Calculus

Motion and Manipulation

Linear Algebra: Vectors

• Directed line segment in n-dimensional space from the origin to a point $x = (x_1, ..., x_n)$:

$$\mathbf{X} = \left(\begin{array}{c} \mathbf{X}_{1} \\ \vdots \\ \mathbf{X}_{n} \end{array} \right)$$

• Alternative notation $\mathbf{X} = \begin{pmatrix} \mathbf{X}_1 & \cdots & \mathbf{X}_n \end{pmatrix}^T$

• Zero vector is vector with all entries $x_i = 0$

Vectors: Addition

• Sum x+y of two vectors of equal dimension n

$$\mathbf{X} = \begin{pmatrix} \mathbf{X}_{1} \\ \vdots \\ \mathbf{X}_{n} \end{pmatrix}, \mathbf{y} = \begin{pmatrix} \mathbf{y}_{1} \\ \vdots \\ \mathbf{y}_{n} \end{pmatrix}; \qquad \mathbf{X} + \mathbf{y} = \begin{pmatrix} \mathbf{X}_{1} + \mathbf{y}_{1} \\ \vdots \\ \mathbf{X}_{n} + \mathbf{y}_{n} \end{pmatrix}$$

- Head-to-tail method for graphical construction of vector sum
- Relevant to translation

Vectors: Scalar Multiplication

• Product cx of a scalar c and a vector of dimension n

$$\mathbf{X} = \left(\begin{array}{c} \mathbf{X}_{1} \\ \vdots \\ \mathbf{X}_{n} \end{array} \right) :$$

$$\mathbf{C} \mathbf{X} = \begin{pmatrix} \mathbf{C} \mathbf{X}_{1} \\ \vdots \\ \mathbf{C} \mathbf{X}_{n} \end{pmatrix}$$

• Relevant to scaling

Vectors: Dot Product

Dot product x•y of two vectors of equal dimension n

$$\mathbf{X} = \left(\begin{array}{c} \mathbf{X}_{1} \\ \vdots \\ \mathbf{X}_{n} \end{array}\right), \mathbf{Y} = \left(\begin{array}{c} \mathbf{y}_{1} \\ \vdots \\ \mathbf{y}_{n} \end{array}\right):$$

$$\mathbf{x} \bullet \mathbf{y} = \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{y}_{i}$$

- $x \cdot x = |x|^2$ where |x| stands for the length or norm of vector x
- If θ is the angle between x and y then

 $\mathbf{x} \bullet \mathbf{y} = |\mathbf{x}| |\mathbf{y}| \cos \theta$

Vectors: Cross Product in 3D

• Cross product $x \times y$ of two vectors of dimension 3

 $\mathbf{X} = \begin{pmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \mathbf{X}_3 \end{pmatrix}, \mathbf{y} = \begin{pmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \mathbf{y}_3 \end{pmatrix}; \qquad \mathbf{X} = \begin{pmatrix} \mathbf{X}_2 \mathbf{y}_3 - \mathbf{X}_3 \mathbf{y}_2 \\ \mathbf{X}_3 \mathbf{y}_1 - \mathbf{X}_1 \mathbf{y}_3 \\ \mathbf{X}_1 \mathbf{y}_2 - \mathbf{X}_2 \mathbf{y}_1 \end{pmatrix}$

- Cross product x × y is perpendicular to x and y; the direction is given by the right hand rule
- If θ is again the angle between x and y then the magnitude of cross product x × y given by
 [x × y]=[x][y]sinθ

Vectors: Linear Independence

- A set V of vectors is linearly independent if no vector from V can be written as a linear combination of the other vectors from V
- A set V of vectors is a basis for a space S if the set V is linearly independent and every vector in S can be written as a linear combination of the vectors from V
- Basis is othogonal if the base vectors are mutually perpendicular
- Basis is orthonormal if it is orthogonal and the base vectors have unit length

Lines and Planes

• Vector equation of a line in 2D or 3D:

