Lecture I: Basic Physics
Velocity

• Velocity: Instantaneous change in position \(\vec{v} = \frac{d\vec{x}}{dt} \)

• Suppose object position \(\vec{x}_o \) and constant velocity \(\vec{v} \). After time step \(\Delta t \):
 • \(\vec{x}_o(t + \Delta t) = \vec{x}_o(t) + \vec{v}\Delta t \)
 • \(\Delta \vec{x}_o = \vec{x}_o(t + \Delta t) - \vec{x}_o(t) = \vec{v}\Delta t \).

• \(\vec{v} \) is never constant in practice
 • A function of time \(\vec{v}(t) \).
 • Position is integrated in time: \(\vec{x}_o(t) = \vec{x}_o + \int_0^t \vec{v}(s) \, ds \).

• Velocity SI units: \(\frac{m}{sec} \)
Acceleration

- **Instantaneous** change in velocity: \(\vec{a} = \frac{d\vec{v}}{dt} \).
 - Constant acceleration: \(\Delta \vec{v} = \vec{a} \Delta t \).
 - Otherwise, integrate: \(v(t) = V + \int_{0}^{t} a(s) \, ds \).

- **Note vector quantities!**
 - Position: trajectory of a point.
 - Velocity: tangent to trajectory curve.
 - Speed: absolute value of velocity.
 - Acceleration: the change in the tangent.
Relative Quantities

• Using coordinates, our vector quantities are relative to the chosen axis system (origin + xyz direction)
• They are viewpoint dependent.
• The derivation/integration relations are invariant!
Forces

• Acceleration is induced by a force.

• Direction of force = direction of associated acceleration.

• Net force (and net acceleration): the sum of all acting forces.
Newton’s laws of motion

• In the late 17th century, Sir Isaac Newton described three laws that govern all motion on Earth.

• ...ultimately, an approximation
 • Small scale: quantum mechanics.
 • Big scale: theories of relativity.
1st Law of Motion

• Sum of forces on an object is null ⇔ there is no change in the motion

\[F_{net} = 0, \text{there is no change in motion} \]

• With zero force sum:
 • An object at rest stays at rest.
 • A moving object perpetuates in the same velocity.

• Behavior of objects in the outer space.
2nd Law of Motion

- Each force induces a co-directional acceleration in linear to the mass of the object:

\[
\vec{F}_{\text{net}} = m \cdot \vec{a}
\]

- Consequently:
 - More force \(\Leftrightarrow\) faster speed-up.
 - Same force \(\Leftrightarrow\) lighter objects accelerate faster than heavy objects.
3rd Law of Motion

- Forces have consequences:

\[
\text{When two objects come into contact, they exert equal and opposite forces upon each other.}
\]

- All forces are actually \textit{interactions} between bodies!

What happens here?
Gravity

- **Newton’s Law of Gravitation:** the gravitation force between two masses A and B is:

\[
\vec{F}_g = \vec{F}_{A\rightarrow B} = -\vec{F}_{B\rightarrow A} = G \frac{m_A m_B}{r^2} \overrightarrow{u}_{AB}
\]

G: gravitational constant $6.673 \times 10^{-11} \ [m^3 kg^{-1} s^{-2}]$.

$r = |\vec{p}_A - \vec{p}_B|$: the distance between the objects.

$\overrightarrow{u}_{AB} = \frac{\vec{p}_A - \vec{p}_B}{|\vec{p}_A - \vec{p}_B|}$: the unit direction between them.
Gravity on Earth

• By applying Newton’s 2nd law to an object with mass \(m\) on the surface of the Earth, we obtain:

\[
\vec{F}_{\text{net}} = \vec{F}_g = m \cdot \vec{a}
\]

\[
G \frac{m \cdot m_{\text{Earth}}}{r_{\text{Earth}}^2} = m \cdot a
\]

\[
G \frac{m_{\text{Earth}}}{r_{\text{Earth}}^2} = a \quad \text{Mass of object is canceled out!}
\]

\[
a = g_{\text{Earth}} = 6.673 \times 10^{-11} \frac{5.98 \times 10^{24}}{(6.377 \times 10^6)^2} \approx 9.81 \text{ m/s}^2
\]
Gravity on Other Planets

- On Earth at altitude h: $a = G \frac{m_{\text{Earth}}}{(r_{\text{Earth}} + h)^2}$

- On the Moon
 - $m_{\text{moon}} = 7.35 \times 10^{22} \text{ kg}$
 - $r_{\text{moon}} = 1738 \text{ km}$
 - $g_{\text{moon}} = 1.62 \text{ m/s}^2$

- On Mars
 - $m_{\text{mars}} = 6.42 \times 10^{23} \text{ kg}$
 - $r_{\text{mars}} = 3403 \text{ km}$
 - $g_{\text{mars}} = 3.69 \text{ m/s}^2$
Weight

• Weight \Leftrightarrow gravitational force

\[
\vec{W} = m \cdot \vec{g}
\]

• We weigh different on the moon (but have the same mass...)

