Lecture VIII: Finite Element Simulation
Motivation

• **Continuous physics:** rigid, deforming, attaching, detaching bodies.
 • “continuous” features
 • “infinite” resolution

• Computer simulation:
 • *Discrete representation* with limited memory.
 • *Efficiency* is key.
 • ...and also *consistency* and *stability.*
Partial Differential Equations

• Govern the connection between kinematics and dynamics.

• Examples:
 • \(\vec{F} = m\vec{a} = m \frac{d\vec{v}}{dt} = \vec{-v} \) (drag).
 • \(\vec{F} = -k\vec{x} = \frac{d\vec{x}}{dt} \) (spring; Hooke’s law).

• We learned how to integrate in time.
• How to discretize in space?
Partial Differential Equations

• Challenges:
 • Discretize (partial) derivatives
 • Obey conservation rules
 • Consistency
 • Good sampling

• Representation choices:
 • Where do functions\,vectors\,tensors “live”?
Numerical Simulation

• **Lagrangian:**
 • Representation: connected *mesh* or *cloud* of particles.
 • **Examples:** Finite methods, Mass-spring system, particle systems.

• **Eulerian:**
 • Representation: stationary point set or *grid*, where material properties change over time.
 • Boundary of object not explicitly defined.
 • Suitable for fluids.

http://www.flowillustrator.com/wp-content/uploads/2015/02/MaterialDerivative.png
Finite Differences Method

• Object sampled using regular spatial grid.
• PDE discretized using finite differences.
 • Pro: easier and more stable to implement than unstructured methods.
 • Con: difficult to approximate complex boundaries.
• Semi-implicit integration is used to move forward through time

http://www.tc.umn.edu/~dominik/sampling-of-research-activi.html
Finite Differences Method

- Grid size h.
- **Scalar functions**: at vertices.
- Differentials: $du = u(x + h) - u(x)$
- Derivatives: $\frac{du}{dx} \approx \frac{u(x+h) - u(x)}{h} + O(h)$
 - ”Living” on edges
Example: Heat Equation

- \(u_t = c \Delta u \)
 - In 2D: \(u_t = c(u_{xx} + u_{yy}) \)
- Forward discretization in time:
 \[
 u_t \approx \frac{u_{i,j}^{t+\Delta t} - u_{i,j}^t}{\Delta t}
 \]
- 2nd order derivative central approximation:
 \[
 u_{xx} = (u_x)_x \approx \frac{u_{i+1}^t - u_i^t}{h} - \frac{u_i^t - u_{i-1}^t}{h} = \frac{u_{i+1}^t - 2u_i^t + u_{i-1}^t}{h^2}
 \]
Example: Heat Equation

\[u_{xx} + u_{yy} \approx \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2} + \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h^2} \]

\[= \frac{u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} - 4u_{i,j}}{h^2} \]

- Measuring difference of neighbor average from center!
- **Dirichlet** Boundary conditions: set constant values

http://www.math.oregonstate.edu/~show/images/Dd.jpg
Boundary Element Method

• Remember Stokes theorem:
\[\int_{\partial \Omega} \omega = \int_{\Omega} d\omega \]

• Practical interpretation: the sum of what “happens inside” only depends on “what goes in and out”.

• Discretizing PDE only on the boundary surface instead of the entire volume.
 • Only good for homogenous material.
 • Topological changes more difficult to handle.

http://urbana.mie.uc.edu/yliu/
Finite Volume Methods

• Measure flux changes in small (simplicial) elements
 • Like a BEM on a FEM.

\[\frac{\partial}{\partial t} \iiint Q \, dV + \iint F \, dA = 0 \]

• \(Q \): variable inside the domain
• \(F \): flux on the boundary.

• Conserves volume by definition!
 • Good for CFD.

“A simple finite volume method for adaptive viscous liquids” by [Batti et al. 2011]
Finite Element Method (FEM)

- **Tessellating** the volume into a large finite number of disjoint elements (3D volumetric/surface mesh).
- Usually: *simplices*. Sometimes *quads/hexes*.
- **Scalar functions**: at vertices.
- **Differentials** on edges $e_{ij}: du = u_j - u_i$.
- *Derivatives?*

[Image: https://afinemesh.files.wordpress.com/2015/05/frontal-hex-mesh.png]
Lagrange FEM Basis

• Function values defined on vertices, but
 • Assumed to interpolate linearly on elements:
 \[u(p) = \sum_{i=0}^{3} B_i(p)u_i \]
 • \(B_i(p) \): Barycentric coordinates of \(p \) in element.
Motivation

• Discretize deformations, vectors, and tensors

• Derivative and integrals \Rightarrow linear operators (matrices)
 • Solving PDEs \Leftrightarrow solving linear equations
 • Either directly, or by iterations.

