Methods in AI Research: Markov models for multi-agent learning

Part IV: Behaviour of Markov processes

Gerard Vreeswijk

Intelligent Systems Group, Computer Science Department
Faculty of Sciences, Utrecht University, The Netherlands

October, 2014
Important questions

Suppose state i is recurrent.
Important questions

Suppose state i is recurrent.

1. If the process has left i, \textit{how many steps will it take}, on average, to return to i?
Important questions

Suppose state \(i \) is recurrent.

1. If the process has left \(i \), how many steps will it take, on average, to return to \(i \)?

2. How many times, on the average, will the process visit state \(i \)?
Important questions

Suppose state \(i \) is recurrent.

1. If the process has left \(i \), how many steps will it take, on average, to return to \(i \)?

2. How many times, on the average, will the process visit state \(i \)?

The first question addresses, what is called, the mean recurrence time.
Important questions

Suppose state \(i \) is recurrent.

1. If the process has left \(i \), *how many steps will it take*, on average, to return to \(i \)?

2. *How many times*, on the average, will the process visit state \(i \)?

The first question addresses, what is called, the *mean recurrence time*.

The second question addresses, what is called, the *empirical frequency*.
Important questions

Suppose state i is recurrent.

1. If the process has left i, \textit{how many steps will it take}, on average, to return to i?

2. \textit{How many times}, on the average, will the process visit state i?

- The first question addresses, what is called, the \textit{mean recurrence time}.
- The second question addresses, what is called, the \textit{empirical frequency}.

It turns out that the answers to both questions are strongly related.
Empirical frequency

Definition (Empirical frequency)

Let $N_i(j)$ be the number of times a node is visited, starting at i. Then

$$F_{ij} = \text{Def} \lim_{n \to \infty} \frac{N_i(j)}{n}.$$
Empirical frequency

Definition (Empirical frequency)

Let $N_i(j)$ be the number of times a node is visited, starting at i. Then

$$F_{ij} = \text{Def} \lim_{n \to \infty} \frac{N_i(j)}{n}.$$

It is not a priori clear that empirical frequencies exist.
Empirical frequency

Definition (Empirical frequency)

Let $N_i(j)$ be the number of times a node is visited, starting at i. Then

$$F_{ij} \overset{\text{Def}}{=} \lim_{n \to \infty} \frac{N_i(j)}{n}.$$

It is not a priori clear that empirical frequencies exist.

Theorem

Empirical frequencies exist for every Markov chain.
Empirical frequency

Definition (Empirical frequency)

Let \(N_i(j) \) be the number of times a node is visited, starting at \(i \). Then

\[
F_{ij} \overset{\text{Def}}{=} \lim_{n \to \infty} \frac{N_i(j)}{n}.
\]

It is not a priori clear that empirical frequencies exist.

Theorem

Empirical frequencies exist for every Markov chain.

What value does the empirical frequency of a state assume?
Empirical frequency

Definition (Empirical frequency)

Let $N_i(j)$ be the number of times a node is visited, starting at i. Then

$$F_{ij} = \text{Def} \lim_{n \to \infty} \frac{N_i(j)}{n}.$$

It is not a priori clear that empirical frequencies exist.

Theorem

Empirical frequencies exist for every Markov chain.

What value does the empirical frequency of a state assume?

1. The *long-run average of the n-step transition probabilities.*
Empirical frequency

Definition (Empirical frequency)

Let $N_i(j)$ be the number of times a node is visited, starting at i. Then

$$F_{ij} = \text{Def} \lim_{n \to \infty} \frac{N_i(j)}{n}.$$

It is not a priori clear that empirical frequencies exist.

Theorem

Empirical frequencies exist for every Markov chain.

What value does the empirical frequency of a state assume?

1. The *long-run average of the n-step transition probabilities*.

2. One over the so-called *mean recurrence time* of that state.
The *long-run average* of a sequence \(a_1, a_2, a_3, \ldots \) is defined as

\[
\lim_{n \to \infty} \frac{a_1 + \cdots + a_n}{n}
\]
The *long-run average* of a sequence a_1, a_2, a_3, \ldots is defined as

$$\lim_{n \to \infty} \frac{a_1 + \cdots + a_n}{n}$$

$\bar{p}_{ij} = \text{Def} \quad \text{long run average of } p^{(1)}_{ij}, p^{(2)}_{ij}, p^{(3)}_{ij}, \ldots$
The long-run average of a sequence a_1, a_2, a_3, \ldots is defined as

$$\lim_{n \to \infty} \frac{a_1 + \cdots + a_n}{n}$$

So

$$\bar{p}_{ij} \overset{\text{Def}}{=} \text{long run average of } p_{ij}^{(1)}, p_{ij}^{(2)}, p_{ij}^{(3)}, \ldots$$

$$\bar{P} = (P + P^2 + P^3 + \cdots + P^n)/n.$$
The *long-run average* of a sequence a_1, a_2, a_3, \ldots is defined as

$$\lim_{n \to \infty} \frac{a_1 + \cdots + a_n}{n}$$

$$\bar{p}_{ij} = \text{Def} \, \text{long run average of } p_{ij}^{(1)}, p_{ij}^{(2)}, p_{ij}^{(3)}, \ldots$$