• Force units: $[kg \cdot \frac{m}{sec^2}]$.
 • Denoted as Newtons $[N]$.
Free-Body Diagram

• To get acceleration: sum forces and divide by mass (D'Alembert's principle):

\[\vec{F}_{net} = \sum \vec{F}_i = m \cdot \vec{a} \]

• Forces add up linearly as vectors.
 • Important: when all are represented in the same axis system!

• The Free-Body Diagram includes:
 • Object shape: center of mass, contact points.
 • Applied forces: direction, magnitude, and point of application.

https://www2.southeastern.edu/Academic/Faculty/rallain/plab193/files/a8312fbf3bde4804309096169ad22bd5-46.html
Normal force

• Force acting as a reaction to contact.
 • Direction is normal to the surface of contact.
 • **Magnitude** enough to cancel the weight so object doesn’t go through the plane.

![Normal force diagram](image)

• Here, $F_N = \vec{W} \cos(\alpha) = m\vec{g} \cos(\theta)$
• Related to **constraints and collision handling** (more later).
• Object slides down plane with the remainder force: $\vec{W} \sin(\theta)$.
Friction

• Can the object stay in total equilibrium?
 • An extra tangential friction force must cancel \(\vec{W} \sin(\theta) \).

• Ability to resist movement.
 • Static friction keeps an object on a surface from moving.
 • Kinetic friction slows down an object in contact.
Friction

• **Static friction**: a threshold force.
 • object will not move unless tangential force is stronger.

• **Kinetic friction**: when the object is moving.

• Depends on the materials in contact.
 • smoother \leftrightarrow less friction.

• **Coefficient of friction** μ determines friction forces:
 • Static friction: $F_s = \mu_s F_N$
 • Kinetic friction: $F_k = \mu_k F_N$
Friction

• The kinetic coefficient of friction is always smaller than the static friction.

• If the tangential force is larger than the static friction, the object moves.

• If the object moves while in contact, the kinetic friction is applied to the object.
Friction

<table>
<thead>
<tr>
<th>Surface Friction</th>
<th>Static (μ_s)</th>
<th>Kinetic (μ_k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel on steel (dry)</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>Steel on steel (greasy)</td>
<td>0.1</td>
<td>0.05</td>
</tr>
<tr>
<td>Teflon on steel</td>
<td>0.041</td>
<td>0.04</td>
</tr>
<tr>
<td>Brake lining on cast iron</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Rubber on concrete (dry)</td>
<td>1.0</td>
<td>0.9</td>
</tr>
<tr>
<td>Rubber on concrete (wet)</td>
<td>0.30</td>
<td>0.25</td>
</tr>
<tr>
<td>Metal on ice</td>
<td>0.022</td>
<td>0.02</td>
</tr>
<tr>
<td>Steel on steel</td>
<td>0.74</td>
<td>0.57</td>
</tr>
<tr>
<td>Aluminum on steel</td>
<td>0.61</td>
<td>0.47</td>
</tr>
<tr>
<td>Copper on steel</td>
<td>0.53</td>
<td>0.36</td>
</tr>
<tr>
<td>Nickel on nickel</td>
<td>1.1</td>
<td>0.53</td>
</tr>
<tr>
<td>Glass on glass</td>
<td>0.94</td>
<td>0.40</td>
</tr>
<tr>
<td>Copper on glass</td>
<td>0.68</td>
<td>0.53</td>
</tr>
</tbody>
</table>
Fluid resistance

- An object moving in a fluid (air is a fluid) is slowed down by this fluid.

- This is called **fluid resistance**, or **drag**, and depends on several parameters, e.g.:
 - High velocity \Leftrightarrow larger resistance.
 - More surface area \Leftrightarrow larger resistance (“bad aerodynamics”).

![Diagram of fluid resistance](image-url)
Fluid resistance

- At high velocity, the drag force $F_{D_{\text{high}}}$ is quadratic to the relative speed ν of the object:

$$F_{D_{\text{high}}} = -\frac{1}{2} \cdot \rho \cdot \nu^2 \cdot C_d \cdot A$$

- ρ is the density of the fluid (1.204 for air at 20°C)
- C_d is the drag coefficient (depends on the shape of the object).
- A is the reference area (area of the projection of the exposed shape).
Fluid resistance

• At low velocity, the drag force is approximately linearly proportional to the velocity

\[\overrightarrow{F_{D_{low}}} \approx -b \cdot \overrightarrow{v} \]

where \(b \) depends on the properties of the fluid and the shape of the object.

• High/low velocity threshold is defined by Reynolds Number (Re).
Buoyancy

• Develops when an object is immersed in a fluid.
• A function of the volume of the object V and the density of the fluid ρ:
 \[F_B = \rho \cdot g \cdot V \]
• Considers the difference of pressure above and below the immersed object.
• Directed straight up, counteracting the weight.
Springs

• React according to *Hook’s Law* on extension and compression, *i.e.* on the relative displacement.