Irving et al. “Volume Conserving Finite Element Simulations of Deformable Models”

https://www.youtube.com/watch?v=Rbq2CdUlw4
Lagrange FEM Basis

• Equivalent definition: function is defined by per-vertex u_v scalar values

• Entire space is spanned by Lagrange basis functions

$$u(p) = \sum_{v \in V} u_v \varphi_v(p)$$

• $\varphi_v(p) = 1$ on v, and 0 on other vertices.
 • Piecewise linear (“hat function”).
Lagrange FEM Basis

• If scalar functions are piecewise linear on vertices:
 • Gradients ∇u are piecewise constant on faces!

$$\nabla u(p) = \sum_{v \in V} u_i \nabla \varphi_v(p)$$

• Example: position function on vertices, deformation (velocity) on faces.
Gradients

- We want to compute $\nabla \varphi_1$ (w.l.o.g.) in face 123.
- **Insight:** in the direction of $e_{23}^\perp = \mathbf{\hat{n}} \times e_{23}$.
- **Result:** $\nabla \varphi_1 = \frac{e_{23}^\perp}{2A_{123}}$
 - A_{123}: area of triangle 123.
- For a function u_1, u_2, u_3:

$$\nabla u_{123} = Gu_{123} = \frac{1}{2A_{123}} (e_{23}^\perp u_1 + e_{31}^\perp u_2 + e_{12}^\perp u_3)$$

[Diagram showing vectors and coordinate system]

derived from geometry
Gradients

• In matrix form (\(\vec{e}_{23}^\perp\) etc. are column vectors 1x3):

\[
G_{123}u = \frac{1}{2A_{123}} (\vec{e}_{23}^\perp \quad \vec{e}_{31}^\perp \quad \vec{e}_{12}^\perp) \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}
\]

= \begin{pmatrix}
\frac{\partial u}{\partial x} \\
\frac{\partial u}{\partial y} \\
\frac{\partial u}{\partial z}
\end{pmatrix}_{123}

• Aggregating, we can get global matrix \(G_3|F| \times |V|\)

 • PL vertex functions -> face PC gradients.
 • 3\(|F|\) - one vector (xyz) in each face.
Linear Elasticity in FEM

• **Discretization**: deformation field on vertices
 - Where each vertex moves.
 - PL inside each tetrahedron\triangle.

• Reminder: Jacobian: $Ju(p): \mathbb{R}^{3\times3} = \begin{pmatrix} \nabla u_x(p) \\ \nabla u_y(p) \\ \nabla u_z(p) \end{pmatrix}$

• We simply work with three scalar functions: u_x, u_y, u_z.

• Denoting: $\vec{u}_x = \begin{pmatrix} u_{x,1} \\ u_{y,1} \\ u_{z,1} \end{pmatrix}$

\[
\begin{pmatrix} \nabla u_x^T \\ \nabla u_y^T \\ \nabla u_z^T \end{pmatrix} = J_{123} \begin{pmatrix} \vec{u}_x \\ \vec{u}_y \\ \vec{u}_z \end{pmatrix} = \begin{pmatrix} G_{123} \\ G_{123} \\ G_{123} \end{pmatrix} \begin{pmatrix} \vec{u}_x \\ \vec{u}_y \\ \vec{u}_z \end{pmatrix}
\]

• **Sanity check**: J_{123} is a 9×9 matrix.
Tetrahedral Meshes

- Elements $e = [1234]$.
- "straightforward" generalization
 - Scalar functions/deformation vectors are defined on vertices
 - Piecewise-linear inside each tet volume.
 - Gradients piecewise-constant in each tet.
 - Gradients orthogonal to opposite face normal.

- Single tet Jacobian: $J_e : 9 \times 12$ matrix
 - Input vertex deformation field $3 \times 4 = 12$.
 - Output tet jacobian: $3 \times 3 = 9$.
Linear Elasticity in FEM

• Full Lagrangian strain tensor:
 \[\mathbf{E} = \frac{1}{2} (J_u^T J_u + J_u + J_u^T) \]

• Not linear inside tets!

