Soft-Body Physics
Soft Bodies

• Realistic objects are not purely rigid.
 • Good approximation for “hard” ones.
 • …approximation breaks when objects break, or deform.

• Generalization: soft (deformable) bodies
 • Deformed by force: car body, punched or shot at.
 • Prone to stress: piece of cloth, flag, paper sheet.
 • Not solid: snow, mud, lava, liquid.
Elasticity

• Forces may cause object deformation.

• **Elasticity**: the tendency of a body to return to its original shape after the forces causing the deformation cease.
 - Rubbers are highly elastic
 - Metal rods are much less.
Stress

• The **magnitude** within an object of an applied force, **divided by the area** of the application
 • large value when the force is large or when the surface is small

• It is a **pressure measure** σ, with a unit denoted as **Pascal**: $Pa = N/m^2$

• Example: the stress on the plane is:
 $$\sigma = mg/(\pi r^2)$$
Strain

• The fractional deformation ϵ caused by a stress
 • Dimensionless (a ratio).
 • How much a deformation differs from being rigid:
 • Negative: compression
 • Zero: rigid
 • Positive: stretch

• Example
 • the strain on the rod is $\epsilon = \Delta L / L$
Body Material

• The amount of stress to produce a strain is a property of the material.

• **Modulus**: a ratio of **stress** to **strain**.

 • Usually in a linear direction, along a planar region or throughout a volume region.

 • Young’s modulus, Shear modulus, Bulk modulus

 • Describing the material reaction to stress.
Young’s Modulus

- Defined as the ratio of \textit{linear stress} to \textit{linear strain}:

\[Y = \frac{\text{linear stress}}{\text{linear strain}} = \frac{F/A}{\Delta L/L} \]

- Example:
Shear modulus

• The ratio of planar stress to planar strain:

\[S = \frac{\text{planar stress}}{\text{planar strain}} = \frac{F/A}{\Delta L/L} \]

• Example:
Bulk modulus

- The ratio of *volume stress* to *volume strain* (inverse of compressibility):

\[B = \frac{\text{volume stress}}{\text{volume strain}} = \frac{\Delta P}{\Delta V/V} \]

- Example
Poisson’s ratio

• Strain in one direction causes compression in another.

• **Poisson’s ratio**: the ratio of transverse to axial strain:

\[\nu = -\frac{d \text{ transverse strain}}{d \text{ axial strain}} \]

• Equals 0.5 in **perfectly incompressible** material.

• If the force is applied along \(x \):

\[\nu = -\frac{d \varepsilon_y}{d \varepsilon_x} = -\frac{d \varepsilon_z}{d \varepsilon_x} \]
Poisson’s ratio

- Example of a cube of size L

\[
\begin{align*}
\text{d} \epsilon_x &= \frac{\text{d}x}{x} \\
\text{d} \epsilon_y &= \frac{\text{d}y}{y} \\
\text{d} \epsilon_z &= \frac{\text{d}z}{z}
\end{align*}
\]

\[-\nu \int_L^{L+\Delta L} \frac{\text{d}x}{x} = \int_L^{L-\Delta' L} \frac{\text{d}y}{y} = \int_L^{L-\Delta' L} \frac{\text{d}z}{z} \Leftrightarrow \]

\[
\left(1 + \frac{\Delta L}{L}\right)^{-\nu} = 1 - \frac{\Delta' L}{L} \Leftrightarrow \nu \approx \frac{\Delta' L}{\Delta L}
\]
Continuum Mechanics

- A deformable object is defined by rest shape and material parameters.
- Deformation map: $\mathbf{q} = f(\mathbf{p})$ of every point $\mathbf{p} = (x, y, z)$.
- Relative displacement field: $f(\mathbf{p}) = \mathbf{p} + u(\mathbf{p})$
The strain and stress are related to the material deformation gradient tensor J_q, and so to the displacement field u.

The stretch in a unit direction $\nu \rightarrow \nu'$:

$$|d\nu'|^2 = \nu^T (J_q^T J_q) \nu$$

$J_q^T J_q$ is called the (right) Cauchy-Green strain tensor.

