Computer Science and Future Energy Systems

Han La Poutré
CWI, Amsterdam
Centrum Wiskunde & Informatica
& Utrecht University

Contents

• Future energy systems and scenarios
• Some important ICT problem areas in SES
• Game theory and agents
• Negotiations and auctions
Current Energy Systems

• Current Energy Systems
 • Fossil ("gray") energy
 • Generators and consumers
 • Some large, central power plants
 • Large consumers (companies)
 • Many small consumers
 • Top-down approach
 • Demand prediction
 • Generation planning
 • One-way system
 • “Supply follows demand”

Future Energy Systems

• Future Energy Systems
 • Sustainable ("green") energy
 • New devices and technology
 • Massive amounts of (small) generators and devices
 • Generators
 – Solar cells
 – Wind turbines
 – Biomass
 – μCHP
 • Consumers
 – Electric cars
 – Heat pumps
Future Energy Systems

• Challenges in matching supply and demand of energy
 • Uncertain energy generation
 • Intensive energy usage by new devices
 • “Demand follows supply”

• Uncertainty
 – Uncertainty in daily operations
 • Power generation, intensive demand
 – Future scenarios: what will happen?

Future Energy Systems

• Organisation of our energy system into new, smart energy systems (SES)
 – Energy systems with ICT
 – In order to allow for durable energy generation and consumption

• “Smart Grid”
 – Electricity network that allows for sustainable power sources
 – Typically characterized by incorporation of ICT

• Challenges for deploying new devices, technology, and services
 • Technological challenges
 • Business opportunities

• Challenges for ICT
 – Next to Electrical Engineering (EE), control theory, economics, social sciences, ..
Future Scenarios:
Smart Energy Systems (SES)

- Uncertain developments for SES
 - Techniques to be developed
 - Smart grids, smart homes, hardware, software, ...
 - Social issues
 - User acceptance, energy awareness, ..
 - Economic issues
 - Business models, return on investment, ..
 - Governance
 - Laws, regulations, standards, ..

- A challenge: possible future scenarios for SES
 - How will SES evolve in the future
 - Interconnected aspects
 - What are the possibilities, constraints, and characterization

- How to develop the right technology
 - ICT, electric hardware, etc.
Impact on SES 2020

Figure 1: Driver Analysis: Driving Forces influencing the Design of Future Smart Energy Systems. Result of the Munich Workshop in May 2011 on User Experience and Future Scenario Research on Smart Energy Systems [CDTM/ICT Labs]

Strategic Scenario Drivers SES

- **Environment**
 - resources, nature, infrastructure, pollution, etc.
- **Economy**
 - rules, markets, competition, changes, etc.
 - business models, return on investment, ..
- **Politics**
 - laws, rules, regulations, structures, standards, etc.
- **Individuals**
 - behavior, goals, motivation, (energy) awareness, acceptance, etc.
- **Society**
 - values, behavior, relations, ways of life, social aspects, etc.
- **Science & Technology**
 - devices, services, smart grids, smart homes, hardware, software, ...
- **How to develop** the right technology, esp. ICT
 - ICT, electric hardware, etc.
Some Important ICT Problems in SES: supply/demand matching

- **Management and control systems** for electricity (distribution) networks
 - Many actors
 - Large generators, prosumers, farms, e-vehicles, large prosumers
 - Uncertainty
 - Uncertain sustainable generation
 - Intensive demand
 - How will demand follow supply?
 - Novel...; demand side management
 - Dynamic supply/demand matching
 - How to achieve this?

- **Smart grids**: Electricity (distribution) networks, with
 - Smart control of supply and demand
 - Smart sensing of network states; data processing
 - Smart consumers and producers connected to the grid

Optimization/Control Objectives

[Diagram showing various factors affecting total cost, such as losses, CO2 emissions, efficiency of powerplants, following bought profile, APX, cable aging, and maximise de-central production volume.]
ICT Techniques for
Supply/Demand Matching

• Some (first) approaches and solutions exist
 – E.g., first market mechanisms (Powermatcher,..), first clustering techniques (microgrids,..), smart power management (factories,..), ...