• Linear elasticity approximation:
 \[\mathbf{\varepsilon} \approx \frac{1}{2} (J_u + J_u^T) \]

• Good for small deformations without much rotation.
Discrete Strain Tensor

• Written explicitly:

\[
\varepsilon = \frac{1}{2} (J u + J u^T) = \frac{1}{2} \begin{pmatrix}
2 \frac{\partial u_x}{\partial x} & \frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x} & \frac{\partial u_x}{\partial z} + \frac{\partial u_z}{\partial x} \\
\frac{\partial u_y}{\partial x} + \frac{\partial u_x}{\partial y} & 2 \frac{\partial u_y}{\partial y} & \frac{\partial u_y}{\partial z} + \frac{\partial u_z}{\partial y} \\
\frac{\partial u_z}{\partial x} + \frac{\partial u_x}{\partial z} & \frac{\partial u_z}{\partial y} + \frac{\partial u_y}{\partial z} & 2 \frac{\partial u_z}{\partial z}
\end{pmatrix}
\]

• Only 6 relevant elements (rest are symmetric):

\[
\begin{pmatrix}
\varepsilon_{xx} \\
\varepsilon_{yy} \\
\varepsilon_{zz} \\
\varepsilon_{xy} \\
\varepsilon_{yz} \\
\varepsilon_{zx}
\end{pmatrix} = \begin{pmatrix}
\frac{\partial}{\partial x} \\
\frac{\partial}{\partial y} \\
\frac{\partial}{\partial z} \\
0.5 \frac{\partial}{\partial y} & 0.5 \frac{\partial}{\partial x} \\
0.5 \frac{\partial}{\partial z} & 0.5 \frac{\partial}{\partial y} \\
0.5 \frac{\partial}{\partial z} & 0.5 \frac{\partial}{\partial x}
\end{pmatrix} \begin{pmatrix}
u_x(p) \\
u_y(p) \\
u_z(p)
\end{pmatrix}
\]
Discrete Strain Tensor

• In a single tet: $J_e u$ is constant $\implies \varepsilon_e$ is constant.
• We want to get ε_e as a direct function of u.
• We have:

$$\varepsilon_e = \begin{pmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \varepsilon_{xy} \\ \varepsilon_{yz} \\ \varepsilon_{zx} \end{pmatrix} = DJ_e \begin{pmatrix} \vec{u}_x \\ \vec{u}_y \\ \vec{u}_z \end{pmatrix},$$

Where D is a permutation matrix that “chooses” the corresponding values of $J_e u$

• Sanity check: D is of size 6×9 and does not depend on the shape of any tet (only contains non-zeros values “1” or “0.5”).
Discrete Strain Tensor

- Strain tensor per face:
 \[\varepsilon_e = DJ_e u_e = B_e u_e \]
- \(u_e \): all \(u_{xyz,1234} \) values (12 in total).
- Note: \(B_e \): \(\mathbb{R}^{6 \times 12} \).
- \(B_e \) contains derivatives of \(\varphi_{1,2,3,4}(p) \)
 - \(\varphi_{1,2,3,4} \) are linear inside \(e \).
 - Derivatives of \(\varphi_i \) are constant inside \(e \).
- \(B_e \) is constant inside the element!
Discrete Stress Tensor

- **Stress and strain** are related by Hooke’s law
 - Remember $\vec{F} = -k\vec{x}$?
- Again, because of symmetry, we use the compact form:

$$\sigma_e = \begin{pmatrix}
\sigma_{xx} \\
\sigma_{yy} \\
\sigma_{zz} \\
\sigma_{xy} \\
\sigma_{yz} \\
\sigma_{zx}
\end{pmatrix}$$
Discrete Stress Tensor

- Stress and strain are related by discrete **stiffness tensor** \(C_e : \mathbb{R}^{6 \times 6} \).
 \[\sigma_e = C_e \varepsilon_e = C_e B_e u_e \]

- Relatively easy structure in the discrete case:
 \[
 C_e = \begin{pmatrix}
 \lambda + 2\mu & \lambda & \lambda \\
 \lambda & \lambda + 2\mu & \lambda \\
 \lambda & \lambda & \lambda + 2\mu \\
 \end{pmatrix}
 \]

- Where \(\mu = \frac{Y}{2(1+v)} \), \(\lambda = \frac{vY}{(1+v)(1-2v)} \)
 - \(Y \) – Young’s modulus.
 - \(\nu \) – Poisson’s ratio.

