INFOMGP - Game Physics

GMT Master Program
Period III, 2018

Lecturer: Amir Vaxman
What is Game Physics?

- Understanding the laws of the real world and simulating them computationally.

Applications?

Science

BeamNG

Games

Movies

Industry

ModuleWorks GmbH

Position Based Fluids [Macklin and Müller 2013]

2012 (bullet)

Universiteit Utrecht

Game Physics – Introduction
Physics is Interaction

• Objects interact through forces:
 • Between remote objects (gravity, magnetism)
 • Between objects in contact (friction, collision).
 • Within an object (chemical ties).

• Game physics: analyzing and simulating interaction.
 • Kinematics: descriptions of motion.
 • Position, velocity and acceleration.

 • Dynamics: forces and their effect.
 • Mass, inertia, collisions, momentum, energy.
Challenges

• Discretization.
 • Stability & Convergence.
 • Preventing errors.

• “How deep do we go”?
 • Efficiency vs. accuracy.

• How to do “well enough”.
 • Visually convincing.
 • Reasonable approximation.

[Rick & Morty, Adult Swim, 2013]

[Liu et al., Fast Simulation of Mass-Spring Systems]
Control

• How do we control \textit{dynamics} to achieve a \textit{kinematic} effect?

• \textbf{Active} control.
 • Characters and hinges.
 • Simulator (driving, flying, engine).

• \textbf{Passive/resulting} control.
 • Collision detection & resolution.
 • Determining kinematics.
 • Soft deformation.

\cite{Deul et al., Position-Based Rigid Body Dynamics, 2014}
The Players in the Field

• **Objects** as collections of **points** (molecules).

• **Rigid** bodies.
 • Deform as a single piece.

• **Soft** bodies.
 • Each point deforms locally in a continuum.

• **Detachable** bodies.
 • Several objects either stick together or break apart.
There Will Be Math

• Linear Algebra.
 • Vector spaces and matrices.
 • Linear transformations.

• Multivariate Calculus.
 • Differential calculus.
 • Integration.

• Basic measurements.
 • SI units.
Learning Objectives & Deliverables

- **Understand** classical continuum mechanics, and **solve** theoretical problems in motion and dynamics.
- **Have a working knowledge** of multivariate & vector calculus and tensor algebra, in the context of game physics.
 - **Deliverable:** home exam.
- **Implement** game physics principles. **Deliverables:**
 - 3 practical assignments.
 - Free-form mini-project.
- **Note:** course has no written exam.
Lectures

• 13-14 frontal lectures.

• Topics:
 • Rigid-body physics & simulation.
 • Calculus and algebra.
 • Collision detection & resolution.
 • Time integration.
 • Space discretization.
 • Soft-body physics & simulation.
 • Fluid physics & simulation.
Home Exam

• Exercise sheets.
• 20% of grade.
• Individual work.
• First starts this week!
• Topics (roughly):
 • Continuous mechanics.
 • Math…
Practical Assignments

• Implement techniques shown in class.
 • GUI Skeleton given with many things already implemented.
• 3 × 20% of grade.
• Work in pairs.
• Topics:
 • rigid body motion & collision.
 • constraints & soft-body deformation.
 • fluid simulation.
• Checked in person with lecturer.
 • On dedicated lecture times.
 • 10 minutes slots.
 • Resubmission possibility: when faults are found.
Mini-project

• Freeform; any game physics subject you want.
• Work in pairs.
• Be creative, but modest!
• Project proposal must be approved by lecturer by 8/Mar/2018.
• Project presentation in class.
 • Instead of original exam date (12/Apr/2018).
• Grade: 20% basic (up to course 100%).
• Peer- and lecturer-reviewed 3 best places.
 • 10% - 5% - 3% bonus points to entire course!
“And Who Are You, The Proud Lord Said”

- Assistant Professor in group Geometric Computing.
- Researching: Geometry Processing
- GMT Projects/Master theses available:
 - Unconventional Meshes
 - Mesh Design & Deformation
 - Vector Fields
 - Architectural Design
 - Medical Visualization
 - Shape Analysis & Simulation