• A variety of settings exist
 – Depending on areas, possible business roles, regulation, etc.
 – Different solutions needed (as above)

• And:
 – We want (to keep our) stable electricity supply!
 – Current power system: 99,99% reliability.

ICT Techniques for
Supply/Demand Matching

• Coordination and control
 – Remote control
 • At homes, by electricity companies
 – Electric devices (freezer, e-vehicle, heater, μCHP)
 – Optimization techniques
 – Data about (all) consumption desires
 – Actors respond via market mechanisms
 • Dynamic pricing
 • Auctions (several types)
 • Other market types
 – Negotiation
 – Other forms of organisation
 • Contracting (day/night, advanced, …)
 • Clustering (smart neighbourhoods)
 – Agent systems
 • Various forms
 ICT Techniques for Supply/Demand Matching

• **Questions in Computer science: tackling high complexity**
 - Large amounts of data and decisions (computations)
 - Millions of households in NL; smart meters in network
 - Tbytes data per day; millions of decisions per day
 - Aim for decentralized ICT solutions
 - Efficient ICT solutions
 - Efficient (market/coordination) mechanisms for supply/demand matching
 - Fast response and computation
 - Stable ICT solutions
 - Low uncertainty (of market prices): predictability
 - Scaleable ICT solutions
 - For hundreds to thousands to millions of actors
 - Robust solutions
 - Heterogeneous environments: large and small actors, ..
 - Reliability of ICT performance
 - Keep the 99,99 % reliability...

 – Typical Computer Science issues

 ICT Techniques for Supply/Demand Matching

• **Questions in Computer science: tackling high complexity**
 - E.g.: Efficient solutions
 - Can the ICT system react fast on sudden changes
 - Can I indeed get all my desired power when I want? What if not?
 - E.g.: Stable solutions
 - How do I know that using my washing machine this afternoon, with sunny weather, indeed gives low prices?
 - How do I know that when the washing/drying machine starts, prices remain low for the next hours? Any guarantee?
 - E.g.: Robust solutions
 - Will prices remain low when just one large consumer suddenly may start using power?
 - What happens if everybody uses the same software with similar decisions?

 – (Market) mechanisms that yield sufficient certainty?
Some Important ICT Problems in SES

• Local scheduling and planning
 – Consumers become prosumers
 • Consumers also generate energy at e.g. homes
 • Solar cells, CHPs, wind turbine, ..
 • E-vehicles
 – How to optimize their comfort
 • When to generate/store/consume/deliver power?
 • Usage at homes; flexible
 • According to the user’s preferences
 – Sensing, scheduling and optimization techniques
 • User preferences for optimization
 • Sensor networks for learning user behaviour
 • Price forecasting
 • Optimization algorithms
 • VPPs (Virtual Power Plants)

Smart Energy Systems - Conclusion

• Smart Energy Systems
 – Novel ICT required
 – Requirements from
 • EE, society, regulations, economy, business
 – Several basic solutions exist
 – More advanced solutions underway
 • Computer science
 – Scalability, stability, heterogenous, ..
 • Algorithms, learning, data mining, data base systems, agents, operations research, simulation, security, privacy, control, markets,
Agents

• Bargaining games
 – “Games” as in game theory: formalized interaction
 – Negotiations, auctions, market mechanisms, ...

• Concept: software agent
 • Independent piece of software
 – Can interact autonomously with other agents
 • For automatic bargaining on behalf of a party
 – E.g., its owner
 – Competitive agent
 • Multiagent system
 – Bargaining together
 • Conceptual use
Games

- **Game**: players that interact with each other
 - And get a payoff at the end

- A game is defined by its **rules**
 - **Who** can do **What** and **When**;
 - Who **gets what** at the **end** of the game

- **Games strategy** of a player
 - Description of the actions by that player

- **Negotiation/auction**: specific type of game
 - Agents want to make a deal
 - 2 or more players: e.g. buyer and seller
 - Usually involves alternating-offers for negotiation