 $x = p + \lambda s$

where p is the 2D or 3D vector corresponding to a point on the line and s is a 2D or 3D direction vector of the line; λ is a parameter

• Vector equation of a plane in 3D:

 $x = p + \lambda s + \mu t$

where p is the 3D vector corresponding to a point on the plane and s and t are (linearly independent) direction vectors for the plane; λ and μ are parameters

Linear Algebra: Matrices

 Rectangular array of entries, used to represent linear transformation from n-dimensional to m-dimensional space

$$\mathsf{A} = \left(\begin{array}{ccc} \mathsf{a}_{11} & \cdots & \mathsf{a}_{1n} \\ \vdots & \ddots & \vdots \\ \mathsf{a}_{m1} & \cdots & \mathsf{a}_{mn} \end{array} \right)$$

- Zero matrix is matrix with all entries $a_{ij} = 0$
- For m=n, the identity matrix, usually referred to as I, has a_{ii}=1 and a_{ij}=0 for all i≠j
- Vector is an (n x 1)-matrix

Matrices: Transpose

The transpose A^T of the m×n matrix

$$\mathsf{A} = \left(\begin{array}{ccc} \mathsf{a}_{11} & \cdots & \mathsf{a}_{1n} \\ \vdots & \ddots & \vdots \\ \mathsf{a}_{m1} & \cdots & \mathsf{a}_{mn} \end{array} \right)$$

is the $n \times m$ matrix with rows and columns of A exchanged so

$$\mathbf{A}^{\mathsf{T}} = \left(\begin{array}{ccc} \mathbf{a}_{11} & \cdots & \mathbf{a}_{m1} \\ \vdots & \ddots & \vdots \\ \mathbf{a}_{1n} & \cdots & \mathbf{a}_{mn} \end{array} \right)$$

Matrices: Addition

• Sum A+B of two m×n matrices

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}, B = \begin{pmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{m1} & \cdots & b_{mn} \end{pmatrix};$$

$$A + B = \begin{pmatrix} a_{11} + b_{11} & \cdots & a_{1n} + b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & \cdots & a_{mn} + b_{mn} \end{pmatrix}$$

Matrices: Scalar Multiplication

• Product cA of a scalar c and an m×n matrix

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$

$$cA = \begin{pmatrix} ca_{11} & \cdots & ca_{1n} \\ \vdots & \ddots & \vdots \\ ca_{m1} & \cdots & ca_{mn} \end{pmatrix}$$

Matrix-Vector Multiplication

• Product Ax of an m×n matrix A and vector x of dimension n with

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}, x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix};$$

$$Ax = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} \quad \text{with} \quad b_i = \sum_{j=1}^n a_{ij} x_j$$

Scaling

Uniform scaling in R²

Example: with a factor 2 with respect to the origin:

$$\left(\begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array}\right)\left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} 2x \\ 2y \end{array}\right)$$

Scaling

• Non-uniform scaling in R²

Example

$$\left(\begin{array}{cc} \frac{1}{2} & \mathbf{0} \\ \mathbf{0} & \mathbf{3} \end{array}\right) \left(\begin{array}{c} \mathbf{x} \\ \mathbf{y} \end{array}\right) = \left(\begin{array}{c} \frac{1}{2} \mathbf{x} \\ \mathbf{3} \mathbf{y} \end{array}\right)$$

Reflection

• Reflection in R²

Example: in the line y=x

$$\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)\left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} y \\ x \end{array}\right)$$

Rotation

• Rotation in R² by an angle θ about the origin

$$\left(\begin{array}{c} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array}\right)$$

Regular angles:

	0	π/6	π/4	π/3	π/2
sin	0	1/2	√2/2	√3/2	1
COS	1	√3/2	√2/2	1/2	0

Rules:

- sin(-x) = -sin x
- $\cos(-x) = \cos x$
- $\tan x = \sin x / \cos x$

Rotation

Rotation in R³ by an angle θ about the x-axis (R₁), y-axis (R₂), and z-axis (R₃)

$$\mathsf{R}_{1}\!\left(\theta\right) = \! \left(\begin{array}{cccc} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{array} \right) \qquad \mathsf{R}_{2}\!\left(\theta\right) = \! \left(\begin{array}{cccc} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{array} \right)$$

$$\mathbf{R}_{3}(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Translation

 Translation by a vector t is not a linear transformation and can therefore not be formulated as a matrix-vector product involving a 2×2 matrix in R² or a 3×3 matrix in R³

Solution: homogeneous coordinates, adding one dimension

Translation of point $x = (x_1, x_2, x_3)$ along a vector $t = (t_1, t_2, t_3)^T$:

$$\begin{pmatrix} 1 & 0 & 0 & t_1 \\ 0 & 1 & 0 & t_2 \\ 0 & 0 & 1 & t_3 \\ \hline 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ 1 \end{pmatrix} = \begin{pmatrix} x_1 + t_1 \\ x_2 + t_2 \\ x_3 + t_3 \\ \hline 1 \end{pmatrix}$$

Homogeneous Coordinates

Let $R_i(\theta)$ be a (fundamental) rotation matrix, t be a translation vector, I be the identity matrix, and 0 be the zero vector

• Homogeneous translation matrix

$$\mathsf{Tran}(\mathsf{t}) = \left(\begin{array}{cc} \mathsf{I} & \mathsf{t} \\ \mathsf{0}^\mathsf{T} & \mathsf{1} \end{array}\right)$$

Homogeneous rotation matrix

$$\operatorname{Rot}_{i}(\theta) = \left(\begin{array}{cc} \mathsf{R}_{i}(\theta) & 0\\ 0^{\mathsf{T}} & 1 \end{array}\right)$$

Matrix-Matrix Multiplication

Product AB of m×n and n×p matrices

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}, B = \begin{pmatrix} b_{11} & \cdots & b_{1p} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{np} \end{pmatrix}$$

with

Matrix-Matrix Multiplication

Example

$$\begin{pmatrix} 6 & 5 & 1 & -3 \\ -2 & 1 & 8 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 5 & 0 & 2 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 6 & 2 & 2 \\ 37 & 5 & 16 \end{pmatrix}$$

Matrix-Matrix Multiplication

Properties

- Distributive over addition:
 - A(B+C) = AB+AC
 - (A+B)C = AC + BC
- Associative
 - (AB)C = A(BC)
- Not commutative, so in general
 AB≠BA

Composition

If A is the matrix of a linear transformation T_A and B is the matrix of a linear transformation T_B then

- C=BA corresponds to the linear transformation that first performs T_{A} and then T_{B} and
- C=AB corresponds to the linear transformation that first performs T_B and then T_A

Recall that AB≠BA

Matrix for scaling after reflection

$$\left(\begin{array}{cc} \frac{1}{2} & \mathbf{0} \\ \mathbf{0} & \mathbf{3} \end{array}\right) \left(\begin{array}{cc} \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} \end{array}\right) = \left(\begin{array}{cc} \mathbf{0} & \frac{1}{2} \\ \mathbf{3} & \mathbf{0} \end{array}\right)$$

Image of (4,2)

$$\left(\begin{array}{cc} 0 & \frac{1}{2} \\ 3 & 0 \end{array}\right) \left(\begin{array}{c} 4 \\ 2 \end{array}\right) = \left(\begin{array}{c} 1 \\ 12 \end{array}\right)$$

Matrix for reflection after scaling

$$\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{cc} \frac{1}{2} & 0 \\ 0 & 3 \end{array}\right) = \left(\begin{array}{cc} 0 & 3 \\ \frac{1}{2} & 0 \end{array}\right)$$

Image of (4,2)

$$\left(\begin{array}{cc} 0 & 3 \\ \frac{1}{2} & 0 \end{array}\right) \left(\begin{array}{c} 4 \\ 2 \end{array}\right) = \left(\begin{array}{c} 6 \\ 2 \end{array}\right)$$