So

$$\bar{P} = (P + P^2 + P^3 + \cdots + P^n)/n.$$
The **long-run average** of a sequence \(a_1, a_2, a_3, \ldots \) is defined as

\[
\lim_{n \to \infty} \frac{a_1 + \cdots + a_n}{n}
\]

So

\[
\bar{p}_{ij} = \text{Def} \quad \text{long run average of } p_{ij}^{(1)}, p_{ij}^{(2)}, p_{ij}^{(3)}, \ldots
\]

Theorem (**Long-run average of n-step transition probabilities**)

The long-run average of \(n \)-step transition probabilities (exists and) equals the empirical frequencies:

\[
\bar{p}_{ij} = F_{ij}, \text{ for every } i, j.
\]
If

\[
\begin{pmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0.2 & 0 & 0 & 1 \\
0.8 & 0 & 0 & 1
\end{pmatrix}
\]
Example

If

then

\[P = P^2 = \bar{P} = F = \begin{pmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0.2 & 0.8 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix} \]
Some processes are periodic

For large values of n the $P(n)$ keep cycling around three distributions:

$$P^*_0 = \lim_{n \to \infty} P_{3n},$$
$$P^*_1 = \lim_{n \to \infty} P_{3n+1},$$
$$P^*_2 = \lim_{n \to \infty} P_{3n+2}.$$
Some processes are periodic

For large values of n the $P^{(n)}$ keep cycling around three distributions:

$$P_0^* = \lim_{n\to\infty} P^{3n}, \quad P_1^* = \lim_{n\to\infty} P^{3n+1}, \quad \text{and} \quad P_2^* = \lim_{n\to\infty} P^{3n+2}.$$
Some processes are periodic

\[
\lim_{n \to \infty} P^{3n} = \begin{pmatrix}
0.81 & 0.35 & 0.65 & 0.19 \\
0.35 & 0.35 & 0.65 & 0.65 \\
0.35 & 0.81 & 0.35 & 0.65 \\
0.81 & 0.35 & 0.65 & 0.19
\end{pmatrix},
\]

and

\[
\lim_{n \to \infty} P^{3n+1} = \begin{pmatrix}
0.35 & 0.35 & 0.65 & 0.65 \\
0.35 & 0.81 & 0.35 & 0.19 \\
0.81 & 0.35 & 0.65 & 0.19 \\
0.35 & 0.35 & 0.65 & 0.65
\end{pmatrix}
\]
Some processes are periodic

\[\lim_{n \to \infty} P^{3n+2} = \begin{pmatrix}
0.35 & 0.81 & 0.65 \\
0.35 & 0.35 & 0.65 \\
0.35 & 0.35 & 0.65 \\
0.35 & 0.81 & 0.65 \\
\end{pmatrix}, \]

while

\[F = \bar{P} = \begin{pmatrix}
0.12 & 0.27 & 0.12 & 0.22 & 0.22 & 0.06 \\
0.12 & 0.27 & 0.12 & 0.22 & 0.22 & 0.06 \\
0.12 & 0.27 & 0.12 & 0.22 & 0.22 & 0.06 \\
0.12 & 0.27 & 0.12 & 0.22 & 0.22 & 0.06 \\
\end{pmatrix}. \]
Period

Each period its own color:

- a (0)
- c (2)
- b (1)
- e (0)
- d (2)
- f (1)

Gerard Vreeswijk
MAIR: Markov models for multi-agent learning
Each period its own color:
Period

period 0

period 1

period 2

Gerard Vreeswijk
MAIR: Markov models for multi-agent learning
Theorem

Periodicity is a class property.

Proof:
See notes.
Results on periodicity

Theorem

Periodicity is a class property.

Proof: See notes.
Theorem

Periodicity is a class property.

Proof: See notes.

Theorem

If a class contains a loop, it is a-periodic.
Results on periodicity

Theorem

Periodicity is a class property.

Proof: See notes.

Theorem

If a class contains a loop, it is a-periodic.

Proof: The loop can be used to create cycles of any length.
Try to guess the period of this process.

Hint: first identify all cycles.
Try to guess the period of this process.

Hint: first identify all cycles.

Solution: There is one cycle of 6, and one cycle of 10. Because \(\gcd(6, 10) = 2 \), the period is 2.
A Markov process is said to be ergodic if the long-run averages of the n-step transition probabilities do not depend on the starting state. Mixing occurs if the n-step probabilities converge. An ergodic and mixing process has a limit matrix P^\ast that exists and has identical rows. If a process is ergodic but does not mix, it cycles in the neighbourhood of d limit matrices $P^\ast_1, \ldots, P^\ast_d$, where d is the period of the only recurrence class.
A Markov process is said to be **ergodic** if the long-run averages of the n-step transition probabilities do not depend on the starting state.
Definition (*Ergodicity, mixing*)

A Markov process is said to be

- **ergodic** if the long-run averages of the n-step transition probabilities do not depend on the starting state.
- **mixing** if the n-step probabilities converge.
Definition (Ergodicity, mixing)

A Markov process is said to be

- **ergodic** if the long-run averages of the n-step transition probabilities **do not depend on the starting state**.
- **mixing** if the n-step probabilities converge.

1. Ergodic and mixes \Rightarrow limit matrix P^* exists and has identical rows.
Ergodicity, mixing

Definition (Ergodicity, mixing)

A Markov process is said to be

- **ergodic** if the long-run averages of the \(n \)-step transition probabilities **do not depend on the starting state**.
- **mixing** if the \(n \)-step probabilities converge.