- \(\mu \) and \(\lambda \) are known as **Lamé coefficients**.
Strain Energy

- Potential energy gained when applying strain to object:

\[U_e = \frac{1}{2} \int_{T} \langle \sigma, \varepsilon \rangle dV \]

- We have that \(\sigma_e = c_e B_e u_e \) and \(\varepsilon_e = B_e u_e \).
- Then:

\[\langle \sigma_e, \varepsilon_e \rangle = (\sigma_e)^T \varepsilon_e = u_e^T B_e^T C_e B_e u_e \]

- Both are constant inside volume, so:

\[U_e = \frac{1}{2} \text{Vol}(e) \times u_e^T B_e^T C_e B_e u_e = \frac{1}{2} u_e^T K_e u_e \]

- \(K_e \): stiffness matrix of 12\(\times \)12
 - Only depends on the original geometry and material properties!
Elastic Forces

- **Derivatives** of the potential energy:

\[f_e = \frac{\partial U_e}{\partial u_e} = K_e u_e \]

- Each element of \(f_e \) corresponds to an element of \(u_e \)
 - Inner force acting on that coordinate due to deformation.
Elastic Forces

• Net force on each vertex: sum of forces from all adjacent elements.

• Aggregated into a big matrix:

\[f = K_u \]

• Interpretation: a “force Laplacian”.

• Pulling vertex toward “rest-state equilibrium”.

\[f_e = \frac{\partial U_e}{\partial u_e} = K_e u_e \]
Dynamic Deformation Equation

• Computing new positions $x(t)$:
 \[M x''(t) + D x'(t) + K (x - x_0) = f_{ext} \]

 • M: Mass matrix
 • D: Damping matrix
 • K: stiffness matrix
 • f_{ext}: other forces (gravity etc.)
Mass Matrix

• Suppose we are given density ρ for each tetrahedron.
• We need mass per vertex (where acceleration is).
• Solution: use Voronoi area:

$$m_v = \sum_{e \in N(v)} \frac{1}{4} \rho V(e)$$

• Assuming
• Mass matrix is then

$$M = \text{diag}\{m\}$$

 • Each element in the diagonal corresponds to which vertex is represented in the respective column of x.

$$M x''(t) + D x'(t) + K(x - x_0) = f_{ext}$$
Dampening Matrix

• We often use **Rayleigh Dampening**:
 \[D = \alpha M + \beta K \]

• \(\alpha, \beta \) are dampening parameters.
 • A whole theory of how to compute them and to what effect...

• For our purposes: keep as parameters, limit by small values \(0 \leq \alpha, \beta \leq 0.02 \).
Time Integration

• Best practice: a variant on implicit backward integration

• Solve for:

\[x(t + \Delta t) = x(t) + \Delta t \cdot \nu(t + \Delta t) \]

And similarly for \(\nu(t + \Delta t) \) and \(a(t + \Delta t) \).

• We need to solve the linear system:

\[
[M + \Delta tD + \Delta t^2K] \nu(t + \Delta t) = M\nu(t) + \Delta tK(x(t) - x_0) - f_{ext}
\]

Right-hand side, changes with time.

• Integrating for position with the formula above.
Solving the system

- We need to solve the linear system in every time step.
- Abstract form: \(Ax(t) = b(t) \), \(A \) time independent.
- Sounds slow; however, we should use the fact that \(A \) does not change!
 - Reduce \(A \) to some convenient form in the beginning of time
 - In each iteration: change \(b(t) \) and solve for \(x(t) \).

\[
[M + \Delta tD + \Delta t^2K]v(t + \Delta t) = Mv(t) + \Delta tK(x(t) - x_0) - f_{ext}
\]
LU Decomposition

• Every **square** matrix A can be decomposed into $A = L \cdot U$, where:
 - L **lower** triangular
 - U **upper** triangular

\[
A = \begin{pmatrix}
A_{11} & \cdots & A_{1n} \\
\vdots & \ddots & \vdots \\
A_{n1} & \cdots & A_{nn}
\end{pmatrix}
\]

\[
= \begin{pmatrix}
L_{11} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
L_{n1} & \cdots & L_{nn}
\end{pmatrix}
\cdot
\begin{pmatrix}
U_{11} & \cdots & U_{1n} \\
\vdots & \ddots & \vdots \\
0 & \cdots & U_{nn}
\end{pmatrix}
\]
Solving systems with LU Decomposition

• Decompose $Ax = LUx$.

• Solve in two steps:
 • Solve $Ly = b$ (one forward substitution)
 • Solve $Ux = y$ (one backward substitution)

• Decomposition is relatively expensive.

• But solving for a given RHS is cheap.