Another Example

• Rotation followed by translation

Tran(t) Rot_i(
$$\theta$$
) = $\begin{pmatrix} I & t \\ 0^T & 1 \end{pmatrix} \begin{pmatrix} R_i(\theta) & 0 \\ 0^T & 1 \end{pmatrix} = \begin{pmatrix} R_i(\theta) & t \\ 0^T & 1 \end{pmatrix}$

• Translation followed by rotation

$$\operatorname{Rot}_{i}(\theta)\operatorname{Tran}(t) = \begin{pmatrix} \mathsf{R}_{i}(\theta) & 0 \\ 0^{\mathsf{T}} & 1 \end{pmatrix} \begin{pmatrix} \mathsf{I} & t \\ 0^{\mathsf{T}} & 1 \end{pmatrix} = \begin{pmatrix} \mathsf{R}_{i}(\theta) & \mathsf{R}_{i}(\theta)t \\ 0^{\mathsf{T}} & 1 \end{pmatrix}$$

Inverse

The inverse A⁻¹ of a matrix A is a matrix that satisfies

$$A A^{-1} = A^{-1} A = I$$

- A⁻¹ exists if and only if
 - A is square (so if m=n) and
 - the determinant of A is nonzero
- If A is the matrix of a linear transformation T_A then A⁻¹ is the matrix of the linear transformation that inverts T_A

Determinants in 2D and 3D

• Determinant of a 2×2 matrix

$$\det \left(\begin{array}{ccc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right) = \left| \begin{array}{ccc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right| = \left| \begin{array}{ccc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right| = a_{11}a_{22} - a_{12}a_{21}$$

• Determinant of a 3×3 matrix

$$det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{vmatrix} a_{11} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
$$= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

Inverse

• Simple expression for inverse of a 2×2 matrix

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \text{ with det}(A) \neq 0: \qquad A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}$$

• Similar expressions can be obtained for larger square matrices but a common approach is to use Gaussian elimination

Moore-Penrose Pseudoinverse

If the m×n real matrix A has linearly independent columns (and so m>n) then the n×m matrix

$$\mathsf{A}^{+} = (\mathsf{A}^{\mathsf{T}}\mathsf{A})^{-1}\mathsf{A}^{\mathsf{T}}$$

satisfies $A^+A = I$ and is referred to as a left inverse

If the m×n real matrix A has linearly independent rows (and so m<n) then the n×m matrix

$$\mathsf{A}^{\scriptscriptstyle +} = \mathsf{A}^{\scriptscriptstyle \mathsf{T}} (\mathsf{A} \, \mathsf{A}^{\scriptscriptstyle \mathsf{T}})^{-1}$$

satisfies $A A^+ = I$ and is referred to as a right inverse

Systems of Linear Equations

The system of m linear equations in n variables

can be also be written as a matrix equation Ax=b or

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

Systems of Linear Equations

For a given matrix A and vector b solve x from

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

Focus on the case where m=n. Similar approaches apply when m < n or m > n

Gaussian Elimination

Augment matrix with righthand side of the equation, then transform matrix into the identity matrix by repeatedly

- interchanging two rows
- multiplying a single row by a constant
- adding a multiple of one row to another row

Augmented matrix is nothing more than a compact representation of the original system