1. Ergodic and mixes \(\Rightarrow \) limit matrix \(P^* \) exists and has identical rows.

2. Ergodic but does not mix \(\Rightarrow \) process cycles in the neighbourhood of \(d \) limit matrices

\[
P_1^*, \ldots, P_d^*,
\]

where \(d \) is the period of the only recurrence class.
Ergodic, does not mix

Alternating matrices in the limit, so do not mix:

\[
P_{n+1} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix},
\]

and

\[
\bar{P} = \begin{pmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{pmatrix}.
\]
Ergodic, does not mix

Alternating matrices in the limit, so do not mix:

\[P = P^{2n+1} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}, \quad P = P^{2n} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \]

and \[F = \bar{P} = \begin{pmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \\ 0.5 & 0.5 \end{pmatrix}. \]
Mixes, but not ergodic.

\[
\begin{pmatrix}
0.2 \\
0.8
\end{pmatrix}
\]
Mixes, but not ergodic.

Unequal rows so not ergodic:

\[
P = \begin{pmatrix} 0.2 & 0.8 \\ 1 & 1 \\ 0.7 & 0.3 \end{pmatrix}, \quad F = \bar{P} = P^* = \begin{pmatrix} 0.2 & 0.33 & 0.47 \\ 1 & 0.41 & 0.59 \\ 0.41 & 0.59 \end{pmatrix}.
\]
Conditions for ergodicity

Theorem

1. If a chain is uni-chain, it is ergodic.

2. If an irreducible chain is a-periodic, it mixes.

Definition (Regular)

A chain is called regular if, for some \(n \), every entry of \(P^n \) is positive. Regular \(\Rightarrow \) irreducible and mixing.

If finite, the converse holds.

Theorem (Erdős, Feller, Pollard)

If an irreducible chain is ergodic and mixes, then either:

- All states are positive recurrent, and \(P^\ast > 0 \). Moreover, the chain is regular.
- All states are null recurrent or transient, and \(P^\ast = 0 \).
If a chain is uni-chain, it is ergodic.
Theorem

1. *If a chain is uni-chain, it is ergodic.*

2. *If an irreducible chain is a-periodic, it mixes.*
Conditions for ergodicity

Theorem

1. If a chain is uni-chain, it is ergodic.
2. If an irreducible chain is a-periodic, it mixes.

Definition (Regular)

A chain is called regular if,
Theorem

1. If a chain is uni-chain, it is ergodic.
2. If an irreducible chain is a-periodic, it mixes.

Definition (Regular)

A chain is called regular if, for some n, every entry of P^n is positive.

Regular \Rightarrow irreducible and mixing. If finite, the converse holds.

Theorem (Erdős, Feller, Pollard)

If an irreducible chain is ergodic and mixes, then either

- All states are positive recurrent, and $P^* > 0$. Moreover, the chain is regular.
- All states are null recurrent or transient, and $P^* = 0$.
Conditions for ergodicity

Theorem

1. If a chain is uni-chain, it is ergodic.
2. If an irreducible chain is a-periodic, it mixes.

Definition (Regular)

A chain is called *regular* if, for some n, every entry of P^n is positive.
Conditions for ergodicity

Theorem

1. If a chain is uni-chain, it is ergodic.
2. If an irreducible chain is a-periodic, it mixes.

Definition (Regular)

A chain is called regular if, for some n, every entry of P^n is positive.

Regular \Rightarrow irreducible and mixing.
Conditions for ergodicity

Theorem

1. If a chain is uni-chain, it is ergodic.
2. If an irreducible chain is a-periodic, it mixes.

Definition (Regular)

A chain is called regular if, for some n, every entry of P^n is positive.

Regular \Rightarrow irreducible and mixing. If finite, the converse holds.
Conditions for ergodicity

Theorem

1. *If a chain is uni-chain, it is ergodic.*
2. *If an irreducible chain is a-periodic, it mixes.*

Definition (Regular)

A chain is called *regular* if, for some n, every entry of P^n is positive.

Regular \Rightarrow irreducible and mixing. If finite, the converse holds.

Theorem (Erdös, Feller, Pollard)

If an irreducible chain is ergodic and mixes, then either

- All states are positive recurrent, and $P^n > 0$. Moreover, the chain is regular.
- All states are null recurrent or transient, and $P^n = 0$.

Gerard Vreeswijk

MAIR: Markov models for multi-agent learning
Conditions for ergodicity

Theorem

1. If a chain is uni-chain, it is ergodic.
2. If an irreducible chain is a-periodic, it mixes.

Definition (Regular)

A chain is called regular if, for some n, every entry of P^n is positive.

Regular \Rightarrow irreducible and mixing. If finite, the converse holds.

Theorem (Erdös, Feller, Pollard)

If an irreducible chain is ergodic and mixes, then either

- All states are positive recurrent, and $P^* > 0$. Moreover, the chain is regular.
Conditions for ergodicity

Theorem

1. If a chain is uni-chain, it is ergodic.
2. If an irreducible chain is a-periodic, it mixes.

Definition (Regular)

A chain is called regular if, for some n, every entry of P^n is positive.

Regular \Rightarrow irreducible and mixing. If finite, the converse holds.