• **Consequence**: decomposition is very beneficial for fixed A and varying b!
Sparse Representation

• M, D, K have few elements w.r.t. to their sizes
 • M just diagonal.
 • K creates forces for vertices only from their neighbors.
• Efficiency and memory requirements: use sparse matrices!
• Direct Representation:
 • List of triplets (row, col, value).
• Example:

$$A = \begin{pmatrix}
1 & -5 \\
4 &
\end{pmatrix}$$

Represented as $\{(1,1,1), (2,3,-5), (3,2,4)\}$.
• The common way to feed sparse matrices.
• Sometimes called COOrdinate format (COO)
Compressed Sparse Row/Column

- The common way to represent and manipulate in memory.

- For **CSR** we have 3 arrays A,IA,JA
 - A: list of non-zeros (NZ) row-by-row
 - IA: defined recursively:
 - IA[0]=0
 - IA[i]=IA[i-1]+NNZ(row(i-1))
 - JA: column value of each element in A.

- **CSC**: the same with columns instead of rows and vice versa.

\[
A = \begin{pmatrix}
10 & 20 & 0 & 0 & 0 & 0 & 0 \\
0 & 30 & 0 & 40 & 0 & 0 & 0 \\
0 & 0 & 50 & 60 & 70 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 80 \\
\end{pmatrix}
\]

\[
A = [10
20
30
40
50
60
70
80] \\
IA = [0 2 4 7 8] \\
JA = [0 1 1 3 2 3 4 5]
\]
Sparse Representation

• Cheap:
 • Sparse * vector for CSR.
 • Vector * sparse for CSC.
 • Slicing (but don’t use that).

• What’s Relatively cheap:
 • Decompositions (sparse LU, Cholesky, etc.)

• What’s Expensive:
 • Transpose (conversion from CSC to CSR)
 • Random memory access.
“Index Hell”

- Figuring out the matrices can be quite a job.
 - “which vertex, which coordinate xyz to which element multiplies with what” → index hell.
 - Easy to get wrong!

- Life-(and sanity-; and grade-) saving tip:
 - Create Complicated matrices (such as K) through the composition of easier matrices.

- Example: compute a huge K' that is just made of blocks of the much easier K_e per-element.

- Compose with a matrix M that averages numbers from elements to adjacent vertices to get $K = MK'$.
 - Similar with the matrices G, J, etc.
Corotational Elements

• **Insight**: rotating an element should not change the strain energy.

• **Conclusion**: Given an element in position \(x \), with strain energy \(U_e \), and consequent elastic forces \(f_e \), the forces on a rotated element \(R_e x \) should be \(R_e f_e \).

Müller and Gross, “Interactive Virtual Materials”
Corotational Elements

• Method:
 • Estimate rotation R_e, and factor out rotation from the deformed object x: $R_e^{-1}x$
 • Compute elastic forces of unrotated object:
 $$K_e\left(R_e^{-1}x - x_0\right)$$
 • Rotate back to deformed state to get actual forces:
 $$f_e = R_eK_e\left(R_e^{-1}x - x_0\right) = K_e'u_e$$
Corotational Elements

• **Advantages**: able to work with large rotations
• **Disadvantages**: stiffness matrix not constant anymore.
 • Have to solve system using conjugate gradients...
• How to estimate rotation R_e?
Finding Best-Fit Rotation

• Original positions x, deformed positions x'.
• Create stacked coordinates of edges of original points:

 \[
P = \begin{pmatrix}
 (x_1 - x_2) \\
 (x_1 - x_d)
\end{pmatrix},
Q = \begin{pmatrix}
 (x_1' - x_2') \\
 (x_1' - x_d')
\end{pmatrix}
\]

• Compute matrix: $S = P^T Q \in \mathbb{R}^{3 \times 3}$

• **Singular value decomposition** (SVD) extracts rotation from S

 \[
 S = U \Sigma V^T \quad \rightarrow \quad R = UV^T
 \]
Singular Value Decomposition

• Every linear operator (=matrix $M_{n \times m}$) can be decomposed to:
 • Rotation (Change of basis): $V_{m \times m}$.
 • Stretch in the new basis: $\Sigma_{n \times m}$
 • Note (possible) change in dimension.
 • Rotation (another change of basis): $U_{n \times n}$

• For vector p we get $Mp = U\Sigma V^T p$.
Examples

https://www.youtube.com/watch?v=4Wl0ksysYKM
https://www.youtube.com/watch?v=6f3UYHnR4zU
https://www.youtube.com/watch?v=p5uhnSw8_Xw