Movement is rigid $\iff J_q$ is orthonormal $\iff J_q^T J_q = I \iff$ No strain!
Stress Tensor

• And stress tensor from Hooke’s linear material law
 \[\sigma = E \times \epsilon \]
 where \(E \) is the elasticity tensor and depends on the Young’s modulus and Poisson’s ratio (and more).
Soft-Body Simulation

• Two common approaches to simulation:
 • **Lagrangian** (particle-based):
 • A set of moving points carrying material properties.
 • Object is a connected mesh or cloud of points, suitable for deformable soft bodies.
 • **Examples**: Finite Element/Difference/Volume methods, Mass-spring system, Coupled particle system, Smoothed particle hydrodynamics.
 • **Eulerian** (grid-based):
 • A stationary point set where material properties change over time.
 • boundary of object not explicitly defined, suitable for fluids.
Motion of Dynamic Elastic materials

- For every point q, The PDE is given by
 $$\rho \ast \alpha = \nabla \cdot \sigma + F$$

- ρ: the **density** of the material.
- α: acceleration of point q.
- $\nabla \cdot \sigma = (d/dx, d/dy, d/dz) \ast \sigma$ is the **divergence** of the stress tensor (internal forces):
- F: other external forces.
Finite Element Method (FEM)

• Used to numerically solve partial differential equations (PDEs).
• Tessellating the volume into a large finite number of disjoint elements (3D volumetric/surface mesh).
• Typical workflow:
 • Estimating deformation field from nodes.
 • Computing local strain and stress tensors
 • The motion equation determined by integrating the stress field over each element.
Finite Differences Method

• If the object is sampled using a regular spatial grid, the PDE can be discretized using finite differences.
 • Pro: easier to implement than FEM.
 • Con: difficult to approximate complex boundaries.

• Semi-implicit integration is used to move forward through time
Boundary Element Method

• The boundary element method simplifies the finite element method from a 3D volume problem to a 2D surface problem.
 • PDE is given for boundary deformation.
 • Only works for homogenoous material.
 • Topological changes more difficult to handle.
Mass-Spring System

• An object consists of point masses connected by a network of massless springs.
• The state of the system: the positions x_i and velocities v_i of the masses $i = 1 \cdots n$.
• The sum force f_i on each mass:
 • External forces (e.g. gravity, friction).
 • Spring connections with the mass’ neighbors.
• The motion equation $f_i = m_i a_i$ is summed up:
 $$M \ast a = f(x, v)$$
 where M is a $3n \times 3n$ diagonal matrix.
Mass-Spring System

- Mass points are initially regularly spaced in a 3D lattice.
- The edges are connected by structural springs.
 - resist longitudinal deformations
- Opposite corner mass points are connected by shear springs.
 - resist shear deformations.
- The rest lengths define the rest shape of the object.
Mass-Spring System

• The force acting on mass point i generated by the spring connecting i and j is

$$f_i = Ks_i(\left|x_{ij}\right| - l_{ij})\frac{x_{ij}}{|x_{ij}|}$$

where x_{ij} is the vector from positions v_i to v_j, K_i is the stiffness of the spring and l_{ij} is the rest length.

• To simulate dissipation of energy, a damping force is added:

$$f_i = Kd_i \left(\frac{(v_j - v_i)^T x_{ij}}{x_{ij}^T x_{ij}} \right) x_{ij}$$
Mass-Spring System

• **Pro**: intuitive and simple to implement.
• **Con**: Not accurate and does not necessarily converges to correct solution.
 • depends on the mesh resolution and topology
 • …and the choice of spring constants.
• Can be good enough for games, especially cloth animation
 • For possible strong *stretching* resistance and weak *bending* resistance.
Coupled Particle System

- Particles interact with each other depending on their spatial relationship.
 - these relationships are dynamic, so geometric and topological changes can take place.
- Each particle p_i has a potential energy E_{Pi}.
 - The sum of the pairwise potential energies between the particle p_i and the other particles.

\[E_{Pi} = \sum_{j \neq i} E_{Pij} \]
Coupled Particle System

• The force f_i applied on the particle at position p_i is

$$f_i = -\nabla p_i E_{pi} = -\sum_{j \neq i} \nabla p_i E_{pij}$$

where $\nabla p_i E_{pi} = \left(\frac{dE_{pi}}{dx_i}, \frac{dE_{pi}}{dy_i}, \frac{dE_{pi}}{dz_i} \right)$

