1. **Clustering coefficient:**

 (a) How would you compute the (local) clustering coefficient of a node? Give an efficient algorithm and analyze its running time.

 (b) How would you compute the global clustering coefficient of a graph? Give an efficient algorithm and analyze its running time.

 (c) Consider the following graph on \(N \) vertices numbered 0, \..., \(N - 1 \): node \(i \) and \(j \) are linked if and only if \(i \) and \(j \) differ by at most \(k \) (here we treat indices modulo \(k \)). Calculate the clustering coefficient of a node and the global clustering coefficient as a function of \(k \).

2. **Clustering coefficient II:** Consider \(G(N, p) \).

 (a) Show that for large \(N \), the expected number of triangles grows like \(\langle k \rangle^3 / 6 \).

 (b) Show that for large \(N \), the expected number of triplets grows like \(N \langle k \rangle^2 / 2 \).

 (c) What is the global clustering coefficient?

3. **Random graph:** Consider a random graph with \(N = 3000 \) and \(p = 10^{-3} \).

 (a) What is the expected number of links?

 (b) In which regime is this network?

 (c) Given this \(N \), what probability \(p \) would you need to choose such that the network is at its critical point?

 (d) Given this \(p \), how big would \(N \) need to be such that it is almost surely connected?

4. **Republicans and Democrats:** Consider a network of \(N \) Republicans and \(N \) Democrats. The probability that there is a link between two members of the same party is \(p \), whereas the probability of a link between members of a different party is \(q \). A network is polarized if \(p > q \).

 (a) Calculate the average degree of a member of the Republicans in the Republican subnetwork, and within the network as a whole.

 (b) What are the smallest values of \(p \) and \(q \) such that almost surely the network consists of a single component.

 (c) Argue that, even when \(p \) is much larger than \(q \), the network still exhibits the small-world property.

5. **Diameter:**

 (a) Give an algorithm that computes the diameter of a graph. If the graph has \(N \) vertices and \(L \) edges, then your algorithm should run in \(O(NL) \) time.

 (b) Give an algorithm that computes the diameter of a tree. If the tree has \(N \) vertices, then your algorithm should run in \(O(N) \) time.