Theorem (Erdös, Feller, Pollard)

If an irreducible chain is ergodic and mixes, then either
- All states are positive recurrent, and $P^* > 0$. Moreover, the chain is regular.
- All states are null recurrent or transient, and $P^* = 0$.

Gerard Vreeswijk

MAIR: Markov models for multi-agent learning
The **first passage time** from \(i \) to \(j \), denoted by \(T_{ij} \), is defined as the number of steps to \(j \), after starting in \(i \), **with the obligation to leave** \(i \).
The **first passage time** from \(i\) to \(j\), denoted by \(T_{ij}\), is defined as the number of steps to \(j\), after starting in \(i\), with the obligation to leave \(i\).

Now:

\[
f_{ij}^{(n)} = \text{Def } P\{T_{ij} = n\}, \quad n \geq 1
\]
The first passage time from \(i \) to \(j \), denoted by \(T_{ij} \), is defined as the number of steps to \(j \), after starting in \(i \), with the obligation to leave \(i \).

Now:

\[
f_{ij}^{(n)} = \text{Def } P\{ T_{ij} = n \}, \quad n \geq 1
\]

The probabilities \(p_{ij}^{(n)} \) and \(f_{ij}^{(n)} \) are equally important and have similar intuitions:
The **first passage time** from i to j, denoted by T_{ij}, is defined as the number of steps to j, after starting in i, *with the obligation to leave i*.

Now:

$$f_{ij}^{(n)} = \text{Def } P\{T_{ij} = n\}, \quad n \geq 1$$

The probabilities $p_{ij}^{(n)}$ and $f_{ij}^{(n)}$ are equally important and have similar intuitions:

$p_{ij}^{(n)}$: The probability of passing through j, when starting in i and taking n steps.
The **first passage time** from \(i\) to \(j\), denoted by \(T_{ij}\), is defined as the number of steps to \(j\), after starting in \(i\), **with the obligation to leave \(i\)**.

Now:

\[
f_{ij}^{(n)} = \text{Def } P\{T_{ij} = n\}, \quad n \geq 1
\]

The probabilities \(p_{ij}^{(n)}\) and \(f_{ij}^{(n)}\) are equally important and have similar intuitions:

- \(p_{ij}^{(n)}\): The probability of passing through \(j\), when starting in \(i\) and taking \(n\) steps.
- \(f_{ij}^{(n)}\): The probability of passing through \(j\) **for the first time**, when starting in \(i\) and taking \(n\) steps.
Computing first passage time probabilities

Theorem (First passage time probability)

\[
 f_{ij}^{(n)} = \begin{cases}
 p_{ij} & \text{if } n = 1, \\
 \sum_{k \neq j} p_{ik} f_{kj}^{(n-1)} & \text{otherwise.}
\end{cases}
\]

Problem. Given the Markov process with transition matrix

\[
 P = \begin{pmatrix}
 0.4 & 0.6 \\
 0.1 & 0.9 \\
 0.3 & 0.5 & 0.2
\end{pmatrix}.
\]

Compute \(f_{13}^{(2)} \).
Computing first passage time probabilities

Theorem (First passage time probability)

\[f_{ij}^{(n)} = \begin{cases} p_{ij} & \text{if } n = 1, \\ \sum_{k \neq j} p_{ik} f_{kj}^{(n-1)} & \text{otherwise.} \end{cases} \]

Problem. Given the Markov process with transition matrix

\[P = \begin{pmatrix} 0.4 & 0.6 \\ 0.1 & 0.9 \\ 0.3 & 0.5 & 0.2 \end{pmatrix}. \]

Compute \(f_{13}^{(2)} \).

Solution:

\[f_{13}^{(2)} = p_{11} f_{13}^{(1)} + p_{12} f_{23}^{(1)} \]
\[= p_{11} p_{13} + p_{12} p_{23} \]
\[= 0.0 \times 0.6 + 0.4 \times 0.9 = 0.36. \]
The hitting time from i to j, denoted by H_{ij}, is defined as the number of steps to j, after starting in i, **without the obligation to leave i.**
The hitting time from i to j, denoted by H_{ij}, is defined as the number of steps to j, after starting in i, without the obligation to leave i.

Theorem

The mean hitting times are given by the minimal non-negative solution of

$$h_{ij} = \begin{cases} 0 & \text{if } i = j, \\ 1 + \sum_{\text{all } k} p_{ik} h_{kj} & \text{otherwise}. \end{cases}$$
Compute the expected hitting time h_{13}. **Solution:**
Problem

Compute the expected hitting time h_{13}. **Solution:**

\[
\begin{pmatrix}
0.9 \\
0.1 \\
0.1 \\
0.9 \\
0.1 \\
0.9
\end{pmatrix}
\]
Compute the expected hitting time h_{13}. **Solution:**

$$
\begin{pmatrix}
0 & h_{12} & h_{13}
\end{pmatrix}
$$
Compute the expected hitting time h_{13}. Solution:

$$
\begin{pmatrix}
0 & h_{12} & h_{13} \\
h_{21} & 0 & h_{23}
\end{pmatrix}
$$
Compute the expected hitting time h_{13}. Solution:

$$
\begin{pmatrix}
0 & h_{12} & h_{13} \\
h_{21} & 0 & h_{23} \\
h_{31} & h_{32} & 0
\end{pmatrix}
$$
Compute the expected hitting time h_{13}. **Solution:**