• Reducing computational costs by localizing.
 • potential energies weighted according to distance to particle.
Smoothed Particle Hydrodynamics

- The equation for any quantity A at any point r is given by

$$A(r) = \sum_j m_j \frac{A_j}{\rho_j} W(|r - r_j|, h)$$

- W is a smoothing kernel.
 - usually Gaussian function or cubic spline.
- h the smoothing length (max influence distance).
- Example: the density can be calculated as

$$\rho(r) = \sum_j m_j W(|r - r_j|, h)$$

- It is applied to pressure and viscosity forces, while external forces are applied directly to the particles.
Smoothed Particle Hydrodynamics

- **Derivatives of quantities**: by derivatives of W.
- Varying the smoothing length h tunes the resolution of a simulation locally.
 - Typically use a large length in low particle density regions and vice versa.
- **Pro**: easy to conserve mass (constant number of particles).
- **Con**: difficult to maintain material incompressibility.
Eulerian Methods

• Typically used to simulate fluids (liquids, smoke, lava, cloud, etc.).

• The scene is represented as a regular voxel grid, and fluid dynamics describes the displacements
 • Applying finite difference formulation on the voxel grid.
 • Velocity is stored on the cell faces.
 • Pressure is stored at the center of the cells.

• Heavily rely on the Navier-Stokes equations of motion for a fluid.
Navier-Stokes Equations

• Representing the conservation of mass and momentum for an incompressible fluid:

\[\nabla \cdot \mathbf{u} = 0 \]

\[
\rho \left(\mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} \right) = \nabla \cdot (\nu \, \nabla \mathbf{u}) - \nabla p + f
\]

- \(\mathbf{u}_t \) is the time derivative of the fluid velocity (the unknown), \(p \) is the pressure field, \(\nu \) is the kinematic viscosity, \(f \) is the body force per unit mass (usually just gravity \(\rho g \)).
Navier-Stokes Equations

• First f is scaled by the time step and added to the current velocity

• Then the advection term $u \cdot \nabla u$ is solved
 • it governs how a quantity moves with the underlying velocity field (time independent, only spatial effect).
 • it ensures the conservation of momentum.
 • sometimes called convection or transport.
 • solved using a semi-Lagrangian technique.
Then the viscosity term $\nabla \cdot (\nu \nabla u) = \nu \nabla^2 u$ is solved

- it defines how a cell interchanges with its neighbors.
- also referred to as diffusion.
- Viscous fluids can be achieved by applying diffusion to the velocity field.
- it can be solved for example by FD and an explicit formulation:
 - 2-neighbor 1D:
 $$u_i(t) = \nu \Delta t \left(u_{i+1} + u_{i-1} - 2u_i \right)$$
 - 4-neighbor 2D: $$u_{i,j}(t) = \nu \Delta t \left(u_{i+1,j} + u_{i-1,j} + u_{i,j+1} +$$
Navier-Stokes equations

• Finally, the pressure gradient is found so that the final velocity will conserve the volume (i.e. mass for incompressible fluid)
 – sometimes called pressure projection
 – it represents the resistance to compression $-\nabla p$
Navier-Stokes equations

- We make sure the velocity field stays divergence-free with the second equation $\nabla \cdot u = 0$.
- The velocity flux of all faces at each fluid cell is zero (everything that comes in, goes out).
- The equation $u(t + \Delta t) = u(t) - \Delta t \nabla p$ is solved from its combination with $\nabla \cdot u = 0$, giving

 $\nabla \cdot u(t + \Delta t) = \nabla \cdot u(t) - \Delta t \nabla \cdot (\nabla p) = 0$

 $\iff \Delta t \nabla^2 p = \nabla \cdot u(t)$

 with which we solve for p, then plug back in the $u(t + \Delta t)$ equation to calculate the final velocity
Navier-Stokes equations

- Compressible fluids can also conserve mass, but their density must change to do so.
- Pressure on boundary nodes
 - In free surface cells, the fluid can evolve freely ($p = 0$)
 - so that for example a fluid can splash into the air
 - Otherwise (e.g. in contact with a rigid body), the fluid cannot penetrate the body but can flow freely in tangential directions $u_{boundary} \cdot n = u_{body} \cdot n$.
End of
Soft body physics

Next
Physics engine design and implementation