Exponential functions

special case
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Functions
• Logarithmic functions

special case

• Trigonometric functions
Useful rules:



Derivatives
Formal definition for a function

Derivative describes the growth rate

Second (derivative of the derivative), third, i-th derivatives: 

Alternative notation for first, second, … derivatives if y=f(x): 
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Derivatives of Common Functions
•

•
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Derivatives of Common Functions
•

•

and more, see one of the many lists that are online 



Rules for Derivatives
If
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Chain Rule for Derivatives
If

•

Example:

then

•



Multivariate Functions
Functions

• Partial derivative with respect to xi, denoted by

treats xi as a variable and all other xj with j≠i as constants  

Example: 
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Multivariate Functions
• The gradient

is the vector of all partial derivatives

Example: 



Multivariate Functions
• The Hessian

is the n×n matrix of all second partial derivatives
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Vector-Valued Functions
Functions

• Partial derivative for fj with respect to xi, denoted by

T
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Vector-Valued Functions
• The Jacobian

is the m×n matrix of the partial derivatives of all functions



Complex Numbers
• Two-dimensional extension of real numbers

where a is referred to as the real part of z and b is referred to as the 
imaginary part of z

• Convention: i2=-1

• Complex conjugate

a+bi

a

b



Complex Numbers
Rules

• (a+bi) + (c+di) = (a+c) + (b+d)i

• (a+bi) - (c+di) = (a-c) + (b-d)i

• (a+bi) (c+di) = ac + bic + adi +bidi = (ac-bd) + (ad+bc)i

•



Complex Numbers
• Euler’s formula

• Rotation of a point (a,b) in the plane by an angle θ about the origin
can be accomplished by multiplying eiθ and a+bi:

Compare with:
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