Solve

X ₁	+	X ₂	+	2x ₃	=	17
2x ₁	+	X ₂	+	X ₃	=	15
X ₁	+	2x ₂	+	3x³	=	26

Gaussian elimination

Corresponds to system

$$x_1 = 3$$

 $x_2 = 4$
 $x_3 = 5$

which is equivalent to the original system

Gaussian Elimination

Same approach works for matrix inversion: now place the identity matrix right of the vertical bar

$$\left(\begin{array}{c|c} \mathsf{A} & \mathsf{I} \end{array} \right)$$

and then transform using the same three types of actions to get

 $\left(\right)$

Then C = A^{-1}

If A^{-1} is given then solving Ax=b for x can be accomplished by $x=A^{-1}b$

Moore-Penrose Pseudoinverse

- If the m×n real matrix A has linearly independent rows (and so m<n) then the system Ax=b is underdetermined and has infinitely many solutions. The matrix-vector product A+b, where A+ is the right inverse, gives the minimum-norm solution
- If the m×n real matrix A has linearly independent columns (and so m>n) then the system Ax=b is overdetermined and has no solutions. The matrix-vector product A+b, where A+ is the left inverse, gives a least-squares approximation

Functions

Functions $f: R \rightarrow R$

• Polynomial functions

$$f(x) = a_k x^k + a_{k-1} x^{k-1} + \ldots + a_1 x + a_0$$

• Exponential functions

$$f(x) = a^x$$

special case $f(x) = e^x$

Functions

• Logarithmic functions

 $f(x) = a \log x$

special case $f(x) = \ln x = e \log x$

• Trigonometric functions

f(x) = sin xf(x) = cos xf(x) = tan x

Useful rules:

sin(x + y) = sin x cos y + cos x sin y sin(x - y) = sin x cos y - cos x sin y cos(x + y) = cos x cos y - sin x sin ycos(x - y) = cos x cos y + sin x sin y

Derivatives

Formal definition for a function $f: R \rightarrow R$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Derivative describes the growth rate

Second (derivative of the derivative), third, i-th derivatives: f"(x), f"'(x), f⁽ⁱ⁾(x)

Alternative notation for first, second, ... derivatives if y=f(x):

$$\frac{dy}{dx}, \frac{d^2y}{dx^2}, \dots \quad \text{or} \frac{df}{dx}, \frac{d^2f}{dx^2}, \dots$$

Derivatives of Common Functions

•
$$f(x) = a_k x^k + a_{k-1} x^{k-1} + \dots + a_1 x + a_0$$

 $f'(x) = k a_k x^{k-1} + (k-1) a_{k-1} x^{k-2} + \dots + a_2 x + a_1$

$$f(x) = a$$
 $f'(x) = 0$

• $f(x) = a^{x}$ $f'(x) = a^{x} \ln a$ $f(x) = e^{x}$ $f'(x) = e^{x}$

Derivatives of Common Functions

- $f(x) = a \log x$ $f'(x) = \frac{1}{x \ln a}, \quad x > 0$
 - $f(x) = \ln x$ $f'(x) = \frac{1}{x}, \quad x > 0$
- $f(x) = \sin x$ $f'(x) = \cos x$
 - $f(x) = \cos x$ $f'(x) = -\sin x$
 - $f(x) = \tan x \qquad f'(x) = \frac{1}{\cos^2 x}$

and more, see one of the many lists that are online

Rules for Derivatives

lf

- f(x) = cg(x)
- f(x) = g(x) + h(x)
- f(x) = g(x) h(x)
- f(x) = g(x)h(x)
- $f(x) = \frac{g(x)}{h(x)}$

then

- f'(x) = cg'(x)
- f'(x) = g'(x) + h'(x)
- f'(x) = g'(x) h'(x)
- f'(x) = g'(x)h(x) + g(x)h'(x)

•
$$f'(x) = \frac{g'(x)h(x) - g(x)h'(x)}{(h(x))^2}$$

Chain Rule for Derivatives

lf

then

• f(x) = g(h(x)) • f'(x) = g'(h(x))h'(x)

Example:

$$f(x) = \sin e^{x^2}$$
$$f'(x) = \cos e^{x^2} \cdot e^{x^2} \cdot 2x = 2xe^{x^2} \cos e^{x^2}$$

Multivariate Functions

Functions $f: \mathbb{R}^n \to \mathbb{R}$

$$\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n)^{\mathsf{T}}$$
$$\mathbf{y} = \mathbf{f}(\mathbf{x}_1, \dots, \mathbf{x}_n)$$