$$
\begin{pmatrix}
0 & h_{12} & h_{13} \\
h_{21} & 0 & h_{23} \\
h_{31} & h_{32} & 0 \\
\end{pmatrix}
= \\
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{pmatrix}
$$
Compute the expected hitting time h_{13}. **Solution:**

\[
\begin{pmatrix}
0 & h_{12} & h_{13} \\
h_{21} & 0 & h_{23} \\
h_{31} & h_{32} & 0
\end{pmatrix} = \\
\begin{pmatrix}
0 & 1 + 0.9h_{12} & 1 + 0.9h_{13} + 0.1h_{23}
\end{pmatrix}
\]
Compute the expected hitting time h_{13}. **Solution:**

\[
\begin{pmatrix}
0 & h_{12} & h_{13} \\
h_{21} & 0 & h_{23} \\
h_{31} & h_{32} & 0
\end{pmatrix} =
\begin{pmatrix}
0 & 1 + 0.9h_{12} & 1 + 0.9h_{13} + 0.1h_{23} \\
1 + 0.9h_{21} + 0.1h_{31} & 0 & 1 + 0.9h_{23}
\end{pmatrix}
\]
Problem

Compute the expected hitting time h_{13}. **Solution:**

\[
\begin{pmatrix}
0 & h_{12} & h_{13} \\
1 + 0.9h_{21} + 0.1h_{31} & 0 & 1 + 0.9h_{23} \\
1 + h_{31} & 1 + h_{32} & 0
\end{pmatrix}
\]
Solution, continued
Solution, continued

\[
\begin{align*}
 h_{12} &= 1 + 0.9 h_{12} \\
 h_{13} &= 1 + 0.9 h_{13} + 0.1 h_{23} \\
 h_{21} &= 1 + 0.9 h_{21} + 0.1 h_{31} \\
 h_{23} &= 10 h_{23} \\
 h_{31} &= 1 + h_{31} \\
 h_{32} &= 1 + h_{32} \\
 h_{32} &= \infty \Rightarrow h_{31} = \infty
\end{align*}
\]
Solution, continued

\[
\begin{align*}
 h_{12} &= 1 + 0.9h_{12} \\
 \Rightarrow \quad h_{12} &= 10
\end{align*}
\]
Solution, continued

\[
\begin{align*}
 h_{12} &= 1 + 0.9h_{12} &\Rightarrow h_{12} &= 10 \\
 h_{13} &= 1 + 0.9h_{13} + 0.1h_{23}
\end{align*}
\]
Solution, continued

\[
\begin{align*}
 h_{12} &= 1 + 0.9h_{12} \quad \Rightarrow \quad h_{12} = 10 \\
 h_{13} &= 1 + 0.9h_{13} + 0.1h_{23} \\
 h_{21} &= 1 + 0.9h_{21} + 0.1h_{31}
\end{align*}
\]
Expected hitting time

Solution, continued

\[
\begin{align*}
h_{12} &= 1 + 0.9h_{12} \quad \Rightarrow \quad h_{12} = 10 \\
h_{13} &= 1 + 0.9h_{13} + 0.1h_{23} \\
h_{21} &= 1 + 0.9h_{21} + 0.1h_{31} \\
h_{23} &= 1 + 0.9h_{23} \quad \Rightarrow \quad h_{23} = 10
\end{align*}
\]
Solution, continued

\[
\begin{align*}
 h_{12} &= 1 + 0.9h_{12} \\
 h_{13} &= 1 + 0.9h_{13} + 0.1h_{23} \\
 h_{21} &= 1 + 0.9h_{21} + 0.1h_{31} \\
 h_{23} &= 1 + 0.9h_{23} \\
 h_{31} &= 1 + h_{31}
\end{align*}
\]

\[\Rightarrow h_{12} = 10\]

\[\Rightarrow h_{23} = 10\]

\[\Rightarrow h_{31} = \infty\]
Expected hitting time

Solution, continued

\[
\begin{align*}
 h_{12} &= 1 + 0.9h_{12} & \Rightarrow & & h_{12} = 10 \\
 h_{13} &= 1 + 0.9h_{13} + 0.1h_{23} \\
 h_{21} &= 1 + 0.9h_{21} + 0.1h_{31} \\
 h_{23} &= 1 + 0.9h_{23} & \Rightarrow & & h_{23} = 10 \\
 h_{31} &= 1 + h_{31} & \Rightarrow & & h_{31} = \infty \\
 h_{32} &= 1 + h_{32} & \Rightarrow & & h_{32} = \infty
\end{align*}
\]
Expected hitting time

Solution, continued

\[
\left\{
\begin{align*}
h_{12} &= 1 + 0.9h_{12} &\Rightarrow h_{12} &= 10 \\
h_{13} &= 1 + 0.9h_{13} + 0.1h_{23} \\
h_{21} &= 1 + 0.9h_{21} + 0.1h_{31} \\
h_{23} &= 1 + 0.9h_{23} &\Rightarrow h_{23} &= 10 \\
h_{31} &= 1 + h_{31} &\Rightarrow h_{31} &= \infty \\
h_{32} &= 1 + h_{32} &\Rightarrow h_{32} &= \infty
\end{align*}
\right.
\]
Expected hitting time