Mechanisms for Allocation

- Two main types of mechanisms for allocation of goods:

 - **Auctions**
 - Fixed protocol and rules, mainly centralized
 - Possible to design optimal mechanisms that guarantee certain desirable properties – especially in one-shot settings
 - Often target at direct revelation (bidders reveal the prices for preferred combinations), presence of a trusted center

 - **Negotiation (bargaining)** mechanisms:
 - Allows the use of more decentralized, flexible protocols
 - Allows customized and complex agreements
 - Agents can use incomplete information about their opponent (and their own) preferences
 - Focus is on designing agent strategies, not the mechanism itself
Utility Functions

• How to measure outcomes?

• Utility function $u(o) = \text{function } u \text{ that maps all possible game outcomes } o \text{ in the choice set into } ...$
 – a real number: Cardinal utility - (e.g. between 0 - 1)
 – an ordering between outcomes: Ordinal utility - specifies only an ordering between outcomes

• Utility functions can be:
 – Over a single issue (e.g. only over price)
 – Over multiple issues (attributes)
 • Discrete-values
 – Excellent (10), “good” (8), average (6), bad (4), ...
 • Continuous
 – Real values (7.5 euros, 3.2 kg, 2.46 sec,...)
Example: Negotiation

- Agents negotiate about the exchange of services or goods and a price

- *(Monetary) Utility* of a possible negotiation outcome D for each agent a is e.g.:
 - Amount it is willing to pay for the goods/services exchanged in the deal: its valuation $v_a(D)$
 - the deal's/goods/services value to it
 - minus the price of the deal itself for it: $p_a(D)$
 - the actual price it has to pay
 - thus $v_a(D) - p_a(D)$

- Each agent wants maximal utility: “economic rationality”

Example Utility

- E.g., a possible negotiation outcome:
 - Agent 1 gives one television to agent 2
 - Agents 1’s valuation: 500 euro; agent 2: 300 euro
 - Agent 2 gives two goods to agent 1: car and a bicycle
 - Agent 1’s valuation: 2500 euro; agent 2: 1000 euro
 - Valuation of the goods transfer in the deal:
 - for agent 1 this is +2000 euro
 - for agent 2 this is -700 euro

- If in addition, agent 1 has to pay the price of 1000 euro to agent 2, then for this possible outcome:
 - the deal has a utility value of
 - 1000 euro for agent 1, and
 - 300 euro for agent 2
Pareto Efficiency

• How good is an outcome?

• Pareto efficiency (pareto optimal):

 – A game outcome \(d \) is pareto efficient if there is no game outcome that is better for at least one agent and not worse for the other agent(s):

 \[
 \begin{align*}
 u_A(d') &\geq u_A(d) \quad \text{and} \quad u_B(d') \geq u_B(d) \quad \text{and} \\
 u_A(d') &> u_A(d) \quad \text{or} \quad u_B(d') > u_B(d)
 \end{align*}
 \]

Evaluation Criteria
Negotiation/Auction Mechanisms

• Mechanisms: some evaluation criteria / goals
 – Pareto efficiency
 – Social welfare
 – Stability
 – Individual rationality
 – Better than fall-back option

• Design mechanism to allow/satisfy/optimize these goals
 – Possible criterion for selecting mechanisms
Evaluation Criteria

• Social welfare
 – The sum of all agents payoffs in an outcome or
 The sum of all agents utilities in an outcome
 • Try to optimize the collective ("social") outcome for the complete society/set of agents involved

• Stability
 – How stable are the outcomes of the mechanism
 • E.g. Nash equilibrium, dominant strategies, best response

Stability

• Dominant strategy for a player A
 – A best strategy that A can play, no matter what the other players do

• Best-response strategy S for player A
 – Given (!) the strategies of the other players, then S is a best strategy for A to play.

