1. **Random graphs with given expected degree:** Suppose that each node i is given an integer k_i and we want to generate a network with L links in expectation. Assume that $\sum_i k_i = 2L$. In our model, the link between node i and j appears with probability p_{ij}, which is $\frac{k_i k_j}{2L}$ if $i \neq j$ and $\frac{k_i^2}{4L}$ otherwise. Show that the expected degree of a node i is indeed k_i.

2. **Configuration model:** Consider a configuration model for N nodes and L links where the fraction of nodes with k stubs, i.e. the probability that a node has degree k, is p_k.

 (a) Given a stub of the graph and a node of degree k, what is the probability that the stub attaches to the node?

 (b) How many nodes of degree k are there?

 (c) Given a stub, what is the probability that it attaches to any node of degree k?

 (d) Note that the previous is the probability that a random node has a neighbor of degree k.

 Use this to derive that the average degree of a neighbor of a node is $\langle k^2 \rangle / \langle k \rangle$.

 (e) Argue that $\langle k^2 \rangle / \langle k \rangle$ is always at least $\langle k \rangle$. Do you think this is surprising?

3. **Hubs:** Consider Table 4.1 of the book. Compute the expected maximum degree k_{max} for each of them.