Solution, continued

\[
\begin{align*}
 h_{12} &= 1 + 0.9 h_{12} & \Rightarrow & & h_{12} &= 10 \\
 h_{13} &= 1 + 0.9 h_{13} + 0.1 h_{23} \\
 h_{21} &= 1 + 0.9 h_{21} + 0.1 h_{31} \\
 h_{23} &= 1 + 0.9 h_{23} & \Rightarrow & & h_{23} &= 10 \\
 h_{31} &= 1 + h_{31} & \Rightarrow & & h_{31} &= \infty \\
 h_{32} &= 1 + h_{32} & \Rightarrow & & h_{32} &= \infty \\

\end{align*}
\]
Expected hitting time

Solution, continued

\[
\begin{align*}
 h_{12} & = 1 + 0.9h_{12} \quad \Rightarrow \quad h_{12} = 10 \\
 h_{13} & = 1 + 0.9h_{13} + 0.1h_{23} \\
 h_{21} & = 1 + 0.9h_{21} + 0.1h_{31} \\
 h_{23} & = 1 + 0.9h_{23} \quad \Rightarrow \quad h_{23} = 10 \\
 h_{31} & = 1 + h_{31} \quad \Rightarrow \quad h_{31} = \infty \\
 h_{32} & = 1 + h_{32} \quad \Rightarrow \quad h_{32} = \infty
\end{align*}
\]

\[
\begin{align*}
 h_{12} & = 1 + 0.9h_{12} \\
 h_{13} & = 1 + 0.9h_{13} + 0.1 \times 10 \quad \Rightarrow \quad h_{13} = 20
\end{align*}
\]
Expected hitting time

Solution, continued

\[
\begin{align*}
 h_{12} &= 1 + 0.9h_{12} & \Rightarrow & & h_{12} = 10 \\
 h_{13} &= 1 + 0.9h_{13} + 0.1h_{23} \\
 h_{21} &= 1 + 0.9h_{21} + 0.1h_{31} \\
 h_{23} &= 1 + 0.9h_{23} & \Rightarrow & & h_{23} = 10 \\
 h_{31} &= 1 + h_{31} & \Rightarrow & & h_{31} = \infty \\
 h_{32} &= 1 + h_{32} & \Rightarrow & & h_{32} = \infty
\end{align*}
\]

\[
\begin{align*}
 h_{12} &= 1 + 0.9h_{12} \\
 h_{13} &= 1 + 0.9h_{13} + 0.1 \times 10 & \Rightarrow & & h_{13} = 20 \\
 h_{21} &= 1 + 0.9h_{21} + 0.1 \times \infty & \Rightarrow & & h_{21} = \infty
\end{align*}
\]
Expected hitting time

Solution, continued

\[
\begin{align*}
 h_{12} &= 1 + 0.9 h_{12} \\
 h_{13} &= 1 + 0.9 h_{13} + 0.1 h_{23} \\
 h_{21} &= 1 + 0.9 h_{21} + 0.1 h_{31} \\
 h_{23} &= 1 + 0.9 h_{23} \\
 h_{31} &= 1 + h_{31} \\
 h_{32} &= 1 + h_{32}
\end{align*}
\]

\[\Rightarrow \quad h_{12} = 10 \]

\[\Rightarrow \quad h_{23} = 10 \]

\[\Rightarrow \quad h_{31} = \infty \]

\[\Rightarrow \quad h_{32} = \infty \]

\[\Rightarrow \quad h_{12} = 1 + 0.9 h_{12} \\
 h_{13} = 1 + 0.9 h_{13} + 0.1 \times 10 \Rightarrow h_{13} = 20 \\
 h_{21} = 1 + 0.9 h_{21} + 0.1 \times \infty \Rightarrow h_{21} = \infty \\
 h_{23} = 1 + 0.9 h_{23}
\]
Solution, continued

\[
\begin{align*}
 h_{12} &= 1 + 0.9 h_{12} \quad \Rightarrow \quad h_{12} = 10 \\
 h_{13} &= 1 + 0.9 h_{13} + 0.1 h_{23} \\
 h_{21} &= 1 + 0.9 h_{21} + 0.1 h_{31} \\
 h_{23} &= 1 + 0.9 h_{23} \quad \Rightarrow \quad h_{23} = 10 \\
 h_{31} &= 1 + h_{31} \quad \Rightarrow \quad h_{31} = \infty \\
 h_{32} &= 1 + h_{32} \quad \Rightarrow \quad h_{32} = \infty
\end{align*}
\]

\[
\Rightarrow \quad \begin{align*}
 h_{12} &= 1 + 0.9 h_{12} \\
 h_{13} &= 1 + 0.9 h_{13} + 0.1 \times 10 \quad \Rightarrow \quad h_{13} = 20 \\
 h_{21} &= 1 + 0.9 h_{21} + 0.1 \times \infty \quad \Rightarrow \quad h_{21} = \infty \\
 h_{23} &= 1 + 0.9 h_{23} \\
 h_{31} &= 1 + h_{31}
\end{align*}
\]
Expected hitting time