• Nash equilibrium
 – "no agent has the incentive to deviate from his strategy given the others"
 • Notion of stability and robustness of the situation
 • Equilibrium
 – A set of strategies \((S_1, S_2, \ldots, S_k) \) for players \(A_1, A_2, \ldots, A_k \) is a Nash equilibrium (NE) if for every \(i \), strategy \(S_i \) is the best-response strategy that \(A_i \) can play given the strategies of the other agents.
Example:
Prisoner’s Dilemma Game (PD)

- Players can either Cooperate (C), or Defect (D)
- Every player is tempted to defect given the other players move

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>3,3</td>
<td>0,5</td>
</tr>
<tr>
<td>D</td>
<td>5,0</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Best-Response in PD

- **Best-Response** play to current opponent policy:
The model of the opponent reveals:
 - The opponent cooperates:
 - Defection gives the higher reward
 - The opponent defects:
 - Defection is best counter move
 - So, Defect is:
 best response in both cases, and: dominant strategy

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>3,3</td>
<td>0,5</td>
</tr>
<tr>
<td>D</td>
<td>5,0</td>
<td>1,1</td>
</tr>
</tbody>
</table>

- Best-Response leads to symmetrical Defection: (D,D) is also a Nash Equilibrium
Nash equilibrium

- Nash equilibrium (NE) in games
 - NE does not always exist
 - Multiple NEs exist
 - Which strategy to play by an agent?

Auctions

- Auction (unidirectional)
 - Auctioneer
 - Sell an item
 - Highest possible payment
 - Potential bidders
 - Buy the item
 - Lowest possible payment
 - Usually:
 - Bidding rules
 - Allocation rules
 - Who wins/gets the item
 - Payment rules
 - What does winner have to pay
 - Above rules: often very strict
 - Easy to analyze and understand
Some Types of Auctions

• Types of auctions (unidirectional)

 – Iterative auctions
 • Ascending bid auctions (english auction)
 – Bidders increase their bids one by one
 • Descending bid auctions (dutch auction/flower auction)
 – Clock moves downwards in price until first bidder bids

 – One-bid auctions (“sealed envelopes”)
 • First-price auctions
 – One bid per bidder; highest one wins and pays that price
 • Second-price auctions (vickrey auction)
 – One bid per bidder; highest one wins and pays the second highest price

 – Combinatorial auctions (multiple goods)
 • Vickrey-Clark-Groves (VCG) auctions, ...

Some Types of Auctions

• Types of auctions (unidirectional, one good)

 • Iterative auctions
 – Ascending bid auctions (english auction)
 – Descending bid auctions (dutch auction/flower auction)

 • One-bid auctions (“sealed envelopes”)
 – First-price auctions
 – Second-price auctions (vickrey auction)

• Behaviour of iterative and one-bid auctions:
 – Can have similar theoretical behaviour for some properties (game theory)
 • Revenue
 • Winner determination (“efficiency of outcomes”)
 • Price determination

 – But also differ in others
 • Stability: existence of dominant strategies
 • Speed of auction
 • Private information revelation
 • Disclosure of market values
Some Types of Auctions

- Types of auctions (bidirectional)
 - Double actions
 - Buyers and sellers make a bid
 - Bids of buyers and sellers are “matched”, allocation with prices
 - (Uniform) clearing price is calculated
 - Discriminatory prices (price per buyer/seller)
 - Can be complex: computability
 - Continuous Double Auctions (CDAs)
 - Everlasting auction
 - Bids of buyers and sellers are matched whenever possible
 - Auction continues with remaining or new buyers and sellers
 - Discriminatory prices (price per buyer/seller / time)
 - Bids can be
 - Simple (a price or a quantity)
 - Complex (a price/quantity function)

Conclusion Auctions/Negotiation

- Auctions/negotiation mechanisms for allocation of goods

- Design/choice of mechanism is important
 - Different properties
 - Revenue, equilibriums, stability, optimality criteria, efficiency, speed, computability (winners, prices, bid-strategies), communication complexity, ...
 - Choice for mechanism
 - What properties do you need?
 - Design of new ones
 - Important in the energy domain