• Partial derivative with respect to x_i, denoted by

$$\frac{\partial y}{\partial x_i}, \frac{\partial f}{\partial x_i}, \text{ or } f_{x_i}(x_1, \dots, x_n)$$

treats x_i as a variable and all other x_i with $j \neq i$ as constants

Example: $y = f(x_1, x_2) = x_1^2 + x_1 x_2 + x_2^3$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}_1} = 2\mathbf{x}_1 + \mathbf{x}_2$$

Multivariate Functions

• The gradient

$$\nabla \mathbf{f} = \begin{pmatrix} \frac{\partial \mathbf{f}}{\partial \mathbf{x}_{1}} \\ \vdots \\ \frac{\partial \mathbf{f}}{\partial \mathbf{x}_{n}} \end{pmatrix} = \begin{pmatrix} \frac{\partial \mathbf{y}}{\partial \mathbf{x}_{1}} \\ \vdots \\ \frac{\partial \mathbf{y}}{\partial \mathbf{x}_{n}} \end{pmatrix}$$

is the vector of all partial derivatives

Example:
$$y = f(x_1, x_2) = x_1^2 + x_1 x_2 + x_2^3$$

 $\nabla f = \begin{pmatrix} 2x_1 + x_2 \\ x_1 + 3x_2^2 \end{pmatrix}$

Multivariate Functions

• The Hessian

$$\mathsf{H} = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix}$$

is the n×n matrix of all second partial derivatives

Vector-Valued Functions

Functions $f: \mathbb{R}^n \to \mathbb{R}^m$

Partial derivative for f_j with respect to x_i, denoted by

$$\frac{\partial \mathbf{r}_{j}}{\partial \mathbf{X}_{i}}$$

af

Vector-Valued Functions

• The Jacobian

$$\mathbf{J} = \begin{pmatrix} \frac{\partial \mathbf{f}_1}{\partial \mathbf{x}_1} & \frac{\partial \mathbf{f}_1}{\partial \mathbf{x}_2} & \cdots & \frac{\partial \mathbf{f}_1}{\partial \mathbf{x}_n} \\ \frac{\partial \mathbf{f}_2}{\partial \mathbf{x}_1} & \frac{\partial \mathbf{f}_2}{\partial \mathbf{x}_2} & \cdots & \frac{\partial \mathbf{f}_2}{\partial \mathbf{x}_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \mathbf{f}_m}{\partial \mathbf{x}_1} & \frac{\partial \mathbf{f}_m}{\partial \mathbf{x}_2} & \cdots & \frac{\partial \mathbf{f}_m}{\partial \mathbf{x}_n} \end{pmatrix}$$

is the m×n matrix of the partial derivatives of all functions

Complex Numbers

• Two-dimensional extension of real numbers

z = a + bi

where a is referred to as the real part of z and b is referred to as the imaginary part of z

- Convention: i²=-1
- Complex conjugate z = a bi

Complex Numbers

Rules

• (a+bi) + (c+di) = (a+c) + (b+d)i

• (a+bi) (c+di) = ac + bic + adi + bidi = (ac-bd) + (ad+bc)i

•
$$\frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{(c+di)(c-di)} = \frac{(ac+bd)+(bc-ad)i}{c^2+d^2}$$

Complex Numbers

Euler's formula

 $e^{ix} = \cos x + i \sin x$

 Rotation of a point (a,b) in the plane by an angle θ about the origin can be accomplished by multiplying e^{iθ} and a+bi:

$$e^{i\theta} \cdot (x + yi) = (\cos \theta + i \sin \theta)(x + yi) = \frac{(x \cos \theta - y \sin \theta)}{(x + yi)} + i\frac{(x \sin \theta + y \cos \theta)}{(x + yi)}$$

Compare with:

$$\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x\cos\theta - y\sin\theta \\ x\sin\theta + y\cos\theta \end{pmatrix}$$