Solution, continued

\[
\begin{align*}
 h_{12} &= 1 + 0.9 h_{12} \quad \Rightarrow \quad h_{12} = 10 \\
 h_{13} &= 1 + 0.9 h_{13} + 0.1 h_{23} \\
 h_{21} &= 1 + 0.9 h_{21} + 0.1 h_{31} \\
 h_{23} &= 1 + 0.9 h_{23} \quad \Rightarrow \quad h_{23} = 10 \\
 h_{31} &= 1 + h_{31} \quad \Rightarrow \quad h_{31} = \infty \\
 h_{32} &= 1 + h_{32} \quad \Rightarrow \quad h_{32} = \infty
\end{align*}
\]

\[
\begin{align*}
 h_{12} &= 1 + 0.9 h_{12} \\
 h_{13} &= 1 + 0.9 h_{13} + 0.1 \times 10 \quad \Rightarrow \quad h_{13} = 20 \\
 h_{21} &= 1 + 0.9 h_{21} + 0.1 \times \infty \quad \Rightarrow \quad h_{21} = \infty \\
 h_{23} &= 1 + 0.9 h_{23} \\
 h_{31} &= 1 + h_{31} \\
 h_{32} &= 1 + h_{32}
\end{align*}
\]
The **mean first passage time**:

\[\mu_{ij} = \text{Def } E[T_{ij}] \]
The mean first passage time:

\[\mu_{ij} = \text{Def } E[T_{ij}] \]

Lemma

\[\mu_{ij} = 1 + \sum_{\text{all } k} p_{ik} h_{kj}, \]

where \(h_{ij} \) is the mean hitting time.
The mean first passage time:

$$\mu_{ij} = \text{Def } E[T_{ij}]$$

Lemma

$$\mu_{ij} = 1 + \sum_{\text{all } k} p_{ik} h_{kj},$$

where h_{ij} is the mean hitting time.

The mean recurrence time:

$$\mu_i = \text{Def } \mu_{ii}$$
Mean recurrence time = 1 / empirical frequency

If the process has left state i, how many steps will it take, on average, to return to state i?

How many times, on the average, will the process visit state i?

Theorem

The mean recurrence time is the reciprocal of the empirical frequency:

$$\mu_{ii} = \frac{1}{F_{ii}}$$

The theorem is valid for all irreducible chains and remains valid in case $F_{ii} = 0$ and $1/0$ is interpreted as $+\infty$.

Gerard Vreeswijk
MAIR: Markov models for multi-agent learning
If the process has left *i*, *how many steps will it take*, on average, to return to *i*?
1. If the process has left i, how many steps will it take, on average, to return to i?

2. How many times, on the average, will the process visit state i?
If the process has left \(i \), **how many steps will it take**, on average, to return to \(i \)?

How many times, on the average, will the process visit state \(i \)?

Theorem

The mean recurrence time is the reciprocal of the empirical frequency:

\[
\mu_{ii} = \frac{1}{F_{ii}}
\]
Mean recurrence time $= 1 / \text{empirical frequency}$

1. If the process has left i, how many steps will it take, on average, to return to i?

2. How many times, on the average, will the process visit state i?

Theorem

The mean recurrence time is the reciprocal of the empirical frequency:

$$\mu_{ii} = \frac{1}{F_{ii}}$$

The theorem is valid for all irreducible chains and remains valid in case $F_{ii} = 0$ and $1/0$ is interpreted as $+\infty$.
Because $\mu_{ii} = \frac{1}{F_{ii}}$, immediately
$\mu_i = (10.12, 10.27, 10.12, 10.22, 10.22, 10.06)$
Example

![Diagram of a graph with nodes labeled e, f, c, a, b, d and edges with probabilities 0.3, 0.2, 0.7, 0.8.]

\[F = \bar{P} = \begin{pmatrix}
0.12 & 0.27 & 0.12 & 0.22 & 0.22 & 0.06 \\
0.12 & 0.27 & 0.12 & 0.22 & 0.22 & 0.06 \\
0.12 & 0.27 & 0.12 & 0.22 & 0.22 & 0.06 \\
\end{pmatrix}. \]
Example

Because $\mu_{ii} = 1/F_{ii}$, immediately

$$\mu_i = \left(\frac{1}{0.12}, \frac{1}{0.27}, \frac{1}{0.12}, \frac{1}{0.22}, \frac{1}{0.22}, \frac{1}{0.06} \right)$$

$$F = \bar{P} = \begin{pmatrix} 0.12 & 0.27 & 0.12 & 0.22 & 0.22 & 0.06 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0.12 & 0.27 & 0.12 & 0.22 & 0.22 & 0.06 \end{pmatrix}.$$
Example

\[F = \bar{\mathbf{P}} = \begin{pmatrix}
0.12 & 0.27 & 0.12 & 0.22 & 0.22 & 0.06 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0.12 & 0.27 & 0.12 & 0.22 & 0.22 & 0.06
\end{pmatrix}. \]

Because \(\mu_{ii} = 1/F_{ii} \), immediately

\[\mu_i = \left(\frac{1}{0.12}, \frac{1}{0.27}, \frac{1}{0.12}, \frac{1}{0.22}, \frac{1}{0.22}, \frac{1}{0.06} \right) = (8.5, 3.7, 8.5, 4.7, 4.7, 15.5). \]
Problem