• The relative length \(l \) to the rest length \(l_0 \) determines the applied force:

\[
F_k = -K(l - l_0)
\]

• \(K \) is the *spring constant* (in \(N/m \)).
• Scalar spring: two directions.
Dampers

- Without interference, objects may oscillate infinitely.
- **Dampers** slow down the oscillation between objects \(A \) and \(B \) connected by a spring.
- Opposite to the relative speed between the two objects:
 \[
 \vec{F}_C = -C(\vec{v}_A - \vec{v}_B)
 \]
 - \(C \) is the damping coefficient.
 - Resulting force applied on \(A \) (opposite on \(B \)).
- Similar to friction or drag at low velocity!
Work

• A force \vec{F} does work W (in Joule = $N \cdot m$), if it achieves a displacement $\Delta \vec{x}$ in the direction of the displacement:

$$W = \vec{F} \cdot \Delta \vec{x}$$

• Note dot product between vectors.
• Scalar quantity.
Kinetic energy

- The kinetic energy E_K is the energy of an object in velocity:

\[E_K = \frac{1}{2} m |\vec{v}|^2 \]

- The faster the object is moving, the more energy it has.

- The energy is a scalar (relative to speed $\nu = |\vec{v}|$, regardless of direction).

- Unit is also Joule:

\[kg(m/sec)^2 = \left(kg \times \frac{m}{sec^2} \right) m = N \times m = J \]
Work-Energy theorem

• The Work-Energy theorem: net work \(\Leftrightarrow \) change in kinetic energy:

\[
W = \Delta E_K = E_K(t + \Delta t) - E_K(t)
\]

\[\text{i.e.} \]

\[
\vec{F} \cdot \Delta \vec{x} = \frac{1}{2} m (\nu(t + \Delta t)^2 - \nu(t)^2)
\]

• Very similar to Newton’s second law...
Potential energy

• (Gravitational) **Potential energy** is the energy ‘stored’ in an object due to **relative** height difference.

 • The amount of work that would be done if we were to set it free.

\[
E_P = m \cdot g \cdot h
\]

• Simple product of the weight \(W = m \cdot g \) and height \(h \).
• Also measured in Joules (as here \(kg \cdot \frac{m}{sec^2} \cdot m \)).

• Other potential energies exist (like a compressed spring).
Conservation of mechanical energy

- **Law of conservation:** in a closed system, energy cannot be created or destroyed.
 - Energy may switch form.
 - May transfer between objects.
 - Classical example: falling trades potential and kinetic energies.

\[
E_K(t + \Delta t) + E_P(t + \Delta t) = E_K(t) + E_P(t)
\]

\[
i.e.
\frac{1}{2}mv(t + \Delta t)^2 + mgh(t + \Delta t) = \frac{1}{2}mv(t)^2 + mgh(t)
\]
Conservation: Example

- A roller-coaster cart at the top of the first hill.
 - Much potential energy, but only a little kinetic energy.
 - Going down the drop: losing height, picking up speed.
 - At the bottom: almost all potential energy switched to kinetic, cart is at its maximum speed.
Conservation of Mechanical Energy

- External forces are usually applied:
 - Friction and air resistance.
 - Where does the “reduced” energy go?
 - Converted into heat and air displacements (sound waves, wind).
- We compensate by adding an extra term E_O to the conservation equation:
 \[E_K(t + \Delta t) + E_P(t + \Delta t) + E_O = E_K(t) + E_P(t) \]
- if $E_O > 0$, some energy is ‘lost’.

https://i.ytimg.com/vi/anb2c4Rm27E/maxresdefault.jpg
Momentum

• The **linear momentum** \vec{p}: the mass of an object multiplied by its velocity:

$$\vec{p} = m \cdot \vec{v}$$

• Heavier object/higher velocity \iff more momentum (more difficult to stop).

• unit is $[kg \cdot m/sec]$.

• **Vector** quantity (velocity).
Impulse

• A change of momentum:
 \[\vec{J} = \Delta \vec{p} \]

• Compare:
 • **Impulse** is change in **momentum**.
 • **Work** is change in **energy**.

• Unit is also \([\text{kg} \cdot \text{m/s}]\) (like momentum).

• Impulse \(\Leftrightarrow\) force integrated over time:
 \[\vec{J} = \int_0^t \vec{F} \, dt = m \int_0^t \vec{a} \, dt = m \Delta \vec{v}. \]
Conservation of Momentum

• **Law of conservation:** in a closed system (no external forces/impulses), momentum **cannot** be created or destroyed.

• **Compare:** conservation of energy.

• Implied from 3\(^{rd}\) law.
 • Objects react with the same force exerted on them.

• Special case of Noether’s theorem: every physical system (With a symmetric action) has a conservation law.