If in the bonus-malus problem, suppose \(p_0 = 0.8, \ p_1 = 0.1, \ p_2 = 0.05, \) and \(p_{\geq 3} = 0.05. \)
If in the bonus-malus problem, suppose $p_0 = 0.8$, $p_1 = 0.1$, $p_2 = 0.05$, and $p_{\geq 3} = 0.05$. Then

$$\lim_{n \to \infty} P^n \text{ exists and equals}$$

$$\begin{pmatrix} 0.6337 & 0.1584 & 0.1188 & 0.0891 \\ 0.6337 & 0.1584 & 0.1188 & 0.0891 \\ 0.6337 & 0.1584 & 0.1188 & 0.0891 \\ 0.6337 & 0.1584 & 0.1188 & 0.0891 \end{pmatrix}$$
Problem

If in the bonus-malus problem, suppose $p_0 = 0.8$, $p_1 = 0.1$, $p_2 = 0.05$, and $p_{\geq 3} = 0.05$. Then

$$\lim_{n \to \infty} P^n$$
exists and equals

$$\begin{pmatrix}
0.6337 & 0.1584 & 0.1188 & 0.0891 \\
0.6337 & 0.1584 & 0.1188 & 0.0891 \\
0.6337 & 0.1584 & 0.1188 & 0.0891 \\
0.6337 & 0.1584 & 0.1188 & 0.0891
\end{pmatrix}$$

1. **Determine the empirical frequencies.**
If in the bonus-malus problem, suppose $p_0 = 0.8$, $p_1 = 0.1$, $p_2 = 0.05$, and $p_{\geq 3} = 0.05$. Then

$$\lim_{n \to \infty} P^n$$
exists and equals

$$\begin{pmatrix}
0.6337 & 0.1584 & 0.1188 & 0.0891 \\
0.6337 & 0.1584 & 0.1188 & 0.0891 \\
0.6337 & 0.1584 & 0.1188 & 0.0891 \\
0.6337 & 0.1584 & 0.1188 & 0.0891 \\
\end{pmatrix}$$

1. Determine the empirical frequencies.
2. Determine the mean recurrence times.

Hint: Since
Determine the empirical frequencies.

\[
F = P^* = \lim_{n \to \infty} P^n.
\]

The empirical frequencies can be read off from \(P^* \):

\[
(F_1, F_2, F_3, F_4) = (0.6337, 0.1584, 0.1188, 0.0891).
\]

Determine the mean recurrence times.

\[
\mu_{ii} = \frac{1}{F_{ii}}.
\]

So

\[
(\mu_1, \mu_2, \mu_3, \mu_4) = \left(\frac{1}{0.6337}, \frac{1}{0.1584}, \frac{1}{0.1188}, \frac{1}{0.0891} \right) \approx (1.58, 6.31, 8.42, 11.22).
\]
Determine the empirical frequencies.

Solution: The process mixes so

\[F = P^* = \lim_{n \to \infty} P^n. \]
Determine the empirical frequencies.

Solution: The process mixes so

\[F = P^* = \lim_{n \to \infty} P^n. \]

The empirical frequencies can be read off from \(P^* \):

\[(F_1, F_2, F_3, F_4) \]
Determine the empirical frequencies.

Solution: The process mixes so

\[F = P^* = \lim_{n \to \infty} P^n. \]

The empirical frequencies can be read off from \(P^* \):

\[(F_1, F_2, F_3, F_4) = (0.6337, 0.1584, 0.1188, 0.0891). \]
Solution bonus-malus problem

1. Determine the empirical frequencies.

 Solution: The process mixes so

 \[F = P^* = \lim_{n \to \infty} P^n. \]

 The empirical frequencies can be read off from \(P^* \):

 \[(F_1, F_2, F_3, F_4) = (0.6337, 0.1584, 0.1188, 0.0891). \]

2. Determine the mean recurrence times.
Determine the empirical frequencies.

Solution: The process mixes so

\[F = P^* = \lim_{n \to \infty} P^n. \]

The empirical frequencies can be read off from \(P^* \):

\[(F_1, F_2, F_3, F_4) = (0.6337, 0.1584, 0.1188, 0.0891). \]

Determine the mean recurrence times.

Solution: This chain is irreducible. Hence, \(\mu_{ii} = 1/F_{ii} \).
Determine the empirical frequencies.

Solution: The process mixes so

\[F = P^* = \lim_{n \to \infty} P^n. \]

The empirical frequencies can be read off from \(P^* \):

\[
(F_1, F_2, F_3, F_4) = (0.6337, 0.1584, 0.1188, 0.0891).
\]

Determine the mean recurrence times.

Solution: This chain is irreducible. Hence, \(\mu_{ii} = 1/F_{ii} \). So

\[
(\mu_1, \mu_2, \mu_3, \mu_4) = (1/0.6337, 1/0.1584, 1/0.1188, 1/0.0891)
\]
1. Determine the empirical frequencies.

Solution: The process mixes so

\[F = P^* = \lim_{n \to \infty} P^n. \]

The empirical frequencies can be read off from \(P^* \):

\[(F_1, F_2, F_3, F_4) = (0.6337, 0.1584, 0.1188, 0.0891). \]

2. Determine the mean recurrence times.

Solution: This chain is irreducible. Hence, \(\mu_{ii} = 1/F_{ii} \). So

\[(\mu_1, \mu_2, \mu_3, \mu_4) = (1/0.6337, 1/0.1584, 1/0.1188, 1/0.0891) \]
\[\approx (1.58, 6.31, 8.42